筒形件拉深模具设计2

合集下载

无凸缘筒形件的拉深模具设计

无凸缘筒形件的拉深模具设计

无凸缘筒形拉深件模具设计目录一、概述 (2)1.模具概述 (2)2.冷冲模具工业的现状 (2)3.冷冲模具的发展方向 (3)二、工艺方案分析及确定 (3)1.零件工艺性分析 (3)i.材料分析 (3)ii.结构分析 (4)iii.一次拉深成形条件 (4)iv.拉深件所能达到的偏差 (4)v.变形特点的分析 (4)2.工艺方法的确定 (4)三、零件工艺计算 (5)1.拉深工艺计算 (5)i.确定零件修边余量 (5)ii.确定坯料尺寸D (5)iii.判断是否采用压边圈 (5)iv.确定拉深次数 (5)v.确定各次拉深半成品尺寸 (5)vi.拉深件工序尺寸图 (6)vii.排样计算 (6)2.拉深压力计算与设备的选择 (7)i.首次拉深 (7)ii.二次拉深: (8)iii.压力中心的计算 (8)iv.压力设备的选择 (8)3.拉深模工作零件设计与计算 (9)i.凸、凹模刃口尺寸计算 (9)ii.落料拉深复合模其它工艺计算 (11)四、模具结构的确定 (12)1.模具的形式 (12)i.正装式特点 (12)ii.倒装式特点 (12)2.定位装置 (12)3.卸料装置 (12)i.条料的卸除 (12)ii.出件装置 (12)4.导向零件 (13)5.模架 (13)i.标准模架的选用 (13)五、第二次拉深凹模零件图 (14)i.拉深凹模如图5-1所示 (14)六、第二次拉深凸模零件图 (15)ii.拉深凸模如图5-2所示 (15)七、模具的工作原理 (15)1.拉深的变形过程 (15)2.各种拉深现象 (15)i.起皱: (15)ii.变形的不均匀: (16)iii.材料硬化不均匀 (16)八、总结 (16)九、参考文献 (17)ﻬ一、概述1.模具概述模具是高新技术产业的一个组成部分,是工业生产的重要基础装备.用模具生产的产品,其价值往往是模具价值的几十倍.模具技术是一门技术综合性强的精密基础工艺装备技术,涉及新技术、新工艺、新材料、新设备的开发与推广应用.是冶金、材料、计量、机电一体化、计算机等多门学科以及铸、锻、热处理、机加工、检测等诸多工种共同打造的系统工程。

筒形件一次拉深模具课程设计

筒形件一次拉深模具课程设计

目录序言 (2)第一部分冲压成形工艺设计 (4)Ⅰ明确设计任务,收集相关资料 (4)Ⅱ制定冲压工艺方案 (5)Ⅲ定毛坯形状,尺寸和主要参数计算...................... 6-7 第二部分冲压模具设计 (8)Ⅰ确定模具类型机结构形式 (8)Ⅱ计算工序压力,选择压力机 (8)Ⅲ计算模具压力中心 (9)Ⅳ模具零件的选用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12 Ⅴ冲压设备的校核 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Ⅵ其他需要说明的问题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13Ⅶ模具装配. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 设计总结 (14)参考文献 (15)序言目前我国模具工业与发达国家相比还相当落后。

主要原因是我国在模具标准化,模具制造工艺及设备等方面与工业发达国家相比差距很大。

随着工业产品质量的不断提高,模具产品生成呈现的品种、少批量、复杂、大型精密更新换代速度快。

模具设计与技术由于手工设备,依靠人工经验和常规机加工,技术向以计算机辅助设计,数控编程切屑加工,数控电加工核心的计算机辅助设计(CAD/CAM)技术转变。

模具生产制件所表现出来的高精度,高复杂程度,高生产率,高一致性和抵消耗是其它制造加工方面所不能充分展示出来,从而有好的经济效益,因此在批量生产中得到广泛应用,在现代工业生产中有十分重要的地位,是我国国防工业及民用生产中必不可少的加工方法。

带凸缘圆筒形件拉深模设计

带凸缘圆筒形件拉深模设计

摘要随着中国工业不断地发展,模具行业也显得越来越重要。

本文针对带凸缘圆筒形零件的拉伸工艺性及拉伸工序过程,列举其中一次拉深并完成模具设计。

介绍了筒形零件冷冲压成形过程,经过对筒形零件的批量生产、零件质量、零件结构以及使用要求的分析、研究,按照不降低使用性能为前提,将其确定为冲压件,用冲压方法完成零件的加工,且简要分析了坯料形状、尺寸,排样、裁板方案,拉深次数,冲压工序性质、数目和顺序的确定。

进行了工艺力、压力中心、模具工作部分尺寸及公差的计算,并设计出模具。

同时具体分析了模具的主要零部件的设计,冲压设备的选用,凸、凹模间隙调整。

列出了模具所需零件的详细清单,并给出了合理的装配图。

关键词冲压件/带凸缘圆筒形拉伸件/拉伸工艺/拉深模设计WITH FLANGE CYLINDRICAL DEEPDRAWING DIE DESIGNABSTRACTAs China's industrial development unceasingly, the mold industry also appears more and more important. This paper belt of flange cylindrical parts stretching manufacturability and stretching process process, list one time deep drawing and complete the mold design. Cold stamping process of cylindrical parts is introduced, after mass production of the cylindrical parts, parts quality, parts structure, and use requirement analysis, research, according to not reduce the usability for the premise, to identify it for stamping parts, complete parts processing, with stamping method and the brief analysis of the blank shape, size, layout, cutting board, deep drawing, stamping process in nature, the determination of number and order. The technology force, pressure center, mold working parts dimension and tolerance of calculation, and design the mold. At the same time, concrete analysis of main components of the mold design, the selection of stamping equipment, convex and concave die clearance adjustment. Lists the mould needs a detailed list of spare parts, and gives the reasonable assembly drawing.KEYWORDS stamping parts, flange cylindrical stretching, stretching, deep drawing die design process目录1 前言 (1)1.1 模具的概论 (1)1.1.1 冲压与冲模 (1)1.1.2 我国冲压现状与发展方向 (2)1.1.3 国外模具发展趋势及行业特点 (2)1.1.4 模具设计及加工技术的现状 (3)1.1.6 冲模的零部件 (4)1.2 冲压件工艺分析 (5)1.2.1 冲压加工的经济性分析 (5)1.2.2 冲压件的工艺性分析 (5)1.3 本设计要求 (6)2 工艺方案 (7)2.1 工艺性分析 (7)2.1.1 拉深件的结构与尺寸 (7)2.1.3拉深件材料 (7)2.2 设计方案的确定 (7)3 主要工艺参数计算 (8)3.1 确定排样、裁板方案 (8)3.1.1 工艺分析 (8)3.1.2 确定修边余量 (8)3.1.3 坯料直径 (8)3.1.4 排样 (9)3.1.5 压力中心的确定 (10)3.2 拉深工艺的计算 (10)3.2.1 压边 (10)3.2.2 总拉深系数 (10)3.2.3 预算拉深次数 (10)3.2.4 确定首次拉深工序件尺寸 (11)3.2.5 确定拉深次数及以后各次拉深的工序件尺寸 (12)3.2.6 第二次拉深直径和高度 (13)3.2.7 第三次拉深直径和高度 (13)3.2.8 修边 (14)3.2.9 拉深速度 (14)3.3 工艺力计算 (14)3.3.1 拉深力 (14)3.3.2 压料力 (15)3.4 压力机的选择 (16)3.4.1 初选压力机 (16)3.4.2拉深功 (16)3.4.3压力机电动机功率 (16)3.4.4功率校核 (17)4 拉深模设计 (17)4.1拉深模具结构设计 (17)4.2模具工作部分尺寸计算 (17)4.2.1 凸凹模间隙 (17)4.2.2 凸凹模圆角半径 (17)4.2.3凸凹模工作尺寸及公差 (17)4.3标准件的选取 (18)4.3.1 模架 (18)4.3.2下模座 (19)4.3.3上模座 (19)4.3.4 导柱、导套 (19)4.3.5 销钉 (19)4.3.6 螺钉 (20)4.3.7 模柄 (20)4.3.8带螺纹推杆(顶杆) (20)4.3.9 打杆 (20)4.3.10 打杆螺母 (21)4.3.11 橡胶的选取 (21)4.3.12 橡胶螺杆 (22)4.3.13 ;螺杆螺母 (22)4.3.14 模柄紧固螺钉 (22)4.4模具非标准件的设计 (22)4.4.1 拉深凸模的设计 (22)4.4.2拉深凹模的设计 (23)4.4.3 凸模固定板设计 (24)4.4.4压料圈的设计 (24)4.4.6 托板的设计 (25)5 压力机的校核 (25)6 模具装配图 (26)结束语 (27)致谢 (28)参考文献 (29)1 前言板料冲压是金属加工的一种基本方法,他用以生产各种板料零件,具有生产效率高、尺寸精度好、重量轻、成本低并易于实现机械化和自动化等特点。

纯实战宽凸缘圆筒形拉伸件级进模具设计实例

纯实战宽凸缘圆筒形拉伸件级进模具设计实例

宽凸缘圆筒形拉伸件级进模具设计实例定义:——凸缘的相对直径(d p包括修边余量)——相对拉伸高度(所有数据均取中性层数值)带凸缘圆筒形件拉伸一般分为两类:第一种:窄凸缘 = 1.1~1.4第二种:宽凸缘> 1.4计算宽凸缘圆筒形件工序尺寸原则:1.在第一次拉伸时,就拉成零件所要求的凸缘直径,而在以后的各次拉伸中,凸缘直径保持不变。

2.为保证拉伸时凸缘不参加变形,宽凸缘拉伸件首次拉入凹模的材料应比零件最后拉伸部分实际所需材料3%-10%(按面积计算,拉伸次数多去上限,拉伸次数少去下限),这些多余材料在以后各次拉深中逐次将1.5%-3%的材料挤回到凸缘部分,使凸缘增厚避免拉裂。

这对材料厚度小于0.5mm的拉伸件效果更显著。

凸缘圆筒形件拉伸工序计算步骤:1.选定修边余量(查表1)2.预算毛培直径3.算出x100 和,查表2第一次拉深允许的最大相对高度之值,然后与零件的相对高度相比,看能否一次拉成。

若≤则可一次拉出,若>则许多次拉深,这是应计算各工序尺寸。

4.查表3第一次拉深系数m1,查表4以后各工序拉深系数m2、m3、m4……,并预算各工序拉深直径,得出拉深次数。

5.调整各工序拉深系数。

计算实例1.产品件简化凸缘直径:d p=74.9 拉伸直径:d=43.15 拉伸高度:H=19.5 材料厚度:t=1 2.修边余量表1 带凸缘拉深件修边余量凸缘尺寸dp相对凸缘尺寸 dp/d≤1.5 >1.5~2 >2~2.5 >2.5~325 1.6 1.4 1.2 1 50 2.5 2 1.8 1.6 100 3.5 3 2.5 2.2 150 4.3 3.6 3 2.5 200 5 4.2 3.5 2.7 250 5.5 4.6 3.8 2.8 300 6 5 4 3相对凸缘尺寸:=74/43.15=1.71 ;根据上面的表格(表1) 1.5<=1.71<2 ;50<dp=74 <100则,带凸缘的拉伸件修边余量:2~3,取值 3 则,带凸缘的拉伸件修边余量:Δd=3 mm3. 展开根据成型前后中性层的面积不变原理使用UG 测量出拉深件中性层面积7379.0492 mm ² (不推荐使用公式计算,个人感觉一般计算得数偏大,故本文省略公式) 则,展开尺寸D== 96.95≈97 mm凸缘直径:d 凸=80.9拉伸直径:d=43.15拉伸高度:H=19.5材料厚度:t=1修边余量:Δd=3展开直径:D=974. 拉深系数确定表2 带凸缘拉深件的首次拉深系数凸缘相对直径dp/d1 材料相对厚度x100≤0.2>0.2~0.5 >0.5~0.1 >1~1.5 >1.5≤1.1 0.64 0.62 0.6 0.58 0.55 >1.1~1.3 0.60 0.59 0.58 0.56 0.53 >1.3~1.5 0.57 0.56 0.55 0.53 0.51 >1.5~1.8 0.53 0.52 0.51 0.50 0.49 >1.8~2 0.470.46 0.45 0.440.43凸缘相对直径dp/d1 材料相对厚度x100≤0.2 >0.2~0.5 >0.5~0.1 >1~1.5 >1.5 ≤1.1 0.45 0.50 0.57 0.65 0.75 >1.1~1.3 0.40 0.45 0.50 0.56 0.65 >1.3~1.50.350.40 0.45 0.500.58>1.5~1.8 0.29 0.34 0.37 0.42 0.48>1.8~2 0.25 0.29 0.32 0.36 0.42表4 带凸缘拉深件的以后各次拉深系数凸缘相对直材料相对厚度x100径dp/d1≤0.2 >0.2~0.5 >0.5~0.1 >1~1.5 >1.5 m2 0.80 0.79 0.78 0.76 0.75m3 0.82 0.81 0.80 0.79 0.78m4 0.85 0.83 0.82 0.81 0.80m5 0.87 0.86 0.85 0.84 0.82(1)验证可否一次完成拉伸材料相对厚度:t/D=1/97×100=1.03≈1凸缘相对直径:dp/d=80.9/43.15=1.87总的拉伸系数:M=d/D=43.15/97=0.45根据上表(附表2):0.5< t/D ≤1;1.8< dp/d <2则有工艺切口的首次最小拉伸系数 M1=M根据上表(附表3)有工艺切口的首次拉伸最大相对高度:h/d=19.5/43.15=0.45>0.32所以,根据 M1=M 和 h/d=0.45>0.32 ,判定一次拉伸不能成功,需要多步拉伸。

筒形件拉深模具设计2

筒形件拉深模具设计2

正文如下图1所示拉深件,材料为08钢,厚度0.8mm,制件高度70mm,制件精度IT14级。

该制件形状简单,尺寸小,属普通冲压件。

试制定该工件的冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。

图1一、冲压件工艺分析1、材料:该冲裁件的材料08钢是碳素工具钢,具有较好的可拉深性能。

2、零件结构:该制件为圆桶形拉深件,故对毛坯的计算要。

3、单边间隙、拉深凸凹模及拉深高度的确定应符合制件要求。

4、 凹凸模的设计应保证各工序间动作稳定。

5、 尺寸精度:零件图上所有未注公差的尺寸,属于自由尺寸,可按IT14级确定工件尺寸的公差。

查公差表可得工件基本尺寸公差为:74.0050+φ 74.0070+ 3.005+R 25.008.0+ 二、工艺方案及模具结构类型1、工艺方案分析该工件包括落料、拉深两个基本工序,可有以下三种工艺方案: 方案一:先落料,首次拉深一,再次拉深。

采用单工序模生产。

方案二:落料+拉深复合,后拉深二。

采用复合模+单工序模生产。

方案三:先落料,后二次复合拉深。

采用单工序模+复合模生产。

方案四:落料+拉深+再次拉深。

采用复合模生产。

方案一模具结构简单,但需三道工序三副模具,成本高而生产效率低,难以满足大批量生产要求。

方案二只需二副模具,工件的精度及生产效率都较高,工件精度也能满足要求,操作方便,成本较低。

方案三也只需要二副模具,制造难度大,成本也大。

方案四只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但模具成本造价高。

通过对上述四种方案的分析比较,该件的冲压生产采用方案二为佳。

2、 主要工艺参数的计算 (1)确定修边余量该件h=70mm ,h/d=70/50=1.4,查《冲压工艺与模具设计》表4-10 可得mm h 8.3=∆则可得拉深高度HH=h+h ∆=70+3.8=73.8mm (2)计算毛坯直径D由于板厚小于1mm ,故可直接用工件图所示尺寸计算,不必用中线尺寸计算。

圆筒零件一次拉深模具设计

圆筒零件一次拉深模具设计

目录一、冲压件的工艺分析 (2)1.材料2.工件结构3.尺寸精度二、确定工艺方案及模具结构形式 (2)1.方案的提出2.方案的比较2.方案的确定三、确定毛配形状尺寸和工序件主要参数的计算 (3)1.确定切边余量Δh2.计算毛坯直径D3.确定是否要压边圈4.确定拉深次数5.排样及材料利用率四、零件的工艺过程 (5)五、拉深凸凹尺寸的确定 (6)六、计算模具压力中心 (7)七、弹性元件的设计 (7)八、模具零件的选用 (7)1.模架的选择2.模柄的选择九、冲压设备的校核 (8)十、其他需要说明的问题 (9)1.挡料钉3.定位钉4.垫板的设计5.卸料板十一、模具装配 (10)1.装配一般按下面的步骤2.试冲和调整十二、参考文献 (11)工件名称:圆形深筒生产批量:中批量材料:08F厚度:2mm描述:圆筒类零件,底部中央有一个直径为10mm的圆孔。

一、零件的工艺分析1.1、材料08F,是优质碳素结构钢,塑性好、组织均匀、晶粒大小适当具有良好的拉深性能。

1.2、工件结构零件为圆筒类带孔拉深件,孔在底部并且不在拉深变形区,冲孔尺寸符合要求,零件的孔与孔和孔的边缘的距离同样符号要求。

1.3、尺寸精度零件图上尺寸属于IT14级。

一般冲压能满足精度要求。

结论:可以进行冲裁拉深加工。

二、确定工艺方案及模具结构形式从工件结构形状可知,工件成型所需的基本工序为冲孔、落料、拉深、切边四种。

其中冲孔、落料的方法可采用单工序模、复合模和级进模。

2.1、方案的提出方案一:采用复合模。

首先在复合模上同时完成冲孔落料复合工序,然后在拉深模上完成拉深。

方案二:采用单工序模。

首先在冲孔模上冲孔,然后落料,最后在拉深模上完成拉深。

方案三;采用连续模具。

首先在连续模具上完成冲孔和落料工序,然后在拉深模上完成拉深。

2.2、方案的比较方案一的优点是工序相对集中,需要用模具较少,压力机和操作人员的效力较高。

缺点是模具结构相对较复杂。

方案二的优点是模具结构简单,寿命长,制造周期短,投产快,缺点是工序分散,需用模具、压力机和操作人员较多,劳动量较大,不适合批量生产。

拉深工艺与拉深模设计(二)

拉深工艺与拉深模设计(二)

4.凸、凹模工作表面粗糙度 凹模: 型腔表面Ra0.8μm, 圆角表面Ra0.4μm 凸模: Ra1.6μm∼0.8μm 5.拉深凸模的出气孔尺寸
4.6.4 凸、凹模的结构形式
拉深凸模与凹模的结构形式取决于工件的形状、尺寸以 及拉深方法、拉深次数等工艺要求,不同的结构形式对拉 深的变形情况、变形程度的大小及产品的质量均有不同的 影响。 当毛坯的相对厚度较大,不易起皱,不需用压边圈压边 时,应采用锥形凹模。
3.压边圈的形式 (1)平面压边圈 适用于一般拉深模
(2)弧形压边圈 适用于 (t / D ×100) < 0.3 , 且小凸缘和较大圆角半径
(3)带限位装置的压边圈 适于拉深板料较薄或带较宽凸缘的零件
(4)局部压边的压边圈 ) 适于拉深带宽凸缘工件
(5)带拉深筋的压边圈 适用于凸缘特别小或半球形工件
2.中间拉深的凸、凹模尺寸
Dd i = Di 0
+δ d 0 −δ p
D p i = (Ddi − Z )
式中:
Di—各工序的基本尺寸。 —
3.凸、凹模制造公差 非圆形凸、凹模的制造公差可根据工件的公 差来选定。工公差为 ITl3 级以上时, 和 可按IT6 ~8 级取,工件公差在 ITl4 级以下时, 按 ITl0 级 取;圆形凸凹模制造公差查表获得。
4.5 其它旋转体件的拉深
学习目标: 了解其它常见旋转体拉深件的结构、拉深过 程;理解它们的拉深工序安排。 教学要求: 能够计算阶梯圆筒件的拉深次数,确定各种 形状的阶梯圆筒件的拉深工序安排;理解难拉深 的球面、锥形等曲面旋转体拉深件的工艺方案。
4.5.1 阶梯圆筒件的拉深 1. 拉深次数 一次拉深的条件:
4.8 盒形件的拉深

阶梯圆桶落料拉深复合模具设计

阶梯圆桶落料拉深复合模具设计

摘要此次毕业设计是由蔡昀老师亲自指导,设计一副简单的复合模具,经过数个月的设计,基本完成此次设计的任务。

此副模具主要是阶梯圆筒形零件的设计,采用落料﹑拉深两道工序相结合的复合模,本人经查阅相关书籍﹑资料以队此副模具所用到的相关公式﹑数据做出了一个准确的依据。

此副模具的设计一共分为四章,和其他模具的设计一样,首先第一章是对零件进行了工艺分析,接着对工艺方案进行了比较,最终确定采用先落料拉深后切边的工艺方案,然后画工序图﹑经过计算选择冲压设备。

第二章是选择冲模类型以及结构形式,接着是一些模具设计的相关数据计算。

第三章是对模具凸模﹑凹模加工工艺过程以及加工工艺方案的确定,最后填写凸凹模加工工艺规程卡以及编制凸模数控加工程序。

第四章是设计总结﹑谢辞以及参考文献。

本人在设计过程中得到了其他同学的大力支持,并有蔡昀老师的息心指导,在此表示诚恳的感谢。

由于本人水平有限,此次设计难免还存在一些缺点和错误,恳请阅读者批评指正。

目录第1章冲压工艺设计 (1)1.1 零件的工艺分析 (1)1.2 制定冲压工艺方案 (3)1.3 画工序图 (4)1.4 初选冲压设备 (6)1.5编制冲压工艺卡 (8)第2章冲压模具设计 (10)2.1 冲模类型及结构形式 (10)2.2 模具设计计算 (10)第3章模具主要零件加工工艺设计 (14)3.1 制定凸凹模加工工艺过程 (14)3.2 填写凸凹模加工工艺规程卡 (16)3.3 编制凸模或凹模数控加工程序 (19)第4章设计总结 (21)致谢 (22)参考文献 (23)第1章 冲压工艺设计1.1 零件的工艺分析此零件形状为阶梯圆筒形件,需要采用落料,拉深,切边三道工序,通过计算确定拉深次数。

零件材料为10钢,根据参考文献[1]表1.4.1得:10钢的抗剪强度=210MPa 。

由此可见,其塑性较好,有较高的强度,适合于成形加工。

τ=260~440MPa 、抗拉强度σb =300~440MPa ﹑伸长率δ10=29%、屈服强度=210MPa 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正文如下图1所示拉深件,材料为08钢,厚度0.8mm,制件高度70mm,制件精度IT14级。

该制件形状简单,尺寸小,属普通冲压件。

试制定该工件的冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。

图1一、冲压件工艺分析1、材料:该冲裁件的材料08钢是碳素工具钢,具有较好的可拉深性能。

2、零件结构:该制件为圆桶形拉深件,故对毛坯的计算要。

3、单边间隙、拉深凸凹模及拉深高度的确定应符合制件要求。

4、 凹凸模的设计应保证各工序间动作稳定。

5、 尺寸精度:零件图上所有未注公差的尺寸,属于自由尺寸,可按IT14级确定工件尺寸的公差。

查公差表可得工件基本尺寸公差为:74.0050+φ 74.0070+ 3.005+R 25.008.0+ 二、工艺方案及模具结构类型1、工艺方案分析该工件包括落料、拉深两个基本工序,可有以下三种工艺方案: 方案一:先落料,首次拉深一,再次拉深。

采用单工序模生产。

方案二:落料+拉深复合,后拉深二。

采用复合模+单工序模生产。

方案三:先落料,后二次复合拉深。

采用单工序模+复合模生产。

方案四:落料+拉深+再次拉深。

采用复合模生产。

方案一模具结构简单,但需三道工序三副模具,成本高而生产效率低,难以满足大批量生产要求。

方案二只需二副模具,工件的精度及生产效率都较高,工件精度也能满足要求,操作方便,成本较低。

方案三也只需要二副模具,制造难度大,成本也大。

方案四只需一副模具,生产效率高,操作方便,工件精度也能满足要求,但模具成本造价高。

通过对上述四种方案的分析比较,该件的冲压生产采用方案二为佳。

2、 主要工艺参数的计算 (1)确定修边余量该件h=70mm ,h/d=70/50=1.4,查《冲压工艺与模具设计》表4-10 可得mm h 8.3=∆则可得拉深高度HH=h+h ∆=70+3.8=73.8mm (2)计算毛坯直径D由于板厚小于1mm ,故可直接用工件图所示尺寸计算,不必用中线尺寸计算。

D=2257.072.14R dR dH d --+=22557.055072.18.7350450⨯-⨯⨯-⨯⨯+ mm 130≈ (3)确定拉深次数按毛坯相对厚度t/D=0.8/1300062.0≈和工件相对高度H/d=73.8/50=1.36 查《冲压工艺与模具设计》表4-15可得n=2,初步确定需要两次拉成,同时需增加一次整形工序。

(4)计算各次拉深直径由于该工件需要两次拉深,查《冲压工艺与模具设计》表4-11可得,首次拉深系数m 1和二次拉深系数m 2:m 1=0.53 m 2=0.76 初步计算各次拉深直径为: d 1= m 1D=0.53⨯130≈69mm d 2=m 2D=0.76⨯130≈50mm (5)选取凸凹模的圆角半径考虑到实际采用的拉深系数均接近其极限值,故首次拉深凹模圆角半径r 1d 应取大些,根据《压工艺与模具设计》表4-7知:r 1d =10t=10⨯0.8=8 mm由《冲压工艺与模具设计》式(4-49)和式(4-50)即:r dn =(0.7—0.8) r 1-dn 和r pn =(0.7—0.8)r dn计算各次拉深凹模与凸模的圆角半径,分别为: r 1d =8 mm r 1p =6 mmr 2d =6 mm r 2p =5 mm (6)计算各次工序件的高度根据《冲压工艺与模具设计》式(4-39)计算各次拉深高度如下: H 1=1/4(D 11112/57.072.1d r r d ++)=1/4(69/657.0672.16969/13022⨯+⨯+-) =49mmH 2=1/4=(D 22222/57.072.1/d r r d ++)=1/4=(50/557.0572.15050/13022⨯+⨯+-) 74≈mm (7)画出工序件简图工序简图如下图2所示:图2三、确定排样图和裁板方案1、 制件的毛坯为简单的圆形件,而且尺寸比较小,考虑到操作方便,宜采用单排。

于t=0.8mm,查《冲压工艺与模具设计》附表7轧制薄钢板拟选用规格为:0.8⨯500⨯1000 的板料。

2、 排样设计图3查《冲压工艺与模具设计》表2-10,确定搭边值两工件间的横搭边a 1=1.2mm ;两工件间的纵搭边a=1.0mm ;步距S=d+a=50+1=51mm ; 条料宽度B=(D+2a 1+∆)0∆-=52.804.0-故一个步距内的材料利用率1η为: 1η=A/BS ⨯10000 =π2)2/(d /BS ⨯10000=72.900由于直板材料选取0.8⨯500⨯1000 故每块板料可裁剪9⨯19=171个工件 故每块板料(0.8⨯500⨯1000)的利用率为: η=nA/LB ⨯10000 =171π(d/2)2⨯10000 =6700四、计算工序冲压力、压力中心以及初选压力机1、落料力的计算F 落料=1.3Lt b σ式中L —冲裁轮廓的总长度;t —板料厚度;b σ--板料的抗拉强度 查《冲压工艺与模具设计》附表1可知:b σ=400MPa 。

故:F 落料=1.3⨯2⨯π⨯25⨯25⨯0.8⨯400=65.31KN2、 卸料力1Q F 和顶件力3Q F 的计算 1Q F =K 1F 落料 3Q F =K 3 F 落料式中K 1为卸料力系数,K 3为顶件力系数查《冲压工艺与模具设计》表1-7知:K 1=0.050;K 3 =0.08 故: 1Q F =K 1F 落料 =0.05⨯65.31 =3.27KN 3Q F =K 3 F 落料 =0.08⨯65.31 =5.22KN 3、压边力的计算采用压边的目的是为力防止变形区板料在拉深过程中的起皱,拉深时压扁力必须适当,压边力过大会引起拉伸力的增加,甚至造成制件拉裂,压边力过小则会造成制件直壁或凸缘部分起皱,所以是否采用压边装置主要取决于毛坯或拉深系数m 和相对厚度t/D ⨯10000 由于t/D ⨯10000=0.8/130⨯10000 =0.6200首次拉深系数1m =0.53故:查《冲压工艺与模具设计》表4-3知,两次拉深均需要采用压边装置。

压边力:Q F =q AF式中A 为初始有效面积;q F 为单位压边力(MPa ) 查《冲压工艺与模具设计》表4-4可知:q F =2MPa1Q F =q AF=()[]qF R d D ∙+-211224凹π=()[]28269130422⨯⨯+-π=15.2 KN 2Q F =q F A 2=()[]qF R d d ∙+-2222124凹π=()[]2625069422⨯⨯+-π=1.44 KN4、拉深力的计算首次拉深时拉深力1F =11K t d b σπ 二次拉深时拉深力2F =22K t d b σπ式中:21,d d 为首次拉深与二次拉深时工件的直径; b σ为材料抗拉强度(MPa ); 21,K K 为修正系数。

查《冲压工艺与模具设计》表4-1可知:1K =1;2K =0.85 首次拉深力:1F =11K t d b σπ=14008.069⨯⨯⨯⨯π =69.33 KN二次拉深力:2F =22K t d b σπ=85.04008.050⨯⨯⨯⨯π =42.7 KN 故总拉深力:拉深F =1F +2F =33.69+7.42 =112.03KN由于制件属于深拉深,故确定压力机的公称压力应满足: 拉深F F )6.0~5.0(≤∑ 故: ∑F =67.2KN 综上所述:总冲压力F =落料F + 1Q F +3Q F +1Q F +2Q F +1F +2F =202.47KN 5、 压力中心的计算图4由于是圆形工件,如图4所示,所以工件的压力中心应为圆心即o(25,25)6、压力机的选择由于该制件数亿小型制件,且精度要求不高,因此选用开始可倾压力机,它具有工作台面三面敞开,操作方便,成本低廉的有点。

根据总压力选择压力机,前面已经算得压力机的公称压力为202.47 KN ,查《冲压工艺与模具模具设计》表7.3提供的压力机公称压力中可选取压力机的型号为:J23-16F五、工件零件刃口尺寸的计算刃口尺寸按凹模实际尺寸配作,用配作法,因此凸模基本尺寸与凹模尺寸相同,保证单边间隙2/min Z (mm)图5查《冲压工艺与模具设计》表1-3可知:042.0max =Z 03.0min =Z 拉深模的单边间隙为:Z=2/min Z =0.015 mm4/0max )(∆+∆-=x D D d 式中x 为补偿刃口磨损量系数。

查《冲压工艺与模具设计》表2-21可知:x=0.5 取落料的尺寸公差IT14,则公差为∆=0.4mm 所以落料凹模的尺寸为:4/0max )(∆+∆-=x D D d =(130-0.5⨯0.4)4/4.00+=129.81.00+mm六、工件零件结构尺寸和公差的确定1、整体落料凹模板的厚度H 的确定: H=3211.0落料F k k式中1k 为凹模材料的修正系数,碳素工具钢取1k =1.3;2k 为凹模厚度按刃口长度修正系数,查《冲压工艺与模具设计》表2-18可知:2k =1H=3211.0落料F k k=1.3⨯1⨯331031.651.0⨯⨯ =52.35mm 2、凹模板长度L 的计算 L=D+2C查《冲压工艺与模具设计》表2-17可知:C 取28—36mm ,根据要求C 值可取30mm 故: L=D+2C =50+2⨯30 =110 mm故确定凹模板外形尺寸为:110⨯110⨯52(mm )。

凸模板尺寸按配作法计算。

3、 其他零件结构尺寸(1)第一次拉深①拉深凸模第一次拉深模,由于其毛坯尺寸与公差没有必要予以严格的限制,这时凸模和凹模尺寸只要取等于毛坯的过渡尺寸即可,以凸模为基准.取公差等级为IT10=0.12mm.d 凸=d -0δ凸=690-0.12mmd 凹=( d 凸+ 2Z) 0+δ凹=(69+2×0.015)0+0.12=69.03 0+0.12mm拉深凸模采用台阶式,也是采用车床加工,与凸模固定板的配合按H7/m6的配合,拉深凸模结构如下图6所示。

图6②凸凹模结合工件外形并考虑加工,将凸凹模设计成带肩台阶式圆凸凹模,一方面加工简单,另一方面又便于装配与更换,采用车床加工,与凸凹模固定板的配合按H7/m6,凸凹模长度L=99mm,具体结构可如下图7所示。

图7③落料凹模凹模采用整体凹模,各冲裁的凹模孔均采用线切割机床加工,安排凹模在模架上的位置时,要依据计算压力中心的数据,将压力中心与模柄中心重合。

凹模的轮廓尺寸应要保证凹模有足够的强度与刚度,凹模板的厚度还应考虑修磨量,根据冲裁件的厚度和冲裁件的最大外形尺寸在标准中选取凹模板的各尺寸为:长230mm,宽200mm,因考虑到整套模具的整体布置要求,选其厚度为52mm,结构如下图8所示。

相关文档
最新文档