七年级下学期数学第八章测试题

合集下载

七年级数学下册第八章测试卷(含答案)

七年级数学下册第八章测试卷(含答案)

七年级数学下册第八章测试卷(含答案)第八章测试卷满分:100分考试时间:100分钟)一、填空题:(本大题共10小题,每小题3分,共30分)1.在方程2x+y=5中,用x的代数式表示y,得y=5-2x。

2.若一个二元一次方程的一个解为{x=-1.y=-1},则这个方程可以是:y=x-1.3.下列方程:①2x-x3y=1;②y2+2y3=4;③x2-y2=4;④5(x+y)=7(x+y);⑤2x2=3;⑥x+4y=1.其中是二元一次方程的是④。

4.若方程4xm-n-5ym+n=6是二元一次方程,则m=1,n=-1.5.方程4x+3y=20的所有非负整数解为{(0,6),(1,4),(2,2),(5,0)}。

6.若x-2y=-3,则5-x+2y=8.7.若(5x+2y-12)2+3x+2y-6=0,则2x+4y=7.8.有人问某男孩,有几个兄弟,几个姐妹,他回答说:“有几个兄弟就有几个姐妹。

”再问他妹妹有几个兄弟,几个姐妹,她回答说:“我的兄弟是姐妹的2倍。

”若设兄弟x人,姐妹y人,则可列出方程组:{x=y。

y=2(x-1)}。

9.某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场得0分。

某队踢了14场,其中负5场,共得19分。

若设胜了x场,平了y场,则可列出方程组:{x+y+5=14.3x+y=19}。

10.分析下列方程组解的情况:①方程组{x+y=1.2x+2y=2}无唯一解;②方程组{x+y=2.x+y=2}有无数解。

二、选择题:(本大题共6小题,每小题3分,共18分)11.用代入法解方程组{x+y=1.x-2y=4}时,代入正确的是(D)x=2-y。

12.已知{y=3.y=3}都是方程y=ax+b的解,则a和b的值是(C)a=1.b=2.13.若方程组{kx+(k-1)y=6.4x+3y=14}的解中x与y的值相等,则k为(B)3.14.已知方程组{5x+y=3.x-2y=5}和{ax+5y=4.5x+by=1}有相同的解,则a,b的值为(A)a=1.b=2.n 2原方程组的解为:19.解:将第二个式子变形得:y=2-2/x代入第一个式子得:4x+2-2/x=5化简得:4x^2-3x+2=0解得:x=1或x=1/4当x=1时,y=0;当x=1/4时,y=6原方程组的解为:(1,0)和(1/4,6)20.解:将第一个式子变形得:y=(3-ax)/b代入第二个式子得:3x-a(3-ax)/b=1化简得:3bx-abx^2-3a=b移项得:abx^2-(3b-a)x+3a-b=0由于两个方程有相同的解,所以它们的判别式相等:3b-a)^2-4ab(3a-b)=0化简得:9b^2-14ab+a^2=0移项得:(a-2b)^2=5b^2a-2b=±b√5又因为a和b都是整数,所以只可能有a-2b=b√5a=b(2+√5)代入求得a-2ab+b=1a-2ab+b=2+√5-4-2√5+1=√5-1a-2ab+b=√5-121.解:设总共有x辆车,总共有y个学生由题意得:45(x-1)+15=y60x-60=y解得:x=7,y=285共有7辆车,270个学生有车坐,15个学生没车坐22.解:设甲种贷款为x万元,乙种贷款为y万元由题意得:x+y=680.12x+0.13y=8.42解得:x=34,y=34甲种贷款为34万元,乙种贷款为34万元23.解:设需要生产上衣x件,裤子y条由题意得:3x=2y3x+3y=600解得:x=200,y=300需要用300米布料生产裤子,用200米布料生产上衣,共能生产100套。

(完整版)七年级下册数学第八章测试题(人教版七下)

(完整版)七年级下册数学第八章测试题(人教版七下)

n m七年级数学第八章单元检测卷一、填空题(每空3分,共30分)1、把方程2x -y -5=0化成含用Y 的代数式表示X 的形式:X = ,化成用含X 的代数式表示Y 的形式:Y= .2、在方程3x -ay =8中,如果是它的一个解是⎩⎨⎧==21y x ,那么a 的值为3、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = .4、方程x +y =2的正整数解是__________.5、若∣x -2y +1∣+∣x +y -5∣=0,则x = ,y = .6、某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了枚,80分的邮票买了 枚。

7、大数和小数的差为12,这两个数的和为60,则大数是 ,小数是 .8、甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟X 米,每分钟Y 米,则可列方程组 ______.9、若3x953++n m +4y 724--n m =2是关于x 、y 的二元一次方程,则的值等于 二、选择题:(每题3分,共30分)11、方程023,13,3,532,62=+-===-=+z y x yx xy y x y x 中是二元一次方程的有( )个.A 、1B 、2C 、3D 、412、下列方程组中,属于二元一次方程组的是( )B 、⎪⎩⎪⎨⎧=-=+043112y x yx C 、⎪⎩⎪⎨⎧=+=343453z x y x D 、⎩⎨⎧=+=-12382y x y x A 、13、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x14、下列说法正确的是( )A 、二元一次方程只有一个解;B 、二元一次方程组有无数个解;C 、二元一次方程组的解必是它所含的二元一次方程的解;D 、三元一次方程组一定由三个三元一次方程组成15、下列说法正确( )A.二元一次方程2x+3y=17的正整数解有2组16、若x、y为非负数,则方程y x 51-=2的解是( )A、无解 B、无数个解 C、唯一一个解D、不能确定17、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y⎩⎨⎧==+725xy y x18、用代入消元法解方程组⎩⎨⎧-==-y x y x 211323代入消元,正确的是( )A 由①得y=3x+2,代入②后得3x=11-2(3x+2)B 、由②得 代入②得y y 21132113-=-⨯C 、由①得23-=x y 代入②得)23(2113--=x xD 、由②得3x =11-2y ,代入①得11-2y -y =219、用加减法解方程组⎩⎨⎧=-=+1123332y x y x 时,有下列四种变形,其中正确的是( ) A 、⎩⎨⎧=-=+1169364y x y x B 、⎩⎨⎧=-=+2226936y x y x C 、⎩⎨⎧=-=+3369664y x y x D 、 ⎩⎨⎧=-=+1146396y x y x 20、若=+--⨯-=-=-49)(3)(,21,2c b c b c a b a 则( ) A 、0 B 、 C 、2 D 、-4三、解答题(每题12分):21、解下列方程组(1)⎩⎨⎧=-=+22534y x y x (2) ⎩⎨⎧=-=-73032y x y x 22、代数式ax+by,当x=5,y=2时,它的值是7;当x =3,y=1时,它的值是4,试求x=7,y=-5时代数式ax-by 的值。

人教版七年级数学下册第八章测试题及答案精选全文完整版

人教版七年级数学下册第八章测试题及答案精选全文完整版

可编辑修改精选全文完整版最新人教版七年级数学下册第八章测试题及答案第8章二元一次方程组班级 姓名 成绩__________一、相信你的选择(每小题3分,共30分)1、下列给出的方程中,是二元一次方程的是( )A 、5=xyB 、y x 56=C 、61=+yx D 、642=+y x 2、下列二元一次方程组中,以 21==y x 为解的是( ) A 、 531=+=-y x y x B 、 531-=+=-y x y x C 、 5332=+-=-y x y x D 、 433=+=-y x y x 3、解方程组 .328,1258=-=+y x y x 比较简便的方法是( ) A 、代入法 B 、加减法 C 、试数法 D 、无法确定4、若方程组.9.3053,1332=+=-b a b a 的解是 .2.1,3.8==b a 则方程组 .9.30)1(5)2(3,13)1(3)2(2=-++=--+y x y x 的解是( ) A 、 2.23.6==y x B 、 2.13.8==y x C 、 2.23.10==y x D 、 2.03.10==y x 5、若二元一次方程123=-y x 的解为正整数,则x 的值为( )A 、奇数B 、偶数C 、奇数或偶数D 、06、已知 .83,123=+=+y x y x 那么y x +的值是( ) A 、0 B 、5 C 、1- D 、17、如果0124323=+---m n n m y x 是二元一次方程,那么m 、n 的值分别为( )A 、2、3B 、2、1C 、1- 、2D 、3、48、一个两位数,他的个位数与十位数的和为4,那么符合条件的两位数为( )A 、3个B 、4个C 、5个D 、无数个9、在向汶川地震灾区献爱心活动中,西关小学捐给五年级一批图书,如果该年级每个同学分6本还差6本,如果 每个同学分5本则多出5本,则五年级共有同学( )名。

新人教(七下)七年数学下 第八章二元一次方程组AB卷(含参考答案)

新人教(七下)七年数学下 第八章二元一次方程组AB卷(含参考答案)

七年数学下 第八章二元一次方程组AB 卷(含参考答案)第八章二元一次方程组水平测试题(A )一、选择题1、若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( ) A.1- B.2 C.1 D.2-2、以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .01x y x y +=⎧⎨-=⎩ B .01x y x y +=⎧⎨-=-⎩ C .02x y x y +=⎧⎨-=⎩ D .02x y x y +=⎧⎨-=-⎩3、为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种B .9种C .16种D .17种4、同时满足方程21132x y +=与325x y +=的解是( ) A .23x y ==, B .34x y =-=, C .32x y ==-, D .32x y =-=-,5、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.21a b =⎧⎨=-⎩B.21a b =⎧⎨=⎩C.21a b =-⎧⎨=-⎩D.21a b =-⎧⎨=⎩6、2(5)23100x y x y +-+--=若,则代数式xy 的值是( ) A. 6 B.-6 C.0 D. 57、若方程组⎩⎨⎧=+=-81my nx ny mx 的解是⎩⎨⎧==12y x ,则m 、n 的值分别是( )A. m=2,n=1B. m=2,n=3C. m=1,n=8D. 无法确定8、如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是( )A.⎩⎨⎧-==+10180y x y x B.⎩⎨⎧-==+103180y x y xC.⎩⎨⎧+==+10180y x y xD.⎩⎨⎧-==1031803y x y 9、某校七年级(2100元。

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题含答案

七年级数学(下)第八章《三元一次方程组的解法》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中是三元一次方程组的是A.212x yy zxz⎧-=⎪+=⎨⎪=⎩B.111216yxzyxz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩C.123a b c da cb d+++=⎧⎪-=⎨⎪-=⎩D.1812m nn tt m+=⎧⎪+=⎨⎪+=⎩【答案】D2.解方程组3423126①②③x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩时,第一次消去未知数的最佳方法是A.加减法消去x,将①-③×3与②-③×2 B.加减法消去y,将①+③与①×3+②C.加减法消去z,将①+②与③+②D.代人法消去x,y,z中的任何一个【答案】C【解析】观察所给方程组,可以发现z的系数最简单,故可通过加减法消去z,故选C.3.已知方程组2334823x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=-⎩①②③,若消去z,得二元一次方程组不正确的为A.531153x yx y+=⎧⎨-=⎩B.53115+719x yx y+=⎧⎨=⎩C.535+719x yx y-=⎧⎨=⎩D.5+35+719x yx y=⎧⎨=⎩【答案】D【解析】在方程组2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③中,①+②得5311x y +=④,①×2+③得53x y -=⑤,②×2-③得5719x y +=⑥,所以由④与⑤可以组成A ,由④与⑥可以组成B ,由⑤与⑥可以组成C ,故选D .4.三元一次方程组32522x y x y z z -⎧=++==⎪⎨⎪⎩的解是A .112x y z ===⎧⎪⎨⎪⎩B .112x y z ⎧==-=⎪⎨⎪⎩C .112x y z ⎧=-==⎪⎨⎪⎩D .112x y z ⎧=-=-=⎪⎨⎪⎩【答案】B【解析】32522①②x y x y z z -=⎧⎪++=⎨⎪=⎩,把z =2代入②得:x +y =0③,①+③×2得:5x =5,即x =1,把x =1代入③得:y =-1,则方程组的解为112x y z =⎧⎪=-⎨⎪=⎩,故选B .5.已知方程组35223x y k x y k +=+⎧⎨+=⎩,x 与y 的值之和等于2,则k 的值为A .4B .4-C .3D .3-【答案】A【解析】35223x y k x y k +=+⎧⎨+=⎩①②,①×2-②×3得:y =2(k +2)-3k =-k +4,把y =-k +4代入②得:x =2k -6,又x 与y 的值之和等于2,所以x +y =-k +4+2k -6=2,解得k =4,故选A .6.三元一次方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为A .无数多个B .1C .2D .0【答案】A【解析】在方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩①②③中,③-②得6x y -=④,即①与④相同,所以方程组有无数个解.故选A.7.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2∶3,三种球共41个,则篮球的个数为A.21 B.12 C.8 D.35【答案】A【解析】设篮球有x个,排球有y个,足球有z个,根据题得232341y xz yx y z-=⎧⎪=⎨⎪++=⎩∶∶,解得21128xyz=⎧⎪=⎨⎪=⎩,所以篮球有21个.故选A.8.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有A.2种B.3种C.4种D.5种【答案】B9.已知方程组35204522x yx y zax by z-=⎧⎪+-=⎨⎪+-=-⎩与方程组85234ax by zx y z cx y-+=⎧⎪++=⎨⎪+=-⎩有相同的解,则a、b、c的值为A.231abc=-⎧⎪=-⎨⎪=⎩B.231abc=-⎧⎪=⎨⎪=⎩C.231abc=⎧⎪=-⎨⎪=-⎩D.231abc=⎧⎪=⎨⎪=-⎩【答案】D【解析】解方程组3520234x yx y zx y-=⎧⎪+-=⎨⎪+=-⎩,解得12xyz=⎧⎪=-⎨⎪=⎩,代入可得方程组41022281a ba bc-=-⎧⎪+=⎨⎪-=⎩,解得231abc=⎧⎪=⎨⎪=-⎩,故选D.二、填空题:请将答案填在题中横线上. 10.若x +y +z ≠0且222y z x y z xk x z y+++===,则k =__________. 【答案】3 【解析】∵222y z x y z x k x z y+++===,∴2y z kx +=,2x y kz +=,2z x ky +=,∴2y z ++2x +2y z x kx ky kz ++=++,即3()()x y z k x y z ++=++,又∵0x y z ++≠,∴3k =,故答案为:3.11.在等式y =ax 2+bx +c 中,当x =1时,y =-2;当x =-1时,y =20;当32x =与13x =时,y 的值相等,则a =__________,b =__________,c =__________. 【答案】6;-11;3【解析】根据题意,可得方程组29311429320①②③a b c a b c a b c a b c ++=-⎧⎪⎪++=++⎨⎪⎪-+=⎩,由②得11a +6b =0④,③-①得-2b =22,解得b =-11,将b =-11代入④得a =6,再将a =6,b =-11代入①得c =3.故原方程组的解为6113a b c =⎧⎪=-⎨⎪=⎩,故答案为:6;-11;3.12.已知方程组237x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x +y +z =__________.【答案】6【解析】将三个方程相加,得2x +2y +2z =12,所以x +y +z =6,故答案为:6.13.如图,表中各行、各列及两条对角线上三个数的和都相等,则a +b +c +d +e +f 值是__________ .【答案】21【解析】由题意得4-1+a =d +3+a ,解得d =0,∵4+b +0=b +3+c ,解得c =1,又∵4-1+a =a +1+f ,解得f =2,∴a =6,b =5,e =7,则a +b +c +d +e +f =6+5+1+0+7+2=21.故答案为:21. 三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程组2923103243①②③x y z x y z x y z -+=⎧⎪++=⎨⎪+-=-⎩.所以原三元一次方程组的解为322x y z =⎧⎪=-⎨⎪=⎩.15.有三个数,第一个数的3倍比第二个数的5倍小90,而第一个数的4倍与第二个数的6倍之差等于第三个数的20倍的相反数,同时,第三个数比4大1.求这三个数. 【解析】设第一个数为x ,第二个数为y ,第三个数为z ,由题意得:3590462041x y x y z z -=-⎧⎪-=-⎨⎪-=⎩,解得20305x y z =⎧⎪=⎨⎪=⎩, 答:这三个数依次是20,30,5.16.已知方程组734521x y x y m +=⎧⎨-=-⎩的解能使等式437x y -=成立.(1)求原方程组的解;(2)求代数式221m m -+的值.【解析】(1)根据题意得,734521x y x y m +=⎧⎨-=-⎩①②,+①②,得1111x =,解得1x =,把1x =代入①得,1y =-,∴原方程组的解为11x y =⎧⎨=-⎩.(2)将1x =,1y =-代入521x y m -=-,得8m =, 将8m =代入2221828149m m -+=-⨯+=. ∴代数式221m m -+的值为49.17.某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植农作物每公顷所需的劳动力人数及投入的设备资金如下表:已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工有工作,而且投入的资金正好够用?【解析】设种植水稻x 公顷,棉花y 公顷,蔬菜为z 公顷,由题意得26748530051x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,解得:152016x y z =⎧⎪=⎨⎪=⎩,答:种植水稻15公顷,棉花20公顷,蔬菜为16公顷.。

人教版七年级数学下册第八章综合检测卷含答案

人教版七年级数学下册第八章综合检测卷含答案

人教版七年级数学下册第八章综合检测卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎨⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =42.【教材P 93练习T 1变式】已知2x -3y =1,用含x 的式子表示y 正确的是( )A .y =23x -1B .x =3y +12C .y =2x -13D .y =-13-23x3.已知⎩⎨⎧x =1,y =2是关于x ,y 的方程x +ky =3的一个解,则k 的值为( )A .-1B .1C .2D .34.用代入法解方程组⎩⎨⎧2y -3x =1,x =y -1,下面的变形正确的是( )A .2y -3y +3=1B .2y -3y -3=1C .2y -3y +1=1D .2y -3y -1=15.【教材P 109活动1变式】以二元一次方程组⎩⎨⎧x +3y =7,y -x =1的解为坐标的点(x ,y )在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限6.有一个两位数和一个一位数,它们的和为39,若将两位数放在一位数的前面,得到的三位数比将一位数放在两位数的前面得到的三位数大27,求这两个数.若设两位数是x ,一位数是y ,则可列方程组为( ) A .⎩⎨⎧x +y =39,xy -yx =27 B .⎩⎨⎧x +y =39,10x +y +27=100y +xC .⎩⎨⎧x +y =39,10x +y -27=10y +xD .⎩⎨⎧x +y =39,10x +y -(+x )=277.如果方程组⎩⎨⎧3x +7y =10,ax +(a -1)y =5的解满足x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .48.定义运算“*”,规定x *y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=( )A .8B .9C .10D .129.甲、乙两个工程队各有员工80人、100人,现在从外部调90人充实两队,调配后甲队人数是乙队人数的23,则甲、乙两队分别分到的人数为( ) A .50,40 B .36,54 C .28,62 D .20,7010.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置,测量的数据如图,则桌子的高度等于( )A .80 cmB .75 cmC .70 cmD .65 cm二、填空题:本大题共5小题,每小题3分,共15分.11.已知(n -1)x |n |-2y m -2 024=0是关于x ,y 的二元一次方程,则nm =________. 12.方程组⎩⎨⎧x +y =12,y =2的解为________.13.已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =7,nx -my =1的解,则m +3n 的立方根为________.14.在“实践与探究”的数学活动中,让一组和二组分别用8个一样大小的长方形纸片进行拼图.一组拼成一个如图①所示的大长方形;二组拼成一个如图②所示的正方形,但中间留下一个边长为4 cm 的小正方形.据此计算出每个小长方形的面积是__________cm 2.15.【教材P 102习题T 4变式】机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排________名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套. 三、解答题(一):本大题共3小题,每小题8分,共24分. 16.【教材P 111复习题T 3变式】解方程组:(1)⎩⎨⎧x -2y =3,3x +y =2; (2)⎩⎪⎨⎪⎧x 3-y 2=6,x -y 2=9;(3)⎩⎨⎧x -y +z =0,4x +2y +z =0,25x +5y +z =60.17.【教材P 106习题T 5变式】已知y =x 2+px +q ,当x =1时,y =2;当x =-2时,y =2.求p 和q 的值.18.若关于x ,y 的二元一次方程组⎩⎨⎧x +y =3,mx +ny =8与⎩⎨⎧x -y =1,mx -ny =4有相同的解.(1)求这个相同的解; (2)求m -n 的值.四、解答题(二):本大题共3小题,每小题9分,共27分. 19.阅读材料:在解方程组⎩⎨⎧2x +5y =3①,4x +11y =5②时,萌萌采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③. 把方程①代入③,得2×3+y =5, ∴y =-1,把y =-1代入①,得x =4, ∴原方程组的解为⎩⎨⎧x =4,y =-1.请模仿萌萌的“整体代换”法解方程组⎩⎨⎧4x -3y =6,8x -7y =18.20.某同学在解关于x ,y 的方程组⎩⎨⎧ax +by =2,cx -7y =8时,本应得出解为⎩⎨⎧x =3,y =-2,由于看错了系数c ,而得到⎩⎨⎧x =-2,y =2,求a +b -c 的值.21.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元,求该商场计划购进甲、乙两种手机各多少部.五、解答题(三):本大题共2小题,每小题12分,共24分.22.在平面直角坐标系中,已知点A(x,y),点B(x-my,mx-y) (其中m为常数,且m≠0),则称B是点A的“m族衍生点”.例如:点A(1,2) 的“3族衍生点”B 的坐标为(1-3×2,3×1-2),即B(-5,1).(1)点(2,0)的“2族衍生点”的坐标为__________;(2)若点A的“3族衍生点”B的坐标是(-1,5) ,求点A的坐标;(3)若点A(x,0)(其中x≠0),点A的“m族衍生点”为点B,且AB=OA,求m的值.23.已知用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨.某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,将货物一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费用.答案一、1.D 2.C 3.B 4.A 5.A 6.D 7.C8.C 点拨:根据题意得⎩⎨⎧a +2b =5,4a +b =6.解得⎩⎨⎧a =1,b =2.则2*3=4a +3b =4+6=10.9.C 10.B二、11.-1 12.⎩⎨⎧x =10,y =2 13.2 14.24015.25 点拨:设安排x 名工人加工大齿轮,y 名工人加工小齿轮,则依题意有⎩⎪⎨⎪⎧x +y =85,16x 2=10y 3,解得⎩⎨⎧x =25,y =60.三、16.解:(1)⎩⎨⎧x -2y =3,①3x +y =2,②由①,得x =3+2y .③将③代入②,得9+6y +y =2,即y =-1. 将y =-1代入③,得x =3-2=1. 所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)⎩⎪⎨⎪⎧x 3-y 2=6,①x -y 2=9,②②-①,得23x =3,解得x =92.将x =92代入①,得32-y2=6,解得y =-9. 所以原方程组的解为⎩⎪⎨⎪⎧x =92,y =-9.(3)⎩⎨⎧x -y +z =0,①4x +2y +z =0,②25x +5y +z =60,③②-①,得3x +3y =0,④③-①,得24x +6y =60,⑤④和⑤组成方程组⎩⎨⎧3x +3y =0,24x +6y =60,解得⎩⎪⎨⎪⎧x =103,y =-103.将⎩⎪⎨⎪⎧x =103,y =-103代入①,得z =-203.所以原方程组的解为⎩⎪⎨⎪⎧x =103,y =-103,z =-203.17.解:根据题意,得⎩⎨⎧1+p +q =2,4-2p +q =2,解得⎩⎨⎧p =1,q =0,∴p 的值是1,q 的值是0.18.解:(1)根据题意可得,x ,y 满足方程组⎩⎨⎧x +y =3,x -y =1,解得⎩⎨⎧x =2,y =1.故这个相同的解为⎩⎨⎧x =2,y =1. (2)将⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,mx -ny =4,可得⎩⎨⎧2m +n =8,2m -n =4,解得⎩⎨⎧m =3,n =2,所以m -n =3-2=1.四、19.解:⎩⎨⎧4x -3y =6①,8x -7y =18②,将方程②变形:8x -6y -y =18,即2(4x -3y )-y =18③, 把方程①代入③,得2×6-y =18,∴y =-6, 把y =-6代入①,得x =-3, ∴原方程组的解为⎩⎨⎧x =-3,y =-6.20.解:把⎩⎨⎧x =3,y =-2,⎩⎨⎧x =-2,y =2分别代入ax +by =2,得⎩⎨⎧3a -2b =2,-2a +2b =2,解得⎩⎨⎧a =4,b =5,将⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8, 解得c =-2,则a +b -c =4+5+2=11.21.解:设该商场计划购进甲种手机x 部,乙种手机y 部.由题意得⎩⎨⎧0.4x +0.25y =15.5,(0.43-0.4)x +(0.3-0.25)y =2.1,解得⎩⎨⎧x =20,y =30.答:该商场计划购进甲种手机20部,乙种手机30部. 五、22.解:(1)(2,4)(2)设点A 的坐标为 (x ,y ),由题意可得⎩⎨⎧-1=x -3y ,5=3x -y ,解得⎩⎨⎧x =2,y =1, ∴点A 的坐标为(2,1).(3)∵点A (x ,0),∴OA =|x |,点A 的“m 族衍生点”为点B (x ,mx ), ∴AB =|mx |.∵AB =OA ,∴|x |=|mx |,∴m =±1.23.解:(1)设1辆A 型车和1辆B 型车都载满货物一次可分别运货x 吨、y 吨,依题意得⎩⎨⎧3x +2y =17,2x +3y =18,解得⎩⎨⎧x =3,y =4.答:1辆A 型车载满货物一次可运货3吨,1辆B 型车载满货物一次可运货4吨.(2)依题意得3a +4b =35,∴a =35-4b3.∵a ,b 都是正整数,∴⎩⎨⎧a =9,b =2或⎩⎨⎧a =5,b =5或⎩⎨⎧a =1,b =8.∴有3种租车方案:方案一:租用A 型车9辆,B 型车2辆; 方案二:租用A 型车5辆,B 型车5辆; 方案三:租用A 型车1辆,B 型车8辆. (3)方案一:9×200+2×240=2 280(元); 方案二:5×200+5×240=2 200(元); 方案三:1×200+8×240=2 120(元). ∵2 280>2 200>2 120,∴最省钱的租车方案是方案三:租用A 型车1辆,B 型车8辆,最少租车费用为2 120元.。

七年级数学下册第八章综合检测题

七年级数学下册第八章综合检测题

第8章二元一次方程组综合检测题(满分:120分,时间:90分钟)一、选择题1,下列方程中,属于二元一次方程的是( )A.x+y-1=0B.xy+5=-4C. 8932=+y xD.x+1y=2 2,已知方程()()026281||2=++--+mn y n xm 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.33,在等式y=kx+b 中,当x=1时,y=2;当x=2时,y=5,则k,b 的值为( ) A .⎩⎨⎧-=-=13b k B .⎩⎨⎧=-=31b k C .⎩⎨⎧-==13b k D .⎩⎨⎧-=-=31b k4,如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )A.1B.-1C.2D.-25,若方程1-=+y x ,42=-y x 和7=-my x 有公共解,则m 的取值为( ) A.4 B.3 C.2 D.1 6,已知关于x,y 的方程组⎩⎨⎧=-=+m y x m y x 4,2的解为3x+2y=14的一个解,那么m 的值为( )A. 1B. -1C.2D.-27,足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场8,方程组2,3x y x y ⎧+=⎪⎨+=⎪⎩的解为2,.x y =⎧⎪⎨=⎪⎩则被遮盖的两个数分别为( )A.1,2B.1,3C.2,3D.2,49,为了改善住房条件,小亮的父母考察了某小区的A B 、两套楼房,A 套楼房在第3层楼,B 套楼房在第5层楼,B 套楼房的面积比A 套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,根据以上信息列出了下列方程组.其中正确的是( )A .⎩⎨⎧=-=241.19.0x y y x B . 1.10.924x yx y =⎧⎨-=⎩C .0.9 1.124x y x y =⎧⎨-=⎩ D . 1.10.924x yy x =⎧⎨-=⎩10,要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )A. 40,200B.80,160C.160,80D.200,40 二、填空题11,把方程2x-y-3=0化成用含x 的代数式表示y 的形式:y=________. 12,已知⎩⎨⎧=--=.5,3t y t x 则x 与y 的关系式为_________.13,已知,y x y x ⎩⎨⎧=+=+13321723则x+y = ,x -y = .14,已知2x-y-z=0,3x+4y-2z=0,则x:y:z=_______.15,已知方程3x+y+z=12有很多解,请你随意写出一组整数解是 . 16,已知23,1x y x y +=⎧⎨+=⎩的解是方程组22,1x my nx y +=⎧⎨+=⎩的解,则m=_____,n=______.17,某工厂第一季度生产甲、乙两种机器共450台,改进生产技术后,计划第二季度生产这两种机器共520台,其中甲种机器增产10%,乙种机器增产20%,该厂第一季度生产甲、乙两种机器的台数分别为___.18,已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,则长江和黄河的长度分别为___.三、解答题19,用适当方法解方程组:⑴231,498.s t s t +=-⎧⎨-=⎩ ⑵()()()()3144,5135.x y y x -=-⎧⎪⎨-=+⎪⎩ ⑶11,233210.x y x y +⎧-=⎪⎨⎪+=⎩ 20,已知方程组⎩⎨⎧=+=-2,4by ax by ax 的解为⎩⎨⎧==1,2y x ,求b a 32-的值.21,代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式.22,七年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见. 根据这段对话,你能算出钢笔和笔记本的单价各是多少吗? 23.请你计算出小熊能赚多少钱?24,某单位职工在植树节时去植树,甲、乙、丙三个小组共植树50株,乙组植树的株数是甲、丙两组的和的14,甲组植树的株数恰好是乙组和丙组的和,问每组各植树多少株?25,(08云南省)云南省2006年至2007年茶叶种植面积与产茶面积情况如表所示,表格中的x、y分别为2006年和2007年全省茶叶种植面积:(1)请求出表格中x、y的值;(2)在2006年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2008年全省茶叶种植产茶总产量达到22万吨,求2006年至2008年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)。

七年级数学(下)第八章《消元——解二元一次方程组》练习题含答案

七年级数学(下)第八章《消元——解二元一次方程组》练习题含答案

七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下学期数学第八章《二元一次方程组》测试卷
考生注意:本试卷共四道大题,总分:100分,时间:90分钟。

一、选择题(每小题5分,共20分)
1、下列不是二元一次方程组的是(
1 + y =4 x
4x+ 3y =6
(A))
x- y =1
x+ y= 4 (B)2x+ y =4
3x+ 5y =25
(C))
x- y=1 (D)
x+ 10y =25
2 =1,可以得到用x表示y的式子(
2x-2
(A ) yp
2x
(C) y= 3-2
3、方程组3x+2y=7
4x-y=13
(A) x=-1
y=3
x=-1 (A)
y=2
(C)
x=1
y=2 -
填空题(每小题
2x 1
(B) y=T -3
(D) y=2-2x
的解是(
的解是(
(B)
(D)
(B)
(D)
6分,共24分)5、在3x+4y=9中,如果2y=6,那么x=
6、已知
x=1
匚y=-
8
是方程3mx —
x=1
7、若方程mx+ ny=6的两个解是y=1 x=3
y=-1
x=-1
y=-3
x=2
y=-1
x=2
y=1
则血=
&如果 I x — 2y+1 I = I z+y-5 | = | x — z-3 | = 0,那么 X= _____
解下列方程组(每小题8分,共16分)
四、综合运用(每小题10分,共40分)
11、用16元买了 60分、80分两种邮票共22枚。

60分与80分的邮票各买 了多少枚?
12、已知梯形的面积是 42 cm 2
,高是6叫 它的下底比上底的 2倍少1 cm, 求梯形
的上下底?
13、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢 歌,
z = _____________
「3( x+y )-4
9、 Y
x+y x-y
~2~+ ~6~
(x-y )
=1
=4 x+2y+3z=14
2x+y+z=7
10、和
3x+y+2z=11
另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你
1
们中飞上来一只,则树下的鸽子就是整个鸽群的3;若从树上飞下去一只,
3
则树上、树下的鸽子就一样多了。

”你知道树上、树下各有多少只鸽子吗?
14、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
60 cm。

相关文档
最新文档