七年级下册第五章数学教案
人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2

人教版数学七年级下册5.3.2-1《命题、定理、证明1》教案2一. 教材分析《命题、定理、证明1》是人教版数学七年级下册第五章第三节的一部分,这部分内容是学生学习数学证明的基础。
通过这部分的学习,学生将理解命题与定理的概念,学会如何阅读和理解数学证明,并初步掌握证明的方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力,能够理解和运用基本的数学概念和运算。
但是,对于数学证明这一概念,学生可能还比较陌生,需要通过具体的例子和实践活动来逐渐理解和掌握。
三. 教学目标1.了解命题和定理的概念,能够区分它们。
2.学会阅读和理解数学证明,能够初步进行简单的证明。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.命题与定理的概念。
2.数学证明的方法和步骤。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和实践活动,引导学生理解和掌握命题、定理和证明的概念和方法。
六. 教学准备1.PPT课件。
2.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引出命题、定理和证明的概念。
2.呈现(15分钟)讲解命题和定理的概念,通过具体的例子让学生理解它们的区别。
然后讲解数学证明的方法和步骤,引导学生学会阅读和理解数学证明。
3.操练(15分钟)让学生分组讨论,尝试解决一些简单的证明问题,教师巡回指导。
4.巩固(5分钟)对学生的解答进行点评,指出其中的错误和不足,引导学生正确理解和掌握证明的方法。
5.拓展(5分钟)给出一些思考题,让学生进一步深入理解和掌握命题、定理和证明的知识。
6.小结(5分钟)对本节课的主要内容进行总结,强调命题、定理和证明的概念和方法。
7.家庭作业(5分钟)布置一些相关的练习题,让学生巩固所学知识。
8.板书(5分钟)将本节课的主要内容进行板书,方便学生复习和记忆。
教学过程每个环节所用的时间:导入5分钟,呈现15分钟,操练15分钟,巩固5分钟,拓展5分钟,小结5分钟,家庭作业5分钟,板书5分钟。
人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明

课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是
七年级下册数学教案:平移的概念及性质

5.4.1平移的概念及性质教学设计教材章节新人教版第五章5.4平移课题 5.4.1平移的概念及性质内容解析在本章,平移是作为平行的一个应用引入的。
平移是图形整体沿某一直线方向移动一定的距离。
本节课主要是针对水平方向的平移展开讨论。
在观察、动手操作等活动的基础上,从数量和位置两个角度研究平移前后图形的变化,从而归纳得出平移的基本性质,在此基础上给出平移的概念,并说明平移的基本性质对于其他方向的平移也是适用的。
平移是初中阶段学习的第一个图形运动变化的内容。
对于平移的学习,在研究方法上,也为今后研究轴对称、旋转等提供了参照。
学情分析虽然在小学的学习,学生对于平移已有一定的认识,能够在方格纸上认识图形的平移,能在方格纸上按水平或垂直方向将简单图形平移,并能从平移的角度欣赏生活中的图案。
但是对于平移的基本性质的探讨,需要在具体图形中,通过研究对应点的关系进行归纳。
对于这一点,学生没有可借鉴的相关的学习经验。
所以需要在教师引导下找到归纳性质的线索,并逐步构建起的探究的思路。
这需要较强的思维能力,需要教师在长期的教学过程中不断地进行引导和渗透,学生不断感悟领会,才能逐步养成。
教学目标1、经历欣赏、观察、分析图形的过程,理解平移的概念,探索平移的性质。
2、经历探索平移的基本性质,并灵活运用性质解题。
3、学会用运动的观点分析问题,在欣赏和操作中获得数学美的熏陶。
教学重点平移的基本性质及其归纳过程。
教学难点利用平移性质解决问题教学支持条件多媒体辅助教学、半透明纸,直尺或者三角板教学过程设计教学环节教学过程设计意图情境引入问题1观察下面图片,你发现了什么?我们发现人本身是不动的,但最终人的位置却发生了变化,这个过程我们称之为平移;思考:平移的过程中,哪些关系是不变的,哪些又是发生变化的?选用生活常见的情景,主要是勾起学生的回忆,从而引发学生的思考,用具体生活案例更具有教育意义,从而达到教育的目的;平移的物体位置发生了变化,但形状、大小均不会发生改变;知识点一:平移的概念新课讲授问题2:如何在一张半透明的纸上,画出一排形状和大小如图的雪人呢?问题3:雪人的形状、大小、位置在运动前后是否发生了变化?师:PPT演示一个雪人平移过程,并请学生在观察后进行思考。
2024年新人教版 七年级数学下册 全册教案可打印下载

2024年新人教版七年级数学下册全册教案可打印一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的判定与性质5.3 生活中的平行线2. 第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示6.3 概率初步二、教学目标1. 理解并掌握相交线与平行线的性质及其在实际中的应用。
2. 学会进行数据的收集、整理和表示,并能够运用概率知识解决实际问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:平行线的判定与性质的理解数据的整理与概率的计算2. 教学重点:两条直线的位置关系及平行线的应用数据的收集、整理和表示方法四、教具与学具准备1. 教具:直尺、量角器、三角板数据收集表格、统计图表2. 学具:练习题、草稿纸数据收集与整理工具(如计算器、调查问卷等)五、教学过程1. 实践情景引入:通过展示实际生活中的相交线和平行线现象,激发学生对本章学习的兴趣。
2. 例题讲解:讲解相交线与平行线的判定方法和性质,配合实际例题进行分析。
3. 随堂练习:分组讨论并解决实际问题,巩固所学知识。
4. 数据的收集与整理:引导学生进行数据收集、整理和表示的实践操作,解释概率初步概念。
六、板书设计1. 相交线与平行线的判定与性质2. 数据的收集、整理与表示方法3. 概率初步概念及计算七、作业设计1. 作业题目:练习题5.1、5.2、6.1、6.2各2题。
附加题:设计一份调查问卷,收集数据并整理成统计图表。
2. 答案:练习题答案将在课后统一发放。
八、课后反思及拓展延伸1. 反思:2. 拓展延伸:鼓励学生探索生活中的相交线和平行线现象,以及数据的收集与整理的实际应用。
推荐相关阅读材料,加深学生对概率概念的理解。
重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的确定4. 教学过程中的实践情景引入和例题讲解5. 板书设计6. 作业设计及答案解析7. 课后反思与拓展延伸一、教学内容的选择与安排在教学内容的选择上,应确保章节的连贯性和逻辑性,将抽象的数学概念与生活实际相结合。
古交市一中七年级数学下册第五章相交线与平行线5.1相交线5.1.1相交线教案新版新人教版07

5.1 相交线相交线【知识与技能】1.能结合具体的图形找出邻补角和对顶角,进而理解邻补角和对顶角的定义;2.理解对顶角的性质;3.能运用邻补角的性质、对顶角的性质进行简单的推理或计算.【过程与方法】通过画图、看图、归纳等掌握邻补角、对顶角的概念;通过先观察,再猜想,最后再推理的方法掌握“对顶角相等”这一重要定理.【情感态度】经历画图、看图、猜想、推理等过程,初步体会几何学习的基本方法.【教学重点】邻补角、对顶角的概念,对顶角的性质.【教学难点】1.邻补角与补角的区别与联系.2.初步体验推理的方法.一、情境导入,初步认识问题1参见教材P2“探究”问题2填空:如图,直线AB、CD交于点O,因为∠1与∠3是______角,所以∠1+∠3=_______,因为∠2与∠3是______,所以∠2+∠3=_______,根据_________,所以∠1______∠2,这就证明了对顶角的一个重要的性质定理:__________________________________.【教学说明】全班同学合作交流,共同完成上面两个问题,教师巡回指导.二、思考探究,获取新知思考1.邻补角与补角有怎样的关系?2.推理的依据一般有哪些?【归纳结论】1.定义:(1)邻补角:有一条公共边,且另一边互为反向延长线的两个角互为邻补角;(2)对顶角:如果两个角有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.2.性质定理:(1)如果两个角互为邻补角,那么这两个角的和等于180°;(2)对顶角相等.3.邻补角与补角的关系:邻补角一定互补,互补的两个角不一定是邻补角.邻补角是具有特殊位置关系的补角.4.推理是今后经常遇到的事情,推理的依据是已知、定义、公理、定理等.三、运用新知,深化理解1.如图,找出图中的对顶角与邻补角.第1题图第2题图2.如图,∠B+∠2=180°,问∠1与∠B是否相等,∠B与∠3是否相等,为什么?【教学说明】题1可以抢答的形式让同学们回答,对于题2,教师应及时给予引导,鼓励学生大胆完成.【答案】略.四、师生互动,课堂小结1.邻补角、对顶角定义.2.邻补角、对顶角的性质.1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的练习.三角形三心共线的证明题求证:任意三角形的垂心H,重心G和外心O三点共线.这道题乍一看较为棘手,一般的学生不知如何下手,若把命题改为“△ABC内接于圆O,H 为垂心.求证H到该三角形任意顶点的距离等于O到这个顶点所对的边距离的两倍.”证起来就轻松多了.下面先简单证明这个命题.证明:如图1(仅以锐角三角形为例),O是△ABC的外心,H是垂心,OM⊥BC于M,即证AH=2OM,连BO且延长交圆O于D,则DC=2OM.∵ BD是直径.即 AH=2OM.这就为我们证明前者奠定了基础,于是就有三角形三心共线的第一种证法.证法1 在图2中,H、O分别为△ABC的垂心和外心,中线AM交HO于G′,∵ AH∥OM,且AH=2OM∴ AG′=2G′M,即G′就是重心G,故H、G、O三心共线.证法2 如图3,作OM⊥BC,OF⊥AB,垂足分别为M、F,则M是BC的中点,F是AB的中点,∴ FM∥AC,且AC=2FM∵ OF、CE均垂直于AB,且FM∥AC∴∠1=∠2,同理∠3=∠4,从而有△OMF∽△HAC∵ AC=2FM,∴ AH=2MO.∴ AM与OH的交点必为重心G,故H、G、O三心共线.证法3 在图4中,△ABC的两条高AD.BE相交于H(垂心),边AC和边CB上的中垂线ON、OM相交于O(外心),M、N分别在CB.AC上,则AM与ON于X,AD交ON于Q,连OG和HG,可证△XOG∽△YHG∵△NXG∽△BYG∠OXG=∠HYG(两线平行,内错角相等)②由①、②、③知△XOG∽△YHG得∠OGX=∠HGY,可得H、G、O三点在一条直线.即任意三角形的垂心、重心、外心共线.在上述三种证法中,证法1和证法2的思路清晰、敏捷;证法3是融代数、几何于一体,可培养我们综合运用能力.11.5 用一元一次不等式解决问题一、单选题1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A .9折B .8折C .7折D .6折2.张老师每天从甲地到乙地锻炼身体,甲、乙两地相距1.4千米.已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .()20080101400x x +-≥B .()80200101400x x +-≤C .()2008010 1.4x x +-≥D .()8020010 1.4x x +-≤3.某次知识竞赛共有30道题,每一题答对得5分,答错或不答扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x 道题,根据题意列式得( )A .()533070x x -+≥B .()533070x x +-≤C .()533070x x +->D .()533070x x -->4.张师傅再就业,做起了小商品生意.第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件b 元的价格购进了30件乙种小商品(a >b );回来后,根据市场行情,他将这两种小商品以每件2a b +元的价格全部售出,则在这次买卖中,张师傅赚了( )元A .5a ﹣5bB .10a ﹣10bC .20a ﹣5bD .30a ﹣20b 5.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆6.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入( )个小球时有水溢出.A.8 B.9 C.10 D.117.设a,b,c,d都是整数,且a<2b,b<3c,c<4d,d<20,则a的最大值是()A.480 B.479 C.448 D.4478.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7二、填空题9.通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位.某树栽种时的树围为5 cm,以后树围每年增长3 cm.假设这棵数生长x年其树围才能超过2.4 m.列满足x 的不等关系:__________________.10.某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_____折出售此商品.11.一次普法知识竞赛共有30道题,规定答对一题得4分,答错或者不答倒扣一份,在这次竞赛中.小明获得优秀(90分或90分以上),则小明至少答对了___道题.12.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.13.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.14.仲夏蝉鸣,凤凰花开,匆匆三年,激扬青春,又是一年毕业季来临!某文具店抓住商机,发现有甲、乙、丙、丁四种毕业纪念册比较受学生的喜欢,于是制定了进货方案:其中甲、丙的进货量相同,乙、丁的进货量相同,甲与丁的单价相同,甲、乙的单价和与丙、丁的单价和均为66元,且甲、乙的进货总价比丙、丁的进货总价多600元.由于资金周转紧张,进货时临时决定只购进甲、乙两种纪念册,甲、乙的进货量及单价与原方案相同,进货总数不超过500册,则该文具店最多需要准备__________________________元进货资金.15.一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________. 16.一年一度的“八中之星”校园民谣大赛是每年八中艺术节的重要活动之一,吸引了众多才华横溢的八中同学参赛.该比赛裁判小组由若干人组成,每名裁判员给选手的最高分不超过10分.今年大赛一名选手演唱后的得分情况是:全体裁判员所给分数的平均分是9.84分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.82分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.9分.那么,所有裁判员所给分数中的最低分最少可以是________分.17.某鲜花销售商经过市场调查,发现有甲、乙、丙、丁四种鲜花组合比较受顾客的喜欢,于是制定了进货方案,其中甲、丙的进货量相同,甲与丁的单价相同,甲、乙与丙、丁的单价和均为66元/束,且甲、乙的进货总价比丙、丁的进货总价多600元.由于年末资金周转紧张,所以临时决定只购进甲、乙两种组合,甲、乙的进货量与原方案相同,且进货总数不超过500束,则该销售商最多需要准备_____元进货资金.18.按如图所示的程序计算,若输入的值x=17,则输出的结果为22;若输入的值x=34,则输出的结果为22.当输出的值为24时,则输入的x的值在0至40之间的所有正整数是____.三、解答题19.哈尔滨地铁“三号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?20.某班级准备购买一些奖品奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知,购买一个甲奖品比一个乙奖品多用20元,若用400元购买甲奖品的个数是用160元购买乙奖品个数的一半.(1)求购买一个甲奖品和一个乙奖品各需多少元?(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙奖品的个数是甲奖品的2倍还多8个,且该班级购买两种奖项的总费用不超过640元,那么该班级最多可购买多少个甲奖品?21.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.22.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?23.一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子少于3个,问共几个儿童,分了多少个橘子?24.为培养学生自主意识,拓宽学生视野,促进学习与生活的深度融合我市某中学决定组织部分学生去青少年综合实践基地进行综合实践活动在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生现有甲、乙两种大客车它们的载客量和租金如表所示学校计划此实践活动的租车总费用不超过3100元,为了安全每辆客车上至少要有2名老师.(1)参加此次综合实践活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,租用客车总数为多少辆?(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.25.预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定数减少10个,总金额仍多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,乙商品仍每个涨价1元,那么甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.。
新人教版七年级下册数学第五章5.1.1 相交线教案

第五章相交线与平行线5.1 相交线教学目标1.理解对顶角和邻补角的概念,能在图形中辨认.2.理解对顶角相等,并能运用它解决一些问题.3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力.教学重点邻补角、对顶角的概念,对顶角性质与应用. 教学难点理解对顶角相等的性质.教学过程(师生活动)激趣导入先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.预习定标1.对顶角和邻补角的概念学生活动:观察上图,同桌讨论,教师统一学生观点并板书.【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。
二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。
2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。
三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。
难点:三角形性质的理解,三角形面积公式的推导。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。
2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。
(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。
(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。
3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。
4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。
六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。
2. 三角形的性质:内角和等于180°,两边之和大于第三边等。
3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。
4. 三角形周长和面积的计算方法。
七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。
2. 答案:见附页。
2024年最新初中数学教案电子版通用

2024年最新初中数学教案电子版通用一、教学内容本教案依据《初中数学课程标准》,结合七年级下册教材第五章《一元一次不等式和它的应用》展开。
具体章节内容涉及:5.1不等式及其性质;5.2一元一次不等式的解法及应用;5.3一元一次不等式组的解法及应用。
二、教学目标1. 理解不等式的概念及其基本性质,能够运用性质简化不等式。
2. 学会一元一次不等式的解法,并能解决实际问题。
3. 掌握一元一次不等式组的解法,了解其在生活中的应用。
三、教学难点与重点重点:一元一次不等式的解法及其应用。
难点:不等式组的解法及其在实际问题中的应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:练习本、笔。
五、教学过程1. 实践情景引入(5分钟)通过展示日常生活中关于数量比较的实例,引导学生关注不等关系,激发学习兴趣。
2. 知识讲解(15分钟)(1)介绍不等式的定义及基本性质。
(2)讲解一元一次不等式的解法,并通过例题演示。
3. 例题讲解(15分钟)以两个典型例题,分别讲解一元一次不等式和一元一次不等式组的解法。
4. 随堂练习(10分钟)学生独立完成课堂练习,巩固所学知识。
5. 答疑解惑(5分钟)对学生在练习过程中遇到的问题进行解答。
6. 课堂小结(5分钟)七、作业设计1. 作业题目:(1)解不等式:2x3>5。
(2)解不等式组:x3>2,x+2<5。
2. 答案:(1)x>4。
(2)2<x<3。
八、课后反思及拓展延伸1. 反思:关注学生在课堂中的参与度,及时调整教学方法,提高教学效果。
2. 拓展延伸:鼓励学生探索不等式在其他学科领域的应用,增强学科交叉意识。
板书设计:1. 不等式的定义及基本性质。
2. 一元一次不等式的解法步骤。
3. 一元一次不等式组的解法步骤。
本教案以严谨的教学态度,注重理论与实践相结合,旨在提高学生的数学素养,培养其解决问题的能力。
在教学过程中,教师应关注学生的个体差异,因材施教,使每一位学生都能在数学学习中找到乐趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册第五章数学教案
教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.
2.掌握对顶角相等的性质和它的推证过程.
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.
重点:在较复杂的图形中准确辨认对顶角和邻补角.
难点:在较复杂的图形中准确辨认对顶角和邻补角.
教学过程
一、创设情境,引入课题
先请同学观察本章的章前图,然后引导学生观察,并回答问题.
学生活动:口答哪些道路是交错的,哪些道路是平行的.
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它
们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.
二、探究新知,讲授新课
1.对顶角和邻补角的概念
学生活动:观察上图,同桌讨论,教师统一学生观点并板书.
【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.
学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角.
紧扣对顶角定义强调以下两点:
1辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看
是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.
2对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1
的对顶角,也常说∠1和∠3是对顶角.
2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.
【板书】∵∠1与∠2互补,∠3与∠2互补邻补角定义,
∴∠l=∠3同角的补角相等.
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;
所以括号内不填已知,而填邻补角定义.
或写成:∵∠1=180°-∠2,∠3=180°-∠2邻补角定义,
∴∠1=∠3等量代换.
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°对顶角相等.
∠2=180°-40°=140°邻补角定义.
∠4=∠2=140°对顶角相等.
三、范例学习
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l=40°变为∠2-∠1=40°
变式2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1:∠2=2:9
四、课堂小结
学生活动:表格中的结论均由学生自己口答填出.
五、布置作业:课本P3练习
教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.
2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.
重点两条直线互相垂直的概念、性质和画法.
教学过程
一、创设问题情境
1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?
在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.
2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?
教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.
3.师生共同给出垂直定义.
师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。
如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。
4.垂直的表示法.
垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.
5.简单应用
1学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.
2判断以下两条直线是否垂直:
①两条直线相交所成的四个角中有一个是直角;
②两条直线相交所成的四个角相等;
③两条直线相交,有一组邻补角相等;
④两条直线相交,对顶角互补.
二、画图实践,探究垂线的性质
1.学生用三角尺或量角器画已知直线L的垂线.
1已知直线L教师在黑板上画一条直线L,画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L 的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.
教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.
2经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论? 教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.
教师让学生通过画图操作所得两条结论合并成一条,并板书:
垂线性质1:过一点有且只有一条直线与已知直线垂直.
2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:
1过点P画射线MN的垂线,Q为垂足;
2过点P画射线BN的垂线,交射线BN反向延长线于Q点;
3过点P画线段AB的垂线,交线AB延长线于Q点.
学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.
三、课堂小结
本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?
四、布置作业:课本P7练习,P9.3,4,5,9.
感谢您的阅读,祝您生活愉快。