高中数学圆的方程
高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
高中数学圆及其方程

圆及其方程一、公式及相关内容(1)圆的标准方程:222()()x a y b r -+-= (圆心及半径)(2)圆的一般方程:220x y Dx Ey F ++++= (无xy 项,22,x y 系数相等且不为零)(3)圆的参数方程:cos sin x a r y b r θθ=+⎧⎨=+⎩(θ为参数)上述方程中均有三个字母系数,因此确定一个圆需要三个独立的条件。
(4)过圆 222x y r +=上一点00(,)P x y 的切线方程为200xx yy r +=圆 222xy r +=的斜率为k 的切线方程为y kx =± (掌握推导方法)(5)经过两圆:221110x y D x E y F ++++=,222220x y D x E y F ++++=交点的圆的方程为2222111222()0x y D x E y F x y D x E y F λ+++++++++= 当1λ=-时,得到两圆公共弦所在直线方程121212()()()0D D x E E y F F -+-+-=(6)判断点与圆的位置关系:取决于点与圆心的距离与圆半径的比较结果 (7)直线与圆的位置关系:一:圆心到直线的距离与圆半径比较二:直线与圆方程组成的方程组的解的个数:∆法(8)圆与圆位置关系:圆心距d 与两圆半径,R r 的比较:d R r d R r R r d R r d R r d R r>+⎧⎪=+⎪⎪-<<+⎨⎪=-⎪<-⎪⎩(9)公切线求法:通过比例求得公切线与连心线的交 点A 的坐标,用点斜式设公切线的 方程,然后求得斜率k ,得到公切 线方程。
外离 外切 相交 内切 内含二 求圆的方程1. 求经过两点(1,4),(3,2)A B -,且圆心在y 轴上的圆的方程。
(标准方程法,垂径弦性质)2.(1)已知圆经过(2,3)A -和(2,5)B --两点,若圆心在直线230x y --=上,求圆的方程; (2)求过点(1,0),(3,0),(0,1)A B C -的圆的方程。
高中数学圆的方程

【解析】(1)∵ k AB
1 , AB 中点为 (0,4) , 2
∴ AB 中垂线方程为 y 4 2 x , 即 2x y 4 0 ,
x 1, 2 x y 4 0 由 ,解得 y 2. x 2 y 3 0
∴圆心为 (1,2) .由两点间的距离公式, 得半径 r 10 ,
知识梳理
1.圆的定义 ⑴在平面内,到 定点 的距离等于 定长 的点的轨迹叫做圆. ⑵确定一个圆最基本的要素是 圆心 和 半径 . 2.圆的方程 圆的标准方程 方程 条件 圆心 半径 圆的一般方程
( x a)2 ( y b)2 r 2
r0
(a,b)
x 2 y 2 Dx Ey F 0
2
2 2 ( x 1) ( y 2) 10 . ∴所求的圆的方程为
(2)要使圆的面积最小,则 AB 为圆的直径, ∴所求圆的方程为: x ( y 4) 5 .
2 2
【变式】若圆 C 经过坐标原点和点 (4, 0) ,且与直线 则圆 C 的方程是 .
y 1 相切,
【解析】∵圆 C 经过坐标原点和点 (4, 0) , ∴可设圆 C 的方程为 ( x 2)2 ( y b)2 r 2 (r 0) ,
2
y (1) 的最大值; x
(2) x
2
y
2
的取值范围.
【解析】圆的方程可化为 ( x 2) y 3 .
2 2
y (1)设 k ,即 y kx , x
当相切时, k 取得最大值或最小值,
| 2k |
∴
1 k
2
3 ,解得 k 3 或 k 3 ,
∴
【高中数学】秒杀秘诀--圆的方程

⑤ 0 d r1 r2 内含 无公切线
O1
O2
O1
O2
O1
O2
O1
O2
内含
0
内r1切 -r2
相交
外r1+切r2
相离
O1
O2
d
第3页共5页
例 15.两个圆 C1:x2+y2+2x+2y-2=0 与 C2:x2+y2-4x-2y+1=0 的位置关系为(
).
A.内切
B.相交
C.外切
D.相离
解:由两个圆的方程 C1:(x+1)2+(y+1)2=4,C2:(x-2)2+(y-1)2=4 可求得圆心距 d= 13 ∈(0,4),r1 =r2=2,且 r 1-r 2<d<r 1+r2 故两圆相交,选 B. 例 16.已知圆 C1 : x2 y2 6x 6 0 ①,圆 C2 : x2 y2 4y 6 0 ② (1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.
∴ 直线方程为 y x 1 ,在 y 轴上的截距是 1.
例 12.求圆心在原点,且圆周被直线 3x+4y+15=0 分成 1∶2 两部分的圆的方程. 解:设直线与圆交于 A,B 两点,则∠AOB=120°,设所求圆方程为:x2+y2=r2,
则圆心到直线距离为 r 15 ,所以 r=6,所求圆方程为 x2+y2=36. 25
d | 2a a 1| | 3a 1| , ∴ R2 2 (3a 1)2 , 即 4(a+1)2+(a-3)2=2+ (3a 1)2 , 解得 a=-7 或 a=-3.
2
2
2
2
当 a=-3 时,r= 52 ;当 a=-7 时,r= 244 . ∴ 所求圆方程为(x-6)2+(y+3)2=52 或(x-14)2+(y+7)2=244.
高中数学 必修2:4.1 圆的方程

4.1 圆的方程一、圆的标准方程1.圆的标准方程2.圆的标准方程的推导如图,设圆的圆心坐标为(,)C a b ,半径长为r (其中a ,b ,r 都是常数,r >0).设(),M x y 为该圆上任意一点,那么圆心为C 的圆就是集合{}|P M MC r ==.由两点间的距离公式,得圆上任意一点M 的坐标(x ,y )r = ①,①式两边平方,得222()()=x a y b r -+-.3.点与圆的位置关系圆C :222()(0())x a y b r r -+-=>,其圆心为,()C a b ,半径为r ,点00(,)P x y ,设||d PC ==.二、圆的一般方程1.圆的一般方程的定义当2240D E F +->时,方程220x y Dx Ey F +++=+表示一个圆,这个方程叫做圆的一般方程,其中圆心为,半径r =.2.圆的一般方程的推导把以(,)a b 为圆心,r 为半径的圆的标准方程222()()x a y b r -+-=展开,并整理得22222220x y ax by a b r +--++-=.取2222,2,D a E b F a b r =-=-=+-,得:220x y Dx Ey F +++=+ ①.把①的左边配方,并把常数项移到右边,得22224()()224D E D E F x y +-+++=. 当且仅当时,方程表示圆,且圆心为,半径长为; 当2240D E F +-=时,方程只有实数解,22D E x y =-=-,所以它表示一个点; 当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.3.点与圆的位置关系点00)(,P x y 与圆22220(40)x y Dx Ey F D E F ++=+->++的位置关系是: P 在圆内⇔,P 在圆上⇔, P 在圆外⇔.三、待定系数法求圆的一般方程 求圆的方程常用“待定系数法”,用“待定系数法”求圆的方程的大致步骤是:①根据题意,选择标准方程或一般方程;②根据条件列出关于a b r 、、或D E F 、、的方程组;③解出a b r 、、或D E F 、、,代入标准方程或一般方程.四、轨迹和轨迹方程1.轨迹和轨迹方程的定义平面上一动点M ,按照一定规则运动,形成的曲线叫做动点M 的轨迹.在坐标系中,这个轨迹可用一个方程表示,这个方程就是轨迹方程.2.求轨迹方程的五个步骤①建系:建立适当的坐标系,用(,)x y 表示曲线上任意一点M 的坐标;②设点:写出适合条件P 的点M 的集合){}(|P M p M =;③列式 :用坐标(,)x y 表示条件()p M ,列出方程(,)0F x y =;④化简:化方程(,)0F x y =为最简形式;⑤査漏、剔假:证明化简后的方程的解为坐标的点都是曲线上的点.1.求圆的标准方程求圆的标准方程的常用方法包括几何法和待定系数法.(1)由圆的几何性质易得圆心坐标和半径长时,用几何法可以简化运算.对于几何法,常用到圆的以下几何性质:①圆中任意弦的垂直平分线必过圆心;②圆内的任意两条弦的垂直平分线的交点一定是圆心.(2)由于圆的标准方程中含有三个参数a ,b ,r ,运用待定系数法时,必须具备三个独立的条件才能确定圆的方程.这三个参数反映了圆的几何性质,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定形条件.【例1】写出下列各圆的标准方程.(1)圆心在原点,半径长为2;(2)圆心是直线10x y +-=与230x y -+=的交点,半径长为14. 【解析】(1)∵圆心在原点,半径长为2,即0,0,2a b r ===,∴圆的标准方程为224x y +=.【例2】过点111,(1())A B --,,且圆心在直线20x y +-=上的圆的方程是( C )A .22()(31)4x y -++=B .22()(31)4x y ++-=C .22()(11)4x y -+-=D .22()(11)4x y +++= 【解析】解法1:设所求圆的标准方程为222()()x a y b r -+-=,由已知条件,知222222(1)(1)(1)(1)20a b r a b r a b ⎧-+--=⎪--+-=⎨⎪+-=⎩,解此方程组,得2114a b r ⎧=⎪=⎨⎪=⎩,故所求圆的标准方程为22()(11)4x y -+-=.解法2:设点C 为圆心,因为点C 在直线20x y +-=上,所以可设点C 的坐标为(),2a a -. 又因为该圆经过,A B 两点,所以||||.CA CB == 解得1a =.所以2211a -=-=.所以圆心坐标为()1,1C ,半径|2|r CA ==.故所求圆的标准方程为22()(11)4x y --+=.2.会判断点与圆的位置关系点与圆的位置关系的判断方法:(1)几何法:利用圆心到该点的距离d 与圆的半径r 比较;(2)代数法:直接利用下面的不等式判定:①22200()()x a y b r -+->,点在圆外;②22200()()x a y b r -+-=,点在圆上;③22200()()x a y b r -+-<,点在圆内.【例3】 已知点(2,0)和(x -2)2 + (y +1)2 = 3,则点与圆的位置关系是( A ) A .在圆内 B .在圆上 C .在圆外 D .不确定【解析】由于(2-2)2+(0+1)2<3,故点在圆内.【例4】已知点A (1,2)和圆C :(x-a )2+(y+a )2=2a 2,试求满足下列条件的实数a 的取值范围.(1)点A 在圆C 的内部;(2)点A 在圆C 上 (3)点A 在圆C 的外部.3.圆的方程的判断判断二元二次方程220x y Dx Ey F ++++=是否表示圆的方法:(1)利用圆的一般方程的定义,求出224D E F +-利用其符号判断.(2)将方程配方化为()()22x a y b m -+-=的形式,根据m 的符号判断.【例5】判断下列方程是否表示圆,若是,化成标准方程.(1)x 2+y 2+2x+1=0;(2)x 2+y 2+2ay-1=0;(3)x 2+y 2+20x+121=0;(4)x 2+y 2+2ax =0.【解析】(1)原方程可化为(x+1)2+y 2=0,它表示点(-1,0),不表示圆.(2)原方程可化为x 2+(y+a )2=a 2+1,它表示圆心为(0,-a ),半径为的圆,标准方程为x 2+(y+a )2=()2 . (3)原方程可化为(x+10)2+y 2=-21<0,故方程不表示任何曲线,故不能表示圆.(4)原方程可化为(x+a )2+y 2=a 2.①当a =0时,方程表示点(0,0),不表示圆;②当a ≠0时,方程表示以(-a ,0)为圆心,半径为|a|的圆,标准方程为(x+a )2+y 2=a 2.【例6】 方程x 2+y 2+4mx-2y+5m =0表示圆的条件是( B )A .14<m <1 B .m <14或m >1 C .m <14D .m >14.用待定系数法求圆的一般方程应用待定系数法求圆的一般方程的步骤如下:【例7】已知圆经过点(4,2)和(-2,-6),且该圆与两坐标轴的四个截距之和为-2,求圆的方程.【解析】设圆的一般方程为22220(40)x y Dx Ey F D E F ++++=+->. 由圆经过点(4,2)和(-2,-6),得4220026400 ① ②D E F D E F +++=⎧⎨+--=⎩, 设圆在x 轴上的截距为x 1,x 2,则x 1,x 2是方程x 2+Dx+F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1,y 2,则y 1,y 2是方程y 2+Ey+F =0的两个根,得y 1+y 2=-E .由已知,得-D+(-E )=-2,即D+E-2=0. ③联立①②③,解得D =-2,E =4,F =-20,故所求圆的方程为x 2+y 2-2x+4y-20=0.【例8】试判断(1,2)A ,(0,1)B ,(76)C -,,(4,3)D 四点是否在同一个圆上.5.与圆有关的轨迹问题求与圆有关的轨迹方程的常用方法:(1)直接法: 能直接根据题目提供的条件列出方程.步骤如下:(2)定义法:当动点的轨迹符合圆的定义时,可直接写出动点的轨迹方程.(3)相关点法:若动点,()P x y 随着圆上的另一动点11(),Q x y 运动而运动,且11,x y 可用,x y 表示,则可将Q 点的坐标代入已知圆的方程,即得动点P 的轨迹方程.【例9】已知点P (x ,y ),A (1,0),B (-1,1),且|PA|=|PB|. (1)求点P 的轨迹方程;(2)判断点P 的轨迹是否为圆,若是,求出圆心坐标及半径;若不是,请说明理由.【例10】已知直角ABC △的斜边为AB ,且1,0,()(,0)3A B -,求:(1)直角顶点C 的轨迹方程;(2)直角边BC 中点M 的轨迹方程.【解析】(1)解法一:设顶点,()C x y ,因为AC BC ⊥,且,,A B C 三点不共线,所以3x ≠且1x ≠-. 又1AC k y x =+, 3BC y k x =-,且·1AC BC k k =-,所以113y y x x ⋅=-+-,化简得22230x y x +--=. 因此,直角顶点C 的轨迹方程为22230(31)x y x x x +--=≠≠-且.解法二:同解法一得3x ≠且1x ≠-.由勾股定理得222||||||AC BC AB +=,即2222131))6((x y x y +++-+=,化简得22230x y x +--=.因此,直角顶点C 的轨迹方程为22230(31)x y x x x +--=≠≠-且.解法三:设AB 中点为D ,由中点坐标公式得()1,0D ,由直角三角形的性质知, 122||||CD AB ==, 由圆的定义知,动点C 的轨迹是以()1,0D 为圆心,以2为半径的圆(由于,,A B C 三点不共线,所以应除去与x 轴的交点).设,()C x y ,则直角顶点C 的轨迹方程为2214))1((3x y x x -+=≠≠-且.6.忽视圆标准方程的结构致错【例11】求圆()222230()()x y b b ++-≠=的圆心及半径.【错解】由圆的标准方程知圆心为(2,)3-,半径为b .【错因分析】在圆的标准方程2220()()()x a y b r r -=>-+中,此圆的圆心为(),a b ,半径长为r .错解中没有准确把握圆的标准方程的结构形式.【正解】由圆的标准方程知圆心为()2,3-,半径为||b .7.忽视圆的一般方程应满足的条件致错【例12】已知点()0,0O 在圆2222210x y kx ky k k +++-+=+外,求k 的取值范围.【错解】∵点()0,0O 在圆外,∴2210k k ->+,解得1 1.2k k ><-或 ∴k 的取值范围是(),1-∞-1(,)2+∞. 【错因分析】本题忽视了圆的一般方程220x y Dx Ey F +++=+表示圆的条件为2240D E F +->,【正解】∵方程表示圆,∴222()(2420)1k k k k +-+>-,即23440k k -<+,解得22.3k -<<又∵点()0,0O 在圆外,∴2210k k ->+,解得12k >或1k <-.综上所述,k 的取值范围是1()(22,3)12--,.基础训练1.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程为( A )A .x 2+(y –3)2=1B .x 2+(y +3)2=1C .(x –3)2+y 2=1D .(x +3)2+y 2=12.已知圆C :(x –6)2+(y –8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( C )A .(x –3)2+(y +4)2=100B .(x +3)2+(y –4)2=100C.(x–3)2+(y–4)2=25 D.(x+3)2+(y–4)2=253.(x+1)2+(y–1)2=1的圆心在(B )A.第一象限B.第二象限C.第三象限D.第四象限4.圆心为点(3,4)且过点(0,0)的圆的方程是(C )A.x2+y2=25 B.x2+y2=5 C.(x–3)2+(y–4)2=25 D.(x+3)2+(y+4)2=255.以两点A(–3,–1)和B(5,5)为直径端点的圆的方程是(A )A.(x–1)2+(y–2)2=25 B(x+1)2+(y+2)2=25 C.(x+1)2+(y+2)2=100 D.(x–1)2+(y–2)2=1006.已知圆心在点P(–2,3),并且与y轴相切,则该圆的方程是(B )A.(x–2)2+(y+3)2=4 B.(x+2)2+(y–3)2=4 C.(x–2)2+(y+3)2=9 D.(x+2)2+(y–3)2=9 7.圆x2+y2–2x+4y=0的圆心坐标为(B )A.(1,2)B.(1,–2)C.(–1,2)D.(–1,–2)8.已知圆的方程x2+y2+2ax+9=0圆心坐标为(5,0),则它的半径为(D )A.3 B C.5 D.49.圆x2+y2–4x+2y+4=0的半径和圆心坐标分别为(C )A.r=1;(–2,1)B.r=2;(–2,1)C.r=1;(2,–1)D.r=2;(2,–1)10.圆x2+y2–2x+2y=0的周长是(A )A.B.2πC D.4π11.圆心为(1,1)且过原点的圆的方程是(x–1)2+(y–1)2=2_.12.圆(x+1)2+(y–3)2=36的圆心C坐标(–1,3),半径r=___6_____.13.求圆心在直线y=–2x上,并且经过点A(0,1),与直线x+y=1相切的圆的标准方程.14.已知圆经过点A(2,4)、B(3,5)两点,且圆心C在直线2x–y–2=0上.求圆C的方程.∵圆C经过点A(2,4)、B(3,5)两点,∴点C在线段AB的垂直平分线y=–x+7,又∵圆心C在直线2x–y–2=0上,∴联立7220y xx y=-+⎧⎨--=⎩,得C(3,4).圆C的半径r=|AC|==1,∴圆C的方程是(x–3)2+(y–4)2=1.15.求过三点O(0,0),A(1,1),B(4,2)的圆的方程,并求这个圆的半径和圆心坐标.设圆的方程为:x2+y2+Dx+Ey+F=0,则2042200FD E FD E F=⎧⎪+++=⎨⎪+++=⎩,解得D=–4,E=3,F=0,∴圆的方程为x2+y2–8x+6y=0,化为(x–4)2+(y+3)2=25,可得:圆心是(4,–3)、半径r=5.16.求过三点A(–1,0),B(1,–2),C(1,0)的圆的方程.17.已知方程x2+y2–2x+t2=0表示一个圆.(1)求t的取值范围;(2)求该圆的半径r最大时圆的方程.(1)由圆的一般方程,得4–4t2>0,∴–1<t<1;(2)r=t=0时,r最大为1.∴圆的方程:(x–1)2+y2=1.能力18.如图,在直角坐标系xOy中,坐标轴将边长为4的正方形ABCD分割成四个小正方形,若大圆为正方形ABCD的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是( B )A.x2+y2–x+2y+1=0 B.x2+y2+2x–2y+1=0 C.x2+y2–2x+y–1=0 D.x2+y2–2x+2y–1=019.若方程a2x2+(a+2)y2+2ax+a=0表示圆,则a的值为( C )A.a=1或a=–2 B.a=2或a=–1 C.a=–1 D.a=220.若方程x2+y2–4x+2y+5k=0表示圆,则实数k的取值范围是( A )A.(–∞,1)B.(–∞,1] C.[1,+∞)D.R21.圆(x–1)2+(y–2)2=1关于直线x–y–2=0对称的圆的方程为( A )A.(x–4)2+(y+1)2=1 B.(x+4)2+(y+1)2=1 C.(x+2)2+(y+4)2=1 D.(x–2)2+(y+1)2=122.由方程x2+y2+x+(m–1)y+12m2=0所确定的圆中,最大面积是( B )A B.34πC.3πD.不存在23.若圆x2+y2–4x+2y+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是( C ) A.m<–1 B.m>–6 C.–6<m<–5 D.m<–524.已知圆的方程为x2+y2–2x+6y+8=0,那么通过圆心的一条直线方程是( C )A.2x–y–1=0 B.2x–y+1=0 C.2x+y+1=0 D.2x+y–1=025.已知三点A(1,3),B(4,2),C(1,–7),则△ABC外接圆的圆心到原点的距离为( D )A.10 B.C.5 D26.由方程x2+y2–4tx–2ty+5t2–4=0(t为参数)所表示的一组圆的圆心轨迹是( D )A.一个定点B.一个椭圆C.一条抛物线D.一条直线27.已知点A(–3,0),B(–1,–2),若圆(x–2)2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为4,则r的取值范围是).28.已知圆C:(x–3)2+(y–4)2=1和两点A(–m,0),B(m,0)(m>0),若圆C上存在点P使得∠APB=90°,则m的最大值为_____6_____.29.已知函数f(x)=13x2–43x+1的图象与坐标轴的交点均在圆M上,则圆M的标准方程为(x–2)2+(y+1)2=5.30.已知动点A在圆P:x2+y2=1上运动,点Q为定点B(–3,4)与点A距离的中点,则点Q的轨迹方程为x2+y2+3x–4y+6=0_.31.已知点A,B的坐标分别为(–1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为x2–xy–1=0(x≠±1).32.如图,直角△OAB中,OA═4,斜边AB上的高为OC,M为OA的中点,过B点且垂直于y轴的直线交直线MC于点N,则点N的轨迹方程为y2=8x,(x≠0)_.33.已知直线l1:mx–y=0,l2:x+my–m–2=0.当m在实数范围内变化时,l1与l2的交点P恒在一个定圆上,则定圆方程是_(x–1)2+(y–12)2=54_.34.已知函数y=x2–4x+3与x轴交于M、N两点,与y轴交于点P,圆心为C的圆恰好经过M、N、P三点.(1)求圆C的方程;(2)若圆C与直线x–y+n=0交于A、B两点,且线段|AB|=4,求n的值.(1)由题意与坐标轴交点为M (3,0),N (1,0),P (0,3),设圆的方程为:(x –a )2+(y –b )2=r 2代入点,得222222222(3)(0)(1)(0)(0)(3)a b r a b ra b r ⎧-+-=⎪-+-=⎨⎪-+-=⎩,解得a =2,b =2,r(x –2)2+(y –2)2=5. (2)由题意|AB |=4:设圆心到直线距离为d ,则222()2ABr d =+,即:1d ==,解得n =35.已知线段AB 的端点B 的坐标为(1,3),端点A 在圆C :(x +1)2+y 2=4上运动,求线段AB 的中点M 的轨迹.36.已知圆C 过A (1,4)、B (3,2)两点,且圆心在直线y =0上.(1)求圆C 的方程;(2)判断点P (2,4)与圆C 的位置关系.(1)∵圆心在直线y =0上,∴设圆心坐标为C (a ,0),则|AC |=|BC |=,即(a –1)2+16=(a –3)2+4,解得a =–1,即圆心为(–1,0),半径r =|AC== 则圆的标准方程为(x +1)2+y 2=20;(2)∵|PC5===>r ,∴点P (2,4)在圆C 外. 37.已知曲线C 的方程:x 2+y 2–4x +2y +5m =0(1)当m 为何值时,此方程表示圆?(2)若m =0,是否存在过点P (0,2)的直线l 与曲线C 交于A ,B 两点,且|PA |=|AB |,若存在,求出直线l 的方程;若不存在,说明理由.1)方程:x 2+y 2–4x +2y +5m =0可化为(x –2)2+(y +1)2=5–5m ∵方程表示圆,∴5–5m >0,即m <1;(2)设A (a ,b ),则B (2a ,2b –2),代入圆的方程,可得a 2+b 2–4a +2b =0,且4a 2+(2b –2)2–8a +2(2b –2)=0,∴a =0,或a =2413,∵直线l 过点P (0,2),∴直线l 的方程为x =0或5x +12y –24=0. 38.求圆x 2+y 2–2x –6y +9=0关于直线2x +y +5=0对称的圆的方程.39.已知圆过点A (–2,4),半径为5,并且以M (–1,3)为中点的弦长为设所求的圆的方程是(x –a )2+(y –b )2=25,根据题设知(a +2)2+(b –4)2=25,再由弦长公式得:(a +1)2+(b –3)2+12=25,联立解得21a b =⎧⎨=⎩或10a b =⎧⎨=⎩所以圆的方程为:(x –2)2+(y –1)2=25或(x –1)2+y 2=25. 40.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( C )A .1B .2CD .41.圆x 2+y 2–2x –8y +13=0的圆心到直线ax +y –1=0的距离为1,则a =( A )A .–43B .–34CD .242.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x –1)2+y 2=1(或x 2+y 2–2x =0)_________.43.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是(–2,–4),半径是_5_.。
高中数学圆与方程知识点

高中数学圆与方程知识点分析1. 圆的方程:(1)标准方程:222()()x a y b r -+-=(圆心为A(a,b),半径为r )(2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(-2D ,-2E )半径F E D 42122-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法(1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。
d=r 为相切,d>r 为相交,d<r 为相离。
适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。
利用这种方法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、最近距离等。
(2)代数法:由直线与圆的方程联立得到关于x 或y 的一元二次方程,然后由判别式△来判断。
△=0为相切,△>0为相交,△<0为相离。
利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。
4.圆与圆的位置关系判断方法(1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切;3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含;(2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。
△=0为外切或内切,△>0为相交,△<0为相离或内含。
若两圆相交,两圆方程相减得公共弦所在直线方程。
5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系题型一 求圆的方程例1.求过点A( 2,0),圆心在(3, 2)圆的方程。
高中数学圆的标准方程

圆的方程1.以C (a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. 2.以原点为圆心,r 为半径的圆的标准方程为x 2+y 2=r 2. 3.圆的一般方程的概念当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.4.圆的一般方程对应的圆心和半径圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径长为12D 2+E 2-4F .5.对方程x 2+y 2+Dx +Ey +F =0的说明6、直线与圆的位置关系的判定例题讲解1、已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)()A.是圆心B.在圆上C.在圆内D.在圆外2、已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=523、以点A(-5,4)为圆心,且与x轴相切的圆的方程是()A.(x+5)2+(y-4)2=25B.(x-5)2+(y+4)2=16C.(x+5)2+(y-4)2=16D.(x-5)2+(y+4)2=25巩固练习1、求圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程.2、求圆心在x轴上,且过点A(5,2)和B(3,-2)的圆的标准方程.3、若P(x,y)是圆C(x-3)2+y2=4上任意一点,请求出P(x,y)到直线x-y +1=0的距离的最大值和最小值.4、已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=|P A|2+|PB|2,求d的最大值及最小值.图4-1-15、直线3x+4y+12=0与圆(x-1)2+(y+1)2=9的位置关系是()A.过圆心B.相切C.相离D.相交但不过圆心6、已知直线ax+by+c=0(ab≠0)与圆x2+y2=1相切,则三边长分别为|a|,|b|,|c|的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不存在7、已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y +3=0相切,则圆C的方程为____________________.8、过点P(-1,2)且与圆C:x2+y2=5相切的直线方程是________.课后练习1、圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3) B.(-2,3)C.(-2,-3) D.(2,-3)2、已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( ) A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D.⎝ ⎛⎭⎪⎫-32,+∞ 3、若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________.4、设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是__________.5、求经过三点A (1,-1),B (1,4),C (4,-2)的圆的一般方程.6、过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,求直线l 的方程.7、 已知动点M 到点(8,0)的距离等于点M 到点(2,0)的距离的2倍,你能求出点M 的轨迹方程吗?8、 已知直角△ABC 的斜边为AB ,且A (-1,0),B (3,0),请求出直角顶点C 的轨迹方程.9、已知圆心为C 的圆经过点A (1,1)和B (2,-2),且圆心C 在直线l :x -y+1=0上.(1)求圆C 的方程;(2)线段PQ 的端点P 的坐标是(5,0),端点Q 在圆C 上运动,求线段PQ 的中点M 的轨迹方程.。
高中数学-圆的方程

课题:圆的方程知识点一:圆的方程1.圆的标准方程:()()222x a y b r -+-=。
2.圆的一般方程:22220(D E 4F 0)+-x y D x E y F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E--,半径为22142D E F +-的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么? (0,A C =≠且0B =且2240D E AF +->));3.圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。
圆的参数方程的主要应用是三角换元:222cos ,sin xy r x r y r θθ+=→==;22x y t +≤cos ,sin (0)x r y r r t θθ→==≤≤。
4.()()1122A,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如(1)圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________(2)圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________(3)如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是__(4)方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____知识点二:点与圆的位置关系:已知点()00M,x y 及圆()()()222C 0:x-a y b r r +-=>, (1)点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->;(2)点M 在圆C 内⇔()()22200CM r x a y b r <⇔-+-<;(3)点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学任务
教学流程说明
教学过程设计
圆的方程
一、填空:
1.以(0,0)、(6,-8)为直径端点的圆方程是 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为____________ 3.圆x 2+y 2-x+2y=0关于直线L :x -y+1=0对称的圆的方程 _____
4.方程2
2
0x y x y k +-++=表示一个圆,则实数k 的取值范围是
5.1) 过圆72
2=+y x 上一点)3,2(-P 的切线方程为____
2)经过点P(3,4)的圆x 2+y 2=9的切线方程_____________
6.已知圆(x -2)2+(y+1)2=16的一条直径通过直线x -2y+3=0被圆所截弦的中点,则该直径所在的直线方程为__________。
7、圆心在原点,在直线3x +4y +15=0上截得的弦长为8的圆的方程为 8、圆(x -2)2+(y+5)2=1上一点p (x ,y ),那么
x
y
的最大值是___________ 9、圆2
2
4460x y x y +-++=截直线50x y --=所得弦长等于 二、选择: 10、方程342-+-=
x x y 表示的曲线是( )
(A )在x 轴上方的圆 (B )在y 轴右方的圆 (C )x 轴下方的半圆 (D )x 轴上方的半圆
11、设圆C 的方程x 2+y 2-2x -2y -2=0,直线L 的方程(m+1)x -my -1=0,对任意实数m ,圆C 与直线L 的位
置关系是( )
A 、相交
B 、相切
C 、相离
D 、由m 值确定
12、若圆(x -3)2+(y+5)2=r 2上有且只有两个点到直线4x -3y=2的距离等于1,则半径r 的取值范围是:
( ) A 、(4,6) B 、)6,4[ C 、]6,4( D 、[4,6]
13、将直线x+y-1=0绕点(1,0)顺时针旋转2
π后,再向上平移一个单位,此时恰与圆x 2+(y-1)2=R 2
相切,则正
数R 等于( )
A 、 2
1
B 、22
C 、1
D 、2
三、解答
14、PQ 是过点A (3,0)所作的圆C :x 2+y 2+6x =0的弦,设CH ⊥PQ 于H .求点H 的轨迹方程
15、1)已知圆心在x 轴上,半径是5,且以A (5,4)为中点的弦长是25,求这个圆的方程。
2)求直线l :x -y
-1=0被⊙C :x 2+y 2=4截得的弦长.。
16、若直线l :x +2y -3=0与圆x 2+y 2-2mx +m =0相交于P 、Q 两点并且OP ⊥OQ ,求实数m 之值.
17、圆上的点(2,3)A 关于直线20x y +=的对称点仍在这个圆上,且被直线10x y -+=所截得的弦长为求圆的方程。