一元一次方程的应用——和差倍分问题专题练习(学生版)
3.4实际问题与一元一次方程(1——和差倍分问题习题课件+2023-2024学年人教版数学七年级上册

过关训练
1.比a的3倍大5的数等于a的4倍,则下列方程正确的是( B )
A.3a-5=4a
B.3a+5=4a
C.5-3a=4a
D.3(a+5)=4a
பைடு நூலகம்
2.若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,
有94只脚.问笼中鸡和兔各有多少只?若设鸡有x只,则x满足的方程
为( A )
A.2x+4(35-x)=94 B.4x+2(35-x)=94
4.某次数学知识竞赛中,试题由50道不定项选择题组成,评分标准 规定:每道题全选对得4分,不选得0分,选错或正确选项不全倒扣2 分.已知某学生有4道题未选,得了172分,则该学生全选对了_4_4__道 题.
5.一个旅游团共26人去参观某个景点,已知成人票每张120元,儿童 票每张80元,经预算,共需要门票钱2 640元. (1)求这个旅游团成人和儿童各有多少人? 解:设该旅游团成人有x人,则儿童有(26-x)人. 由题意,得120x+80(26-x)=2 640.解得x=14. 26-x=26-14=12. 答:这个旅游团成人有14人,儿童有12人.
(2)若某景点成人票价为每张 80 元,儿童票价为每张 40 元,并且乙团 中儿童人数恰好比甲团中儿童人数的2倍少 2 人,两旅行团在此景点 所花门票费用相同.求甲、乙两团中儿童人数各是多少?
解:设甲团儿童人数为y,则乙团儿童人数为(2y-2),所以甲团成人 有(30-y)人,乙团成人有[34-(2y-2)]人. 根据题意,得40y+80(30-y)=40(2y-2)+80[34-(2y-2)]. 解得y=10. 则2×10-2=18(人). 答:甲、乙两团中儿童分别有 10 人和 18 人.
买两种布料共138 m,花了540元,其中蓝布料每米3元,黑布 料每米5元,两种布料各买了多少米?设买蓝布料x m,由题意,列方 程得( A ) A.3x+5(138-x)=540 B.5x+3(138-x)=540 C.3x+5(540-x)=138 D.5x+3(540-x)=138
七年级数学上一元一次方程应用题第一课时:和差倍分问题精选全文完整版

可编辑修改精选全文完整版例2:甲种铅笔每只0.3元,乙种铅笔每只0.6元,用9元钱买了两种铅笔共20只,两种铅笔各买了多少支?练习:用买10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,两种水杯的单价各是多少元?例3:把一根长100cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5cm,应该在木棍的哪个位置锯开?练习:一个梯形的下底比上底多2cm,高是5cm,面积是402cm,求上底二、数字问题例1.用式子表示下列两位数或三位数:(1)一个两位数,个位数字是a,十位数字是b:____________(2)一个两位数,个位数字是a,十位数字比个位数字小1:__________(3)一个两位数,个位数字是a,比十位数字小1:__________(4)一个两位数,十位数字是a,个位数字比十位数字的2倍多3;(5)一个三位数,十位数字是a,比百位数字大1,比个位数字少1.练习:(1)一个两位数,个位上的数字比十位上的数字大 2 个位与十位上的数字之和是10,求这个两位数.(2)一个两位数个位上的数是1,十位上的数是,把1与x对调,新的两位数比原两位数小18,求十位上的数。
例2:有一列数,按一定规律排列成1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701这三个数各是多少?例3:一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?三、数学作业1、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?2、买两种布料共138m,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少m?3、用一根长60m的绳子围出一个长方形,是他的长是宽的1.5倍,长和宽各是多少?4、一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和是9,这个两位数是多少5.一个两位数,个位上的数字与十位上的数字之和是7, 若把个位与十位数字对调,则所得的两位数比原两位数大27,求这个两位数.6.有一列数,按一定规律排列成1,-2,4,-8,16,-32…,其中某三个相邻数的和是-96,这三个数各是多少?7.下图是本月的日历,用如图所示的“十字架”去框其中的五个数,若这五个数的和是60,你知道框住的是哪五个数吗?在图中画出来,并用方程的知识进行说明.1 2 3 4 5 67 8 9 10 11 12 1314 15 16 17 18 19 2021 22 23 24 25 26 2728 29 30。
七年级数学上册第五章一元一次方程专题十一一元一次方程的应用__和差倍分问题作业课件新版北师大版4

2.为支持亚太地区国家基础设施建设 , 由中国倡议设立亚投行 , 据悉 , 亚投行意向创始成员国确定为57个 , 其中意向创始成员国数亚洲是欧 洲的2倍少2个 , 其他洲共5个 , 求亚洲和欧洲的意向创始成员国各有多 少个 ? 解 : 设欧洲意向创始成员国为x个.那么x+(2x-2)+5=57 , 所以x= 18 , 2x-2=34.答 : 亚洲为34个 , 欧洲为18个
6.(阿凡题 : 1070840)(2016·孝感)孝感市在创建国家级园林城市中 , 绿 化档次不断提升.某校计划购进A , B两种树木共100棵进行校园绿化 升级 , 经市场调查 : 购买A种树木2棵 , B种树木5棵 , 共需600元 ; 购买 A种树木3棵 , B种树木1棵 , 共需380元.求A种 , B种树木每棵各多少 元? 解 : 设A种树木每棵x元 , 那么B种树木每棵(380-3x)元 , 2x+5(380- 3x)=600 , 解得x=100 , 380-3x=80.答 : A种树木每棵100元 , B种树 木每棵80元
休息时间到啦
同学们,下课休息十分钟。现在是休 息时间,你们休息一下眼睛,
看看远处,要保护好眼睛哦~站起来 动一动,久坐对身体不好哦~
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念”诗歌朗诵比赛.为了鼓励学生积极 参与活动 , 班委会决定奖励比赛成绩优秀的同学 , 准备用184元班费 , 买3个书包和5本词典 , 分别奖给三名一等奖、五名二等奖获得者 , 已 知每个书包的价格比每本词典的价格多8元 , 每个书包和每本词典的 价格各是多少元 ? 解 : 设每本词典x元 , 那么每个书包(x+8)元 , 3(x+8)+5x=184 , 解得 x=20 , x+8=28 , 答 : 每个书包28元 , 每本词典20元
一元一次方程应用一-和差倍分全篇

某校三年共购买计算机140台, 去年购买数量是前年的2倍,今年 购买数量又是去年的2倍,前年这 个学校购买了多少台计算机?
甲、乙、丙三队合修一条公 路,计划出280人,如果甲队人 数是乙队的一半,丙队人数是乙 队的2倍,问三队各有多少人?
1、 数学组原来女生占1/3,后来又加入了4名女生,
现在女生人数占全组人数的一半,求这组原来有多 少人?
解得: x =25 则: 3 x -25=50 答:今年的产值为50万元。
• 两筐鸭梨共重154千克,其中第一筐比第二 筐的2倍少14千克,求两筐鸭梨各有多少千 克?
解:设第二筐有x千克,则第一筐有(2x-14)千克。
x+(2x-14)=154
解得: x =50 则: 2x-14=86
答:第一筐有86千克 ,第二筐有50千克。
一元一次方程的实际应用
----和倍差分问题
(1) 2x 1 10x 1 2x 1 1
3
6
4
(2) 4x 1.5 5x 0.8 1.2 x
0.5
0.2
0.1
• 1、已知甲数是乙数的3倍多12,甲乙 两数的和是60,求乙数
• 2、甲数比乙数大10,甲数的5倍与乙 数的8倍的和是115,求甲、乙两数。
• 例:某厂今年的产值是去年的3倍少25 万,今年和去年产值总和是75万,求 今年的产值多少万?
怎样设未知数?
如果设今年产值为x万,则去年产值为( )万
如果设去年产值为x万,则今年产值为( )万
例、某厂今年的产值是去年的3倍少25万,今年和ቤተ መጻሕፍቲ ባይዱ 年产值总和是75万,求今年的产值。
解:设去年的产值为x 万, 则今年的产值为(3 x-25)万。 x+(3x-25)=75
(完整word版)一元一次方程——和差倍分问题

一元一次方程应用题-—和、差、倍、分问题一、学习重点:这类问题主要应搞清各量之间的关系,注意关键词语.仔细读题,找出表示和、差、倍、分关系的关键字,例如:“大,小,多,少,增加,减少……”,并据题意设出未知数,利用这些关键字表示出含有未知数的量,最后利用题目中的量与量之间的关系列出方程。
1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几……”来体现。
2、多少关系:通过关键词语“多、少、和、差……”来体现。
增长量=原有量×增长率现在量=原有量+增长量一般设未知数要找跟所有关系联系最紧密的那个量。
二、基础练习题:1、a比b多5,则a=______;a比b少3,则a=______;a是b的2倍,则a=____;a增加3倍,则a=_____;a增加到3倍,则a=_____;将a增加b,则a=_____;将a增加到b,则a=_____。
2、已知甲数比乙数小12,甲乙两数的和为50,甲数为_____;乙数为_____.3、已知甲数比乙数的3倍多12,甲乙两数的和是60,甲数为_____;乙数为_____。
4、已知甲数是10,增加40%后甲数为______;在此基础上减少50%后甲数为_______.5、已知甲数的3倍是乙数与—2的和的2倍,甲数与乙数的差为5,甲数为_____;乙数为_____。
6、三个连续偶数的和是360,中间的偶数为_____。
7、三个连续奇数的和为361,中间的奇数为_____。
8、甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为_________.9、某校共有学生1049人,女生占男生的40%,则男生的人数为__________。
例题1:禽养场养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场的鸡鸭各多少只?练习:足球的表面是由一些呈多边形的黑白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种皮块各有多少?做题:10、11例题2:一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。
人教版七年级上册数学实际问题与一元一次方程--和差倍分问题应用题训练

(3)x等于多少时,调动后两班人数一样多?
参考答案
1.这本书有480页
2.30元
3.计划做23个中国结
4.23
5.小组成员共有30名,他们计划做138个“中国结”.
6.这批服装原计划40天完成;订货任务是900套.
7.113个
8.苹果买了2千克,梨买了3千克.
15.甲商品每件20元,乙商品每件15元,若购买甲、乙两种商品共40件,恰好用去675元,求甲、乙商品各买多少件?
16.2020年1月“新型冠状肺炎”来袭,全国人民众志成城,展开全民战“役”,携手共筑坚强后盾,纷纷捐款捐物,我校师生也参与了为武汉捐款活动:七年级学生捐款数为全校总捐款数的 ;八年级学生捐款数比七年级和九年级学生捐款数和的一半少450元;九年级捐款3900元.请分别求出七年级和八年级各捐款多少元?
20.(1)(3x-10)人;(2)(x-26)人;(3)x等于26时,调动后两班人数一样多.
13.江南生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg,求粗加工的这种山货的质量.
14.某校初一学生(共三个班)为灾区捐款,一班捐款为初一总捐款的 ,二班捐款为一班、三班捐款数的和的一半,三班捐了 元,求初一三个班的总捐款数.
人教版七年级上册数学3.4实际问题与一元一次方程--和差倍分问题应用题训练
一、解答题
1.晶晶看一本书,第一天看了总页数的 ,第二天看的是第一天的 ,剩下12页没有看完.这本书有多少页?
2.从大连万达影城获悉电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.请问《我和我的祖国》的电影票在网上平台购票单价为多少元?
初一一元一次方程解应用题全部类型

1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
一元一次方程的应用题专题

和差倍分问题-------总量=分量1+分量2+.....1、某校三年共购计算机x台,去年购买数量是前年2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?2、某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,前年的产值是多少?3、有一列数,按一定规律排成1,-3,9,-27,81,-243,....其中某三个相邻数的和是-1701,这三个数各是多少?4、有这样的一列数:5,10,15,20,25....,按此规律排列,如果其中相邻的三个数的和蔚135,则这三个数分别是多少?5、用一根长60米的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各是多少?6、把一根长为100厘米的木棍锯成两段,要使其中一段长比另一段长的2倍少5厘米,锯成的两段木棍分别长多少?7、洗衣机厂今年计划生产洗衣机25500台,其中型号1、型号2、型号3三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?8、某造纸厂为节约木材,大力扩大再生纸的生产,它去年10月生产再生纸2050吨,这比前年10月份再生纸产量的2倍还多150吨,它前年10月份生产再生纸多少吨?9、小新出生时父亲28周岁,现在父亲的年龄是小新年龄的3倍,求现在小新几周岁?10、买两种布料共138米,花了540元,其中蓝布料每米3元,黑布料每米5元,两种布料各买了多少元?11、一根竹竿竖直插入一水池底部的淤泥中,竹竿的入泥部分占全长的1/5,淤泥以上的入水部分比入泥部分长1/2米,露出水面部分为13/10米,请问竹竿有多长?水有多深?分配问题---------找不变量1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?2、几个人共同种一批树苗,如果每人种10棵,则剩下6棵未种;如果每人种12棵,则缺6棵树苗,求参与种树的人数?3、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8千克,李丽平均每小时采摘7千克,采摘结束后王芳从她采摘的樱桃中去取0.25千克给了李丽,这时两人樱桃一样多,她们采摘用了多长时间?4、我班举行了一次集邮展览,展出的邮票比平均每人3枚多24枚,比平均每人4枚少26枚,则我班共展出邮票多少枚?5、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200吨,如用新工艺,则废水排量比环保限制的最大量少100吨,新、旧工艺排量之比为2:5,两种工艺的废水排量各是多少?行程问题-------路程=速度x时间+列表(1)顺逆问题1、一艘船从甲码头到乙码头顺流而行,用了2小时;从乙码头返回甲码头逆流而行,用了2.5小时,已知水流的速度是3千米每小时,求船在静水中的平均速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的应用——和差倍分问题专题练习
一、选择题
1、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍,问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是().
A. 32+x=2×18
B. 32+x=2(38-x)
C. 52-x=2(18+x)
D. 52-x=2×18
2、某物流中心的A仓库有货物180吨,B仓库有货物120吨,现在需把B仓库一部分货物运到A仓库,使B仓库货物占A仓库货物总量的30%.设把B仓库的货物运送x吨到A仓库,则可列方程().
A. 120-x=30%×180
B. 120-x=30%(180+x)
C. 120+x=30%×180
D. 180-x=30%(120+x)
3、某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是().
A. 2×1000(26-x)=800x
B. 1000(13-x)=800x
C. 1000(26-x)=2×800x
D. 1000(26-x)=800x
4、已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为().
A. 2cm
B. 3cm
C. 4cm
D. 5cm
5、甲、乙、丙三种商品单价的比是6:5:4,已知甲商品比丙商品的单价多12元,则三种商品的单价之和为().
A. 75元
B. 90元
C. 95元
D. 100元
6、父亲现在32岁,儿子现在5岁,x年前,父亲的年龄是儿子年龄的10倍,则x应满足的方程是().
A. 32-x=5x
B. 32-x=10(5-x)
C. 32-x=5×10
D. 32+x=5×10
7、我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒
头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ). A. 3
x
+3(100-x )=100 B.
3
x
-3(100-x )=100
C. 3x +1003
x -=100
D. 3x -1003
x -=100 8、长沙是中国男足的福地,3月23日中国队1:0胜韩国队,赢得12强赛的首场胜利!已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负了5场,共得23分,那么这个队胜了( ).
A. 5场
B. 6场
C. 7场
D. 8场
9、我国明代著名数学家程大位的《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿长为x 尺,根据题意列一元一次方程,正确的是( ). A. 1
2 x +5=x -5 B.
1
2 x -5=x +5
C. 1
2
(x -5)=x +5
D. 1
2
(x +5)=x -5
二、填空题
10、传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______.
11、一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为______.
12、我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题: 一百慢头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?
如果译成白话文,其意思是有100个和尚分100个馒头,正好分完,如果大和尚一人分3个,小和尚3人分一个.试间大小和尚各有几人? 设大和尚x 人,小和尚y 人,可列方程组为______.
13、父亲和女儿的年龄之和是54,当父亲的年龄是女儿现在年龄的3倍时,女儿的年龄正好是父亲现在年龄的
1
7
,则女儿现在的年龄是______.
14、清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:
巍巍古寺在山林,不知寺中几多僧.
三百六十四只碗,众僧刚好都用尽.
三人共食一碗饭,四人共吃一碗羹.
请问先生明算者,算来寺内几多僧.
诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x人,由题意可列方程为______.
三、解答题
15、某校购买了A,B两种教具共138件,共花了5400元,其中A教具每件30元,B教具每件50元,两种教具各买了多少件?
16、为发展校园足球运动,某校决定购买一批足球运动装备,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,求每套队服和每个足球的价格是多少.
17、列方程解应用题:
改革开放40年来,我国铁路发生了巨大变化,现在的铁路运营里程比1978年的铁路运营里程多了75000公里,其中高铁更是迅猛发展,其运营里程约占现在铁路运营里程的20%,只差600公里就达到了1978年的铁路运营里程的一半.问1978年的铁路运营里程是多少公里.
18、机械厂加工车间有90名工人,平均每人每天加工大齿轮16个或小齿轮28个,已知大齿轮和小齿轮要按1:2配成一套,问需安排多少名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套?(用一元一次方程解答)
19、第十六届亚运会于2010年11月27日在中国广州举行,我国体育健儿发扬奋勇拼搏,敢于争先的奥运精神,在这次亚运会上共获得416枚奖牌,其中金牌数是铜牌数的2倍多3枚,而铜牌数比银牌数少21枚,请问:中国体育健儿共获得金牌、银牌、铜牌各多少枚?
20、列方程解应用题.
某餐厅有4条腿的椅子和3条腿的凳子共40个,如果椅子腿数和凳子腿数加起来共有145条,那么有几个椅子和几个凳子.
21、某快递员准备送出一批美术用纸共25500包,其中包括素描纸、手工彩色卡纸和水粉纸三种美术用纸,它们的数量比为1:2:14,该快递员准备送出的这三种美术用纸各多包?
22、制作一张桌子要用1个桌面和4条腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,应分别计划用多少立方米木材制作桌面和桌腿?
23、某工厂现有15m3木料,准备制作各种尺寸的圆桌和方桌,如果用部分木料制作桌面,其余木料制作桌腿.
1、已知一张圆桌由一个桌面和一条桌腿组成,如果1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少m3.
2、已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.
(1)如果1m3木料可制作50个桌面,或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套.
(2)如果3m3木料可制作20个桌面,或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子.。