一次函数与几何图形综合专题讲座
第3讲.一次函数与全等三角形综合(答案版)

1初二春季·第3讲·尖子班·教师版函数6级 一次函数的应用函数7级 一次函数与全等三角形综合函数8级反比例函数的基本性质春季班 第十一讲春季班 第二讲梦游记漫画释义满分晋级阶梯3一次函数与 全等三角形综合2初二春季·第3讲·尖子班·教师版题型切片(两个)对应题目题型目标一次函数与全等三角形的综合 例1,例2,例3,例4,练习1,练习2,练习3; 一次函数与面积综合例5,例6,练习4,练习5.本讲内容主要分为两个题型,题型一主要是一次函数与全等三角形几个经典模型的综合,在这类题目上,解题方法无外乎以下几种:⑴数形结合,利用三角形的三边关系求解;⑵由函数到图形得全等,边角关系求解;⑶由图形,或函数关系得到所探究题目的隐藏条件,再充分运用所学几何知识得解(一般这种探究题是比较活的,对运用考察较强);⑷以结论证条件,以条件猜结论.题型二的面积问题重点应落在铅垂线法求解三角形面积,这种方法与平面直角坐标系有天然的联系,在一次函数部分考查方式较灵活,也较多,需熟练掌握.本讲的最后一道例题是2013年西城的期末考试题,考查了一次函数的图象和性质,与等腰三角形作法的结合,根据直线位置分类讨论求解图形面积,综合性较强,难度中上,不失为全面题型切片编写思路知识互联网3初二春季·第3讲·尖子班·教师版考查和总结一次函数部分的一道好题.几种全等模型的回顾:AB CE FAB CDEF AB CEABCDEFEDCBA图1 图2 图3 图4 图5图1、图2为“两垂直”全等模型,图1中将ABC △绕点C 逆时针旋转90°得到DEC △,此时可得结论:ACD BCE △△,均为等腰直角三角形;DE AB ⊥.图2中ABC DBE △≌△图3、图4为“三垂直”全等模型,其中ABC △为等腰直角三角形,AE EC BF CF ⊥⊥,,E C F ,,三点共线,则有ACE CBF △≌△,图3中EF AE BF =+,图4中EF AE BF =-图5中,AB AC =,延长AB 到F 使得BF EC =,则有结论ED DF =,若ED DF =,则有BF EC =【引例】 平面直角坐标系内有两点()40A ,和()04B ,,点P 在直线AB 上运动.⑴ 若P 点横坐标为2P x =-,求以直线OP 为图象的函数解析式(直接写出结论);⑵ 若点P 在第四象限,作BM ⊥直线OP 于M ,AN ⊥直线OP 于N ,求证:MN BM AN =+; ⑶ 若点P 在第一象限,仍作直线OP 的垂线段BM 、AN ,试探究线段MN 、BM 、AN 所满足的数量关系式,直接写出结论,并画图说明.(实验中学单元测试)例题精讲思路导航题型一:一次函数与全等三角形综合4初二春季·第3讲·尖子班·教师版【解析】 ⑴ 设直线AB 函数解析式为y kx b =+04144k b k b b =+=-⎧⎧⇒⎨⎨==⎩⎩4y x =-+ 当x 为2-时,6y =,∴P 的坐标为()26-, ∵直线OP 过原点,∴解析式为3y x =-⑵ 如图1,由题意可证Rt Rt BMO ONA △≌△ ∴BM ON =,AN MO =,∴MN BM AN =+⑶ 如图2,证明Rt Rt BMO ONA △≌△ 可得结论MN BM AN =-M NPy x OBA图2xy OA BPM N N MP BAO y x图1 图2【例1】 如图,已知在平面直角坐标系xOy 中,点()04A ,,点B C ,在x 轴上,作BE AC ⊥,垂足为E (点E 在线段AC 上,且点E 与点A 不重合),直线BE 与y 轴交于点D ,若BD AC =. ⑴ 求点B 的坐标;⑵ 设OC 长为m ,BOD △的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.【解析】 ⑴ 如图,由BOD AOC △≌△可知4BO AO ==∴B 点坐标为()40-,⑵ 由⑴可知DO OC m ==,∴142S m =⨯⋅,2S m =,m 的取值范围是04m <<典题精练(0,4)Oy xE DC BA5初二春季·第3讲·尖子班·教师版【例2】 已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为()40A ,,()04B -,,P 为y 轴上B 点下方一点,()0PB m m =>,以AP 为边作等腰直角三角形APM ,其中PM PA =,点M 落在第四象限.⑴ 求直线AB 的解析式;⑵ 用m 的代数式表示点M 的坐标;⑶ 若直线MB 与x 轴交于点Q ,判断点Q 的坐标是否随m 的变化而变化,写出你的结论并说明理由.(西城期末) 【解析】 ⑴ 4y x =-⑵ 作MC y ⊥轴,交y 轴于C ,9090AP PM MPC APO OAP APO PMC PMC MPC APO =⎫⎪∠=︒-∠=∠⇒⎬⎪∠=︒-∠=∠⎭△≌△ 由此可知()48M m m +--, ⑶ 由⑵中的全等可知4MC m =+,4BC m =+,∴MC BC = 45CBM ∠=︒,可得QO OB =()4,0Q - ∴Q 点坐标不随m 的变化而变化.【点评】 此题最关键一步是如何利用线段长表示点坐标,学生极易在此犯错!要记住线段长为正,而点坐标要根据其所在象限判断正负.【例3】 如图1,直线1:33l y x =+与x 轴交于B 点,与直线2l 交于y 轴上一点A ,且2l 与x 轴的交点为()10C ,.⑴ 求证:ABC ACB ∠=∠⑵ 如图2,过x 轴上一点()30D -,,作DE AC ⊥于E ,DE 交y 轴于F 点,交AB 于G 点,求G 点的坐标; ⑶ 如图3,将ABC △沿x 轴向左平移,AC 边与y 轴交于点P (P 不同于A 和C 两点),过P 点作一直线与AB 的延长线交于Q 点,与x 轴交于点M ,且CP =BQ .在ABC △平移的过程中,线段OM 的长度是否发生变化?若不变,请求出它的长度.若变化,确定其变化范围.6初二春季·第3讲·尖子班·教师版图3图2图1【解析】 ⑴ 由题意得()10B -,,BO OC =,又∵AO BC ⊥ ∴AB AC ABC ACB =∠=∠,⑵ 由题意得ABO DFO △≌△,∴1OF BO ==,∴()01F ,∴DE 解析式为113y x =+由11333y x y x ⎧=+⎪⎨⎪=+⎩ 解得3434x y ⎧=-⎪⎪⎨⎪=⎪⎩ ∴3344G ⎛⎫- ⎪⎝⎭, ⑶ 不变,1OM =如图过P 作PN AB ∥交BC 于N ,可知PN PC BQ ==, 从而PNM QBM △≌△, ∴BM NM =,又NO CO =∴112OM BC ==【例4】 如图,在平面直角坐标系中,A (a ,0),B (0,b ),且a 、b 满足()220a -.⑴求直线AB 的解析式;⑵若点M 为直线y =mx 上一点,且△ABM 是以AB 为底的等腰直角三角形,求m 值; ⑶过A 点的直线y =kx -2k 交y 轴于负半轴于P ,N 点的横坐标为1-,过N 点的直线22k k y x =-交AP 于点M ,试证明PM PNAM -的值为定值. 【解析】 ⑴y =24x -+7初二春季·第3讲·尖子班·教师版⑵易证阴影部分三角形全等,得到M (3,3) 故而m =1⑶过N 点做直线垂直于y 轴,交PM 于G 点,另直线NM 与坐标轴交点分别为O 、I (如图所示),连接IG 并做MF ⊥x 轴于F ,易知N 、G 两点横坐标分别为1-和1,将其分别代入MN 、MP 的解析式中,求得两点坐标为N (1-,k -)G (1,k -),易证△NHP ≌△GHP , ∴NP =GP 易求I (1,0), ∴IG ⊥x 轴易证△IGA ≌△FMA , ∴MA =AG ∴2PM PN MGAM AM-==解决平面直角坐标系中的图形面积问题通常可采用的方法有: 1. 公式法:三角形、特殊四边形等面积公式;2. 割补法:通过“割补”转化为易求图形面积的和或差;3. 容斥法;4. 等积变换法:①平行线法:构造同底等高;②直角三角形:=ab ch ; 思路导航题型二:一次函数与面积综合h 2h 1P CB A OxyyMO BA I H GA MN PyxO8初二春季·第3讲·尖子班·教师版5. 铅垂线法:如右图所示()1212ABC S AP h h =⋅+△,AP 称为铅垂高, 12h h +称为水平宽. 必要时需分类讨论.【例5】 已知:平面直角坐标系xOy 中,直线()0y kx b k =+≠与直线()0y mx m =≠交于点()24A -,.⑴求直线()0y mx m =≠的解析式;⑵若直线()0y kx b k =+≠与另一条直线2y x =交于点B ,且点B 的横坐标为4-,求ABO △的面积.(西城期末试题)【解析】 ⑴∵点(24)A -,在直线(0)y mx m ==/上,∴42m =-,2m =-∴2y x =-⑵ 解法一:作AM y ⊥轴于M ,BN y ⊥轴于N (如上图) ∵点B 在直线y =2x 上,且点B 的横坐标为4-. ∴点B 的坐标为B (4-,8-) ∵1()2ABNM S AM BN MN =+⋅梯形1(24)(48)362=⨯+⨯+= 1124422AOM S AM MO =⋅=⨯⨯=△ 11481622BON S BN NO =⋅=⨯⨯=△ ∴ABO AOM BON ABNM S S S S =--△△△梯形3641616=--=解法二:设直线(0)y kx b k =+=/与x 轴交于点C (如下图). ∵点B 在直线y =2x 上,且点B 的横坐标为4-.∴点B 的坐标为(4-,8-)∵直线()0y kx b k =+≠经过点A (2-,4)和点B (4-,8-),典题精练y =kx+by =2x y =mxyOABMN C ABOxyy =mxy =2xy =kx+b9初二春季·第3讲·尖子班·教师版∴4284k b k b =-+⎧⎨-=-+⎩,616k b =⎧⎨=⎩∴616y x =+令y =0.可得83x =-∴点C 的坐标为803C ⎛⎫- ⎪⎝⎭,∴181848162323ABO AOC BOC S S S =+=⨯⨯+⨯⨯=△△△.【教师备选】如图所示,直线OP 经过点P (4,43),过x 轴上的点1、3、5、7、9、11······分别作x 轴的垂线,与直线OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为1S 、2S 、3S ······n S ,则n S 关于n 的函数关系式是________.【解析】()843n S n =-⨯.【例6】 已知:一次函数132y x =+的图象与正比例函数y =kx 的图象相交于点A (a ,1). ⑴求a 的值及正比例函数y =kx 的解析式; ⑵点P 在坐标轴上(不与点O 重合),若P A =OA ,直接写出P 点的坐标;⑶直线x =m 与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积记为S ,求S 关于m 的函数关系式(写出自变量的取值范围).(2013西城期末)【解析】 ⑴∵一次函数132y x =+的图象与正比例函数y =kx 的图象相交于点A (a ,1), ∴1312a += ∴a =﹣4,即A (﹣4,1). ∴﹣4k =1 解得14k =-.∴正比例函数的解析式为14y x =-;⑵如图1,P 1(﹣8,0)或P 2(0,2);真题赏析1191357Pxy10初二春季·第3讲·尖子班·教师版⑶依题意,得点B 的坐标为(m ,132m +),点C 的坐标为(m ,14m -).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 以下分两种情况: ①当m <﹣4时, 11342BC m m ⎛⎫=--+ ⎪⎝⎭=334m --.AH =4m --.则S △ABC =12BC ∙AH ()133424m m ⎛⎫=---- ⎪⎝⎭∴S=23368m m ++;②当m >4-时,11333244BC m m m ⎛⎫=++=+ ⎪⎝⎭.AH =m +4. 则S △ABC =12BC∙AH =12(334m +)(4+m ) ∴S=23368m m ++;综上所述,()23S 3648m m m =++≠-.【教师备选】已知四条直线3y mx =-,1y =-,y =3,x =1所围成的四边形的面积为12,求m的值.11初二春季·第3讲·尖子班·教师版【解析】 ∵3y mx =-,1y =-,x =1交于ABCDEF∴A (6m ,3),B (2m ,-1),C (1,-1),D (1,3),E (6m ,3),F (2m,-1) ① ()2ABCD CD BC AD S +=2621112mm ⎛⎫=-+- ⎪⎝⎭= ∴m =-2② ()2CFED CD ED CF S +=6221112mm ⎛⎫=-+- ⎪⎝⎭= ∴m =1综上说述,2m =-或m=1.-3y =3x12初二春季·第3讲·尖子班·教师版训练1. 如图,AOB △为正三角形,点B 的坐标为()20,,过点()20C -,作直线l 交AO 于D ,交AB 于E ,且ADE △与DCO △的面积相等,求直线l 的解析式.【解析】 由ADE △与DCO △的面积相等可知,AOB BCE S S =△△.∵(20)C -,,设直线l 的解析式为y kx b =+,∴20k b -+=, ∴2b k =∴直线l 的解析式为:2y kx k =+又AB 的解析式为:323y x =-+,故点E 的坐标满足下式: 2433(2)3y kx kk y y x k =+⎧⎪⇒=⎨=--+⎪⎩, 故143134232273BCE AOB k S S k k =⨯⨯==⨯⨯⇒=+△△故直线l 的解析式为:3(2)7y x =+. 训练2. 在平面直角坐标系xOy 中,直线y x m =-+经过点()2,0A ,交y 轴于点B .点D 为x 轴上一点,且1ADB S =△.⑴ 求m 的值;⑵ 求线段OD 的长;⑶ 当点E 在直线AB 上(点E 与点B 不重合),且BDO EDA ∠=∠,求点E 的坐标.(备用图)(海淀期末试题) 【解析】 ⑴ ∵直线y x m =-+经过点()2,0A , 思维拓展训练(选讲)y xl ED C O BA13初二春季·第3讲·尖子班·教师版∴02m =-+. ∴2m =.⑵ ∵直线2y x =-+交y 轴于点B , ∴点B 的坐标为()0,2. ∴2OB =. ∵112ADB S AD OB =⋅=△, ∴1AD =.∵点A 的坐标为()2,0, ∴点D 的坐标为()1,0或()3,0. ∴1OD =或3OD =.⑶ ①当点D 的坐标为()1,0时,如图所示.取点()'0,2B -,连接'B D 并延长,交直线BA 于点E .∵'OB OB =,'AO BB ⊥于O , ∴OD 为'BB 的垂直平分线. ∴'DB DB =. ∴12∠=∠. 又∵23∠=∠, ∴13∠=∠.设直线'B D 的解析式为()20y kx k =-≠. ∵直线'B D 经过点()1,0D , ∴02k =-.14初二春季·第3讲·尖子班·教师版∴2k =.∴直线'B D 的解析式为22y x =-. 解方程组2,22,y x y x =-+⎧⎨=-⎩得 4,32.3x y ⎧=⎪⎪⎨⎪=⎪⎩∴点E 的坐标为42,33⎛⎫⎪⎝⎭.②当点D 的坐标为()3,0时,如图所示. 取点()'0,2B -,连接'B D ,交直线BA 于点E . 同①的方法,可得12∠=∠,直线'B D 的解析式 为223y x =-. 解方程组22,32,y x y x ⎧=-⎪⎨⎪=-+⎩得12,52.5x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点E 的坐标为122,55⎛⎫- ⎪⎝⎭.综上所述,点E 的坐标为42,33⎛⎫ ⎪⎝⎭或122,55⎛⎫- ⎪⎝⎭.训练3. 已知:直线1l :1y kx k =+-与直线2l :(1)y k x k =++(k 是正整数)及x 轴围成的三角形的面积为k S .⑴ 求证:无论k 取何值,直线1l 与2l 的交点均为定点; ⑵ 求1232008S S S S ++++的值.(西城期末试题)【解析】 ⑴ 联立12l l ,的解析式,求得交点坐标为()11--,,∴交点为定点.⑵ 设直线12l l ,分别与x 轴交于A ,B 两点,则1001k k A B k k --⎛⎫⎛⎫⎪ ⎪+⎝⎭⎝⎭,,,,∴()1111k k AB k k k k --=-=++ ∴ ()11121k S k k =+××15初二春季·第3讲·尖子班·教师版123200*********21223200820092009S S S S ⎛⎫++++=++⋅⋅⋅+=⎪⎝⎭×××训练4. 如图,在直角坐标系中,点A 的坐标为()10,,点B 在y 轴正半轴上,且AOB △是等腰直角三角形,点C 与点A 关于y 轴对称,过点C 的一条直线绕点C 旋转,交y 轴于点D ,交直线AB 于点()P x y ,,且点P 在第二象限内. ⑴ 求B 点坐标及直线AB 的解析式;⑵ 设BPD △的面积为S ,试用x 表示BPD △的面积S .(朝阳期末试题)【解析】 ⑴ ∵AOB △是等腰直角三角形且()10A ,,∴()01B ,∴过点()10A ,、()01B ,的直线的解析式为1y x =-+ ⑵ ∵点C 与点A 关于y 轴对称,∴()10C -, 又点P 在直线AB 上,则()1P x x -+, 设过P 、C 两点的直线的解析式为y kx b =+ ∵()10C -,在直线y kx b =+上, ∴0k b -+=. ∴k b =,y bx b =+ ∵点()1P x x -+,在直线y bx b =+上, ∴1bx b x +=-+,解得b =11x x -++. ∴点D 的坐标为101x x -+⎛⎫ ⎪+⎝⎭,∵点P 在第二象限内,∴0x <①当10x -<<时,如图.12P S BD x =⋅⋅=1(1)()2b x -⋅-11(1)()21x x x -+=-⋅-+12()21xx x -=⋅⋅-+21x x =+ ②当1x <-时,如图.12P S BD x =⋅⋅=1(1)()2b x -⋅-11(1)()21x x x -+=-⋅-+21x x =-+ 综上所述, 22(10),1(1).1x x x S x x x ⎧-<<⎪⎪+=⎨⎪-<-⎪+⎩16初二春季·第3讲·尖子班·教师版题型一 一次函数与全等三角形综合 巩固练习【练习1】如图,已知在平面直角坐标系xOy 中,点()04A ,,点B C ,在x 轴上,C 点坐标为()0m ,.作BE AC ⊥,垂足为E (点 E 在线段AC 上,且点E 与点A 不重合),直线BE 与y 轴 交于点D ,BD AC =.第一象限内有一点P ,坐标为()4m m +,,连接PA ,DC ,求证:PAC BDC ∠=∠.【解析】 如图,连接PC ,过A 作AH PC ⊥于H ,可知PH AH m ==45PAH APH ∠=∠=°由BOD AOC △≌△可知BDO ACO ∠=∠又∵AH OC ∥,∴ACO HAC ∠=∠,∴BDO HAC ∠=∠又由OD OC =可得45ODC ∠=°,∴ODC PAH ∠=∠ ∴BDC PAC ∠=∠【练习2】如图,在平面直角坐标系xOy 中,点A 、B 的坐标分别为()10-,、()40,,点D 在y轴上 AD BC ∥,点E 在CD 上,且满足AE 、BE 分别平分DAB ∠、CBA ∠. ⑴ 请你判断此时线段CE 与DE 是否相等,并证明你的结论;⑵ 已知60DAB ∠=°,直接写出线段BC 的长.-15142O ED CBA y x D'EDCB A542-11【解析】 ⑴ 相等,证明如下如上右图,在AB 上取点D ',使AD AD '=,连接D E ', 可证ADE AD E '△≌△,∴DE D E '=复习巩固HP (m,m+4)AB C DExy O (0,4)P (m,m+4)(0,4)AO y xE DC B17初二春季·第3讲·尖子班·教师版由AD BC ∥,AE 、BE 平分DAB ∠与ABC ∠ 可得90AEB ∠=° 从而可知D EB CEB '∠=∠由此,CEB D EB '△≌△,∴EC ED '= ∴DE EC =⑵ ∵60DAB ∠=°,∴30ADO ∠=°,∴22AD AO ==由⑵可知,2AD AD '==∴523BC BD '==-=.【练习3】如图,已知直线OA 的解析式为y=x ,直线AC 垂直x 轴于点C ,点C 的坐标为()20,, 直线OA 关于直线AC 的对称直线为AB 交x 轴于点B .⑴ 写出点A 及点B 的坐标;⑵ 如图,直线AD 交x 轴于点D ,且ADB △的面积为1,求点D 的坐标;⑶ 若点D 为⑵中所求,作OE AD ⊥于点E ,交AC 于点H ,作BF AD ⊥于点F ,求证:OE AF =,并直接写出点H 的坐标.【解析】 ⑴ ()22A ,,()40B ,⑵ ∵AC BD ⊥于点C ,2AC =,1ADBS =△,∴112122ADB S BD AC BD =⋅=⨯=△. ∴1BD =∴413OD OB BD =-=-= ∴()30D ,⑶ 由直线OA 的解析式为y x =,可知OC AC =.又90ACO ∠=°, ∴45OAC AOC ∠=∠=°.∵直线OA 关于直线AC 的对称直线为AB , ∴45BAC OAC ∠=∠=°,OA BA =. ∴90OAB ∠=°. ∴90BAF OAE ∠=-∠°. 在AOE △中,90OEA ∠=°, ∴90AOE OAE ∠=-∠°. ∴BAF AOE ∠=∠在AOE △与BAF △中, 90AOE BAF OEA AFB OA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩° ∴AOE BAF △≌△ ∴OE AF =又由OCH ACD △≌△可求得()21H ,18初二春季·第3讲·尖子班·教师版题型二 一次函数与面积的综合 巩固练习【练习4】⑴如图,点A 、B 、C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-、1、2,分别过这些点作x 轴与y 轴的垂线,则图 中阴影部分的面积和是( ).A .1B .3C .3(1)m -D .3(2)2m -⑵ 如图1,在直角梯形ABCD 中,动点P 从点B 出发,沿BC , CD 运动至点D 停止.设点P 运动的路程为x ,ABP △的面积 为y ,如果y 关于x 的函数图象如图2所示,则BCD △的面 积是( ). A .3 B .4C .5D .6【解析】 ⑴ B ⑵ A , 由图2可知23BC CD ==,.【练习5】直线23y x =+与x 轴交于点A ,与y 轴交于点B .若在x 轴上有一点Q ,并且满足:8:3BAQ AOB S S =△△,求Q 点坐标. 【解析】 1393224AOB S =⨯⨯=△,∴98643BAQ S =⨯=△∵3BO =,∴4AQ =,又∵32A x =-∴35422Q x =-+=或311422Q x =--=-∴Q 坐标为502⎛⎫ ⎪⎝⎭,或1102⎛⎫- ⎪⎝⎭,图1AB D 图2x第十六种品格:感恩包拯辞官侍母包公即包拯(公元999-1062年),字希仁,庐州合肥(今安徽合肥市)人,父亲包仪,曾任朝散大夫,死后追赠刑部侍郎。
第三讲一次函数归纳探索与几何综合(教案)

3.一次函数的性质:探讨一次函数的增减性、对称性等性质;
4.一次函数在实际问题中的应用:结合实际情境,解决线性方程组问题;
5.几何综合:通过一次函数与坐标系中点、线的关系,培养学生的空间想象能力。
本讲内容旨在让学生通过归纳探索,掌握一次函数的基本概念与性质,并能将其应用于解决实际问题,提高几何综合能力。
第三讲一次函数归纳探索与几何综合(教案)
一、教学内容
第三讲一次函数归纳探索与几何综合(教案)
本讲主要依据人教版八年级数学上册第十二章“一次函数”相关内容展开,具体包括:
1.一次函数的定义:y=kx+b(k≠0)的形式,理解k、b的几何意义;
2.一次函数的图像:掌握一次函数图像的直线特征,了解其与k、b的关系;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一次函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一次函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b(k≠0)的函数,其中k、b分别代表斜率和截距。它在描述物体运动、成本计算等方面具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过一次函数解决物体运动中的问题,以及一次函数如何帮助我们分析实际问题。
新八年级数学PPT 一次函数与几何综合课件

一、面积问题
【例1】如图,直线l1的函数解析式为 y=-3x+3,且l1与x轴交于点D , 直线l2经过点A,B,直线l1,l2交于点C.
(1)求点D的坐标;
(2)求直线l2的函数解析式; (3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相
三、最小值问题
1 【例 3】如图,在平面直角坐标系中,A(0,1),B(3,2),P 为 x 轴
(2,0) . 上一动点,则 PA+PB 最小时点 P 的坐标为________
分析:先作出点 A 关于 x 轴对称的点 A′,再连接 A′B 交 x 轴于 点 P,则点 P 即为所求.由题中条件易求出直线 A′B 的解析式,再求出 直线 A′B 与 x 轴的交点坐标即可.
一、面积问题
【对应训练】 1.如图,直线 y=2x+6 与 x 轴交于点 A,与 y 轴交于点 B,直线 y 1 =-2x+1 与 x 轴交于点 C,与 y 轴交于点 D,两直线交于点 E,求 S△BDE 和 S 四边形 AODE.
解:易求 A(-3,0),B(0,6),C(2,0),D(0,1),∴BD=5, y=2x+6, x=-2, 解 得 1 y=2, y=-2x+1, ∴E(-2,2),∴S△BDE=5,S 四边形 AODE=S△AOB-S△BDE=9-5=4
等,请直接写出点P的坐标.
一、面积问题
分析:(1)令 y=-3x+3=0,求出 x 可得点 D 的坐标;(2)设直线 l2 的解析式为 y=kx+b,把 A,B 的坐标代入求出 k,b 可得;(3)先求出点 C 的坐标,再求 S△ADC;(4)在 l2 上且到 x 轴的距离等于点 C 纵坐标的相反 数的点即为点 P. 解:(1)由 y=-3x+3,令 y=0,得-3x+3=0,∴x=1,∴D(1,0) y=-3x+3, x=2, 3 (2)y=2x-6 (3)由 3 解得 ∴C(2,-3),∵AD=3, y=-3, y=2x-6, 1 9 ∴S△ADC=2×3×|-3|=2 (4)P(6,3)
例讲初中数学一次函数与几何综合问题

(下转第 57 页)
学习指导
2023 年 12 月下半月
这些错误都是解题 教 学 的 宝 贵 资 源 .
教师应指导学困
题能力 .
生从思想 上 重 视 错 题,并 明 确 错 题 是 宝 贵 的 知 识 财
富;在解题教 学 中,聚 焦 错 题,引 领 学 生 分 析、反 思 错
误产生的原因,并找到正确的解题方法 .
°,点 P 是
∠AOB 内 的 定 点 且 OP = 3,若 M ,N 分 别 是 射 线
OA ,
OB 上 异 于 点 O 的 动 点,求 △PMN 周 长 的 最
小值 .
(
1)平行四边形的 存 在 性 口 诀:平 行 四 边 存 在 性,
对边平行且相等,等量关系里面有 .
常通过平行四 边 形
性质得到对边的位置关系与数量关系 .
1)
借助表达式设出点的坐标,将 点 的 坐 标 转 化 为 横 平 竖
点O,
B 重合),作 CD 平 行 于y 轴 交 直 线l2 于 点 D ,
究几何特征,考 虑 线 段 间 关 系,通 过 设 线 段 长 进 而 表
解:(
1)在 y=-x+24 中,令 x=0,则 y=24,所
以 A(
0,
24).
以在解决一次函数与几何 综 合 问 题 时,可 以 从 如 下 解
故 S△ABO =
题技巧来破解:数形结 合 记 心 头,大 题 小 做 来 转 化,潜
在条件不能忘,化动为 静 多 画 图,分 类 讨 论 要 严 密,方
程函数是工具,计算 推 理 要 严 谨,创 新 品 质 得 提 高 .
做
不出,找相似,有 相 似,用 相 似;构 造 定 理 所 需 的 图 形
九年级数学专题讲座

九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。
当公式时,函数为正比例函数公式。
一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。
题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。
解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。
当公式时,公式,所以与公式轴交点坐标为公式。
2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。
顶点式为公式(公式为顶点坐标)。
二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。
题目解析例:求二次函数公式的顶点坐标和对称轴。
解:对于二次函数公式,其中公式,公式,公式。
对称轴公式。
把公式代入函数得公式,所以顶点坐标为公式。
3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。
图象是双曲线。
当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。
题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。
解:当公式时,公式。
当公式时,公式,解得公式。
二、几何专题1. 三角形知识点回顾三角形内角和为公式。
三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。
相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。
题目解析例:在公式中,公式,公式,求公式的度数。
解:因为三角形内角和为公式,所以公式。
例:已知公式和公式,公式,公式,判断这两个三角形是否相似。
解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。
2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。
第3讲 一次函数的解析式与图象变换(教师版)

板块一
此处需要添加知识点1
已知:正比例函数
1
1
1
一次函数
板块二
此处需要添加知识点1
把函数
1
1
阅读下面的材料:
∵直线分别与轴、轴交于点、,∴点∵,∴直线为.∴点的坐标为∵,∴.∴点在轴的正半轴上.
当点在点的左侧时,
当点在点的右侧时,
1
⑴2
3
如图,在平面直角坐标系中,
板块三
1
在直角坐标系中画函数
1
求在直角坐标平面中不等式1
如图,已知直线
1
已知一次函数图象经过点
1
一辆汽车在行驶过程中,路程1
已知一次函数
1
已知一次函数1
若将直线
1
如图,将直线
1
在同一坐标系中,对于函数①2
某一次函数的图象与直线
1
已知:一次函数2
已知点
1
在直角坐标系中画函数
的值对应取绝对值所得,
图象中位于轴下方部分翻折到轴上方所得,直1
已知
1
如果一条直线
1
已知一次函数
1
函数
1
平面直角坐标系中,正方形
1
解关于
标注函数>二次函数。
九年级数学一次函数专题讲座

一次函数思维基础知识是思维的基础,学好基础知识,在应用知识解决问题的过程中,促进思维发展.通过回答下列各问,复习掌握基础知识.1.正比例函数的定义、图象、性质y=kx(k≠0)是函数,其图象是经过两点(0,)和(1,)的一条直线.(1)当k>0时,y随x的增大而,图象经过第象限,其示意图是;(2)当k<0时,y随x的增大而,图象经过第象限,其示意图是 .2.一次函数的定义、图象、性质y=kx+b(k≠0)是函数,其图象是经过两点(0,)和(1,)一条直线.(1)当k>0时,y随x的增大而 .当k>0,且b>0时,图象经过第象限,其示意图是;当k>0且b<0时,图象经过第象限,其示意图是 .(2)当k<0时,y随x的增大而 .当k<0且b>0时,图象经过第象限,其示意图是;当k<0且b<0时,图象经过第象限,其示意图是 .3.两种函数的联系与区别联系:(1)两种函数都是一条;(2)当k>0或k<0时,两函数的增减性同;(3)当b=0时,一次函数y=kx+b转化为正比例函数,因此正比例函数可看作一次函数的特例;(4)两种函数的自变量x的指数均为1且k≠0.区别:(1)正比例函数也是函数,但是一次函数是正比例函数;(2)正比例函数的图象一定经过点,且经过个象限,一次函数的图象一般不经过点,且经过个象限.4.求两种函数的解析式的方法是 .思维扩散扩散思维是创造思维的重要组成部分,所以通过学习知识,发展扩散思维是十分有益的,使对问题想得宽、想得远、想得细.图代13-2-2例: 如图代13-2-2,在直角三角形ABC 中,∠C=90°,已知AC=,BC=15cm.(1)求AB 边上的中线CM 的长;(2)在CM 上取一点P (点P 与点C 、点M 不重合),求出△APB 的面积y(cm)2与CP 的 长x (cm )之间的函数关系式;(3)在直角坐标系中,画出这个函数图象.【思考】 1.请你叙述勾股定理.2.直角三角形斜边中线性质你知道吗?【思路分析】 从条件中不难发现,用勾股定理和直角三角形斜边上的中线定理,很 容求得CM 的长,凡有关直角三角形的计算常用勾股定理和锐角三角函数. 解:2562515202222==+=+=BC AC AB .==AB CM 2112.5(cm ) 本例的重点是求解(2),求解这一问方法很多,就求解这一问作如下提示.【扩散1】 求函数式首先要找到两个变量,本例的两个高精尖量各是什么?哪个量是自变量P 点为CM 上任一点(P 不与C ,M 重合),即为动点,S △APB 是随着P 点的变化而变化的,CP 的长短是变化的,所以它是什么变量,如何找到S △APB 与CP 的关系这是关键,从条件和图形应联想到,寻找三角形面积与特定线段的函数关系,即面积的比等于某些线段的比,则想到,“共底不等高的两个三角形面积的比等于高的比”,由此求求.【思路分析】 “共底三角形面积的比等于对应高的比”,那么,它们的高在哪里?在图中找不到,它就暗示必须作出两个三角形的高,这时出现相似三角形,抓住这个契机,便由此可以突破.解:作PN ⊥AB ,CD ⊥AB ,N ,D 是垂足,CDPN S S ACB APB =∆∆ PN ∥CD ⇒△PMN ∽△CMD 5.125.12x CM PM CD PN -==⇒150125.125.12152021+-=⇒-=⨯⨯=⇒∆∆x y x y S S ACBA APB , 从事例的实际出发,CP 在0~12.5cm 之间变化,∴0<x <12.5.由于本例寻找的是三角形面积与特定线段之间函数关系,这种解法不止一个,其关键是联想到关定理,“看到图形就能想到它的有关性质”.图代13-2-3【扩散2】 依据定理“等高(或共高)两个三角形面积的比等于两底之比”,BCMBPM ACM APM S S CM PM S S ∆∆∆∆==S CMPM S S S S BCM ACM BPM APM =++⇒∆∆∆∆ 150152021,=⨯⨯===⇒∆∆∆∆ACB APB ACB APB S y S CMPM S S 5.125.12150x y -=⇒ ⇒y=-12x+150.【扩散3】 依据“三角形中线把原三角形分成面积相等的两个小三角形”,∵ y S S APB BPM 2121==∆∆, 7521==∆∆ACB BCMS S , ∴ 5.125.121507521x CM PM y y S S BCM BPM-====∆∆. ∴ y=-12x+150.【扩散4】 应用三角形面积公式,∵ AC BC CD AB S ABC ⋅=⋅=∆2121∴ 12252015=⨯=⋅=AB AC BC CD . ∵PN ⊥AB ,CD ⊥AB ,(见扩散1图代13-2-3)∴PN ∥CD ,∴CMPM CD PN =. ∴ 125.12)5.12(⨯-=⋅=x CM CD PM PN . ∵ 125.125.12252121⨯-⨯⨯=⋅=x PN AB y , ∴ 15012+=x y .【扩散5】 依据“遇到中线常加倍”的方法,延长PM 到P ',且使P 'M=PM ,则四边形APBP '为平行四边形,S △APP '=S △APB . ∴5.1222521,5.12225x S S x S S ACB APB ACM P AP -=-=∆∆∆'∆即, ∴ 5.12225152041x y-=⨯⨯, ∴ 15012+-=x y.图代13-2-4 图代13-2-5【扩散6】 遇到直角三角形,可利用锐角三角函数求解.设∠ACM=α,则∠BCM=90°-α, .542520)90sin(cos ,532515sin ===-︒====AB AC AB BC ααα.12541521532021)90sin(21sin 21x x x CB CP CP AC S S BCPACP =⨯⨯+⨯⨯=-︒⋅+⋅=+∆∆αα )(BCP ACP ABC ABP S S S S ∆∆∆∆+-= x 12152021-⨯⨯=. 即15012+-=x y .(3)画图象略.集中分析从上例我们可以发现三角形中,等高(或共高)不等底,等底(或共底)不等高特点.三角形这一独特性质是解决三角形面积问题的常用方法,扩散1~2借助它们,思路便疏通了,三角形中线把原三角形面积分成等积的两个三角形的这一性质,使扩散3获得十分简捷解法,对于类似问题都可仿效此法,扩散4借助小学学过的三角形面积公式,也找到了思路,由此可知,三角形面积公式在几何证题中有独到之功,切不可忽视它.今后再遇到类似难题,可以试一试“绝招”,尽管解得有些麻烦,但也可顺利达到目的.扩散5、扩散6的标题已展现出它们的“功劳”.因为,这两种解法很顺畅,尤其扩散6,又开辟证解几何问题的新航道——三角法.请同学们继续进行扩散,还有其他方法.本例是一道涉及一次函数与几何题的综合题,把数与形交融一体.因而既扬形之可见之长又能发挥数之计算之优,即借助几何原理建立起关系式,再代入数字与字母,应用代数进行化简计算,便可达到目的.只要熟练驾驭数形结合的方法,就能思维扩散自如,数学素养才能提高.。
初中数学解题技巧专题---一次函数与几何图形的综合问题

第2页共3页
参考答案与解析 .1 16 解析:如图,∵点 ,A B 的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB=90°,
==BC24=x×-54,6=上∴16,在.即∴R线2t△x段-AB6B=CC扫4中,过,解的由得面勾x积股=为定5.即理16得O. AA′=C=5,∴BCC2C-′=AABA2=′=45,-∴1=A′C4.′=∴4S.▱∵BCC点′B′C=′在C直C′线·CAy
9
Hale Waihona Puke AP OP OA 2 AP OP OA 2
S△ABP
1 2AP·OB
1 2
9 2
3
27 4
S△ABP
1 2AP·OB
=12×32×3=94.综上所述,△ABP 的面积为247或94. 3.解:(1)∵点 P 在直线 y=-x+10 上,且点 P 在第一象限内,∴x>0 且 y>0,即-x
+10>0,解得 ∵点 0<x<10. A(8,0),∴OA=8,∴S=12OA·|yP|=12×8×(-x+10)=-4x+ . 40(0<x<10)
= ,∴ , , , , , … ∵ = - , = - , = - ,…∴ B2B3 8 B1(2 0) B2(6 0) B3(14 0) . 2 22 2 6 23 2 14 24 2
Bn
的横坐标为 - 故答案为 - 2n+1 2.
2n+1 2.
B直∴形3(线点2A217,ByB.=212C的(3x21--On坐-111是标),,上正为2…,n-方(2∴,,1形)点∴3,)点A,解∴2同B析的An1理:坐的B1∵可标坐=y得为标O=A点为(x21=-,(B21113n-,)的与.1,∴坐∵x2点标四轴n-为边交B11()形于4的.,点坐A72)B标A.21C,为∵2∴C(B11,1点是(210正A),.1方的2∵1形-坐C,1标1A)∴,为2∥AB(2x12B(,2轴21=0,,).A2点22∵C-1A四=12)边在2,,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与几何图形综合专题讲座思想方法小结:(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结:(1)常数k,b对直线y=kx+b(k≠0)位置的影响.①当b>0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;*当b﹤0时,直线与y轴的负半轴相交.b>0时,直线与x轴正半轴相交;②当k,b异号时,即-kb=0时,直线经过原点;当b=0时,即-kb﹤0时,直线与x轴负半轴相交.当k,b同号时,即-k③当k>O,b>O时,图象经过第一、二、三象限;当k>0,b=0时,图象经过第一、三象限;当b>O,b<O时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.](2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.例题精讲:·1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB(1)求AC的解析式;(2)>(3)在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。
(4)在(2)的前提下,作PM⊥AC于M,BP交AC于N,下面两个结论:①(MQ+AC)/PM的值不变;②(MQ-AC)/PM的值不变,期中只有一个正确结论,请选择并加以证明。
2.(本题满分12分)如图①所示,直线L:5y mx m=+与x轴负半轴、y 轴正半轴分别交于A、B两点。
(1)当OA=OB时,试确定直线L的解析式;xyoBAC)QMxyoBACPQ第2题图①第2题图②.(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=4,BN=3,求MN的长。
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③。
问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。
%考点:一次函数综合题;直角三角形全等的判定.专题:代数几何综合题.》分析:(1)是求直线解析式的运用,会把点的坐标转化为线段的长度;(2)由OA=OB 得到启发,证明∴△AMO ≌△ONB ,用对应线段相等求长度;(3)通过两次全等,寻找相等线段,并进行转化,求PB 的长.解答:解:(1)∵直线L :y=mx+5m ,∴A (-5,0),B (0,5m ), 由OA=OB 得5m=5,m=1, ∴直线解析式为:y=x+5.(2)在△AMO 和△OBN 中OA=OB ,∠OAM=∠BON ,∠AMO=∠BNO , ∴△AMO ≌△ONB . ∴AM=ON=4, ∴BN=OM=3.(3)如图,作EK ⊥y 轴于K 点. 先证△ABO ≌△BEK , ∴OA=BK ,EK=OB . 再证△PBF ≌△PKE , ∴PK=PB .∴PB=21BK=21OA=25.点评:本题重点考查了直角坐标系里的全等关系,充分运用坐标系里的垂直关系证明全等,本题也涉及一次函数图象的实际应用问题.CB Al 2l 1xy3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分)(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF (3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。
在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。
(6分))考点:轴对称的性质;全等三角形的判定与性质.分析:(1)根据题意先求直线l 1与x 轴、y 轴的交点A 、B 的坐标,再根据轴对称的性质求直线l 2的上点C 的坐标,用待定系数法求直线l 2的解析式;(2)根据题意结合轴对称的性质,先证明△BEA ≌△AFC ,再根据全等三角形的性质,结合图形证明BE+CF=EF ;CBAxy QM PCB Axy(3)首先过Q点作QH⊥y轴于H,证明△QCH≌△PBO,然后根据全等三角形的性质和△QHM≌△POM,从而得HM=OM,根据线段的和差进行计算OM的值.解答:解:(1)∵直线l1与x轴、y轴分别交于A、B两点,∴A(-3,0),B(0,3),∵直线l2与直线l1关于x轴对称,∴C(0,-3)∴直线l 2的解析式为:y=-x-3;(2)如图1.答:BE+CF=EF.∵直线l2与直线l1关于x轴对称,∴AB=BC,∠EBA=∠FAC,∵BE⊥l3,CF⊥l3∴∠BEA=∠AFC=90°∴△BEA≌△AFC∴BE=AF,EA=FC,∴BE+CF=AF+EA=EF;(3)①对,OM=3过Q点作QH⊥y轴于H,直线l2与直线l1关于x轴对称∵∠POB=∠QHC=90°,BP=CQ,又AB=AC,∴∠ABO=∠ACB=∠HCQ,则△QCH≌△PBO(AAS),∴QH=PO=OB=CH∴△QHM≌△POM∴HM=OM∴OM=BC-(OB+CM)=BC-(CH+CM)=BC-OM1BC=3.∴OM=2点评:轴对称的性质:对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.4.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.(1)求直线AB的解析式;(2)若点M为直线y=mx上一点,且△ABM是以AB为底的等腰直角三角形,求m值;(3)过A点的直线交y轴于负半轴于P,N点的横坐标为-1,过N点的直线交AP于点M,试证明的值为定值.考点:一次函数综合题;二次根式的性质与化简;一次函数图象上点的坐标特征;待定系数法求正比例函数解析式;全等三角形的判定与性质;等腰直角三角形.专题:计算题.\分析:(1)求出a、b的值得到A、B的坐标,设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;(2)当BM⊥BA,且BM=BA时,过M作MN⊥Y轴于N,证△BMN ≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA 时,过M作MN⊥X轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,证△BHM≌△AMN,求出M的坐标即可.(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG ≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.解答:解:(1)要使b=有意义,必须(a-2)2=0,4-b=0,∴a=2,b=4,∴A(2,0),B(0,4),设直线AB的解析式是y=kx+b,代入得:0=2k+b,4=b,解得:k=-2,b=4,∴函数解析式为:y=-2x+4,答:直线AB的解析式是y=-2x+4.(2)如图2,分三种情况:①如图(1)当BM⊥BA,且BM=BA时,过M作MN⊥Y轴于N,△BMN≌△ABO(AAS),MN=OB=4,BN=OA=2,∴ON=2+4=6,∴M的坐标为(4,6 ),3,代入y=mx得:m=2②如图(2)当AM⊥BA,且AM=BA时,过M作MN⊥X轴于N,△1,BOA≌△ANM(AAS),同理求出M的坐标为(6,2),m=3③当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,则△BHM≌△AMN,点评:本题主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.5.如图,直线AB:y=-x-b分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1。
(1)求直线BC的解析式:(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD若存在,求出k的值;若不存在,说明理由(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发现变化若不变,请求出它的坐标;如果变化,请说明理由。
考点:一次函数综合题;一次函数的定义;正比例函数的图象;待定系数法求一次函数解析式.专题:计算题.《分析:代入点的坐标求出解析式y=3x+6,利用坐标相等求出k的值,用三角形全等的相等关系求出点的坐标.解答:解:(1)由已知:0=-6-b,∴b=-6,∴AB:y=-x+6.∴B(0,6)∴OB=6∵OB:OC=3:1,OB=2,OC=3∴C(-2,0)设BC的解析式是Y=ax+c,代入得;6=0•a+c,0=-2a+c,解得:a=3, c=6,∴BC:y=3x+6.直线BC的解析式是:y=3x+6;(2)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°.∵S△EBD=S△FBD,∴DE=DF.又∵∠NDF=∠EDM,∴△NFD≌△EDM,∴FN=ME . 联立y=kx-k, y=-x+6 得y E =1k 5k+, 联立y=kx-k ,y=3x+6 得y F =3-k 9k. ∵FN=-y F ,ME=y E , ∴1k 5k +=3-k 9k-. ∵k≠0,∴5(k-3)=-9(k+1), ∴k=73;(3)不变化K (0,-6). 过Q 作QH ⊥x 轴于H , ∵△BPQ 是等腰直角三角形, ∴∠BPQ=90°,PB=PQ , ∵∠BOA=∠QHA=90°, ∴∠BPO=∠PQH , ∴△BOP ≌△HPQ , ∴PH=BO ,OP=QH , ∴PH+PO=BO+QH , 即OA+AH=BO+QH , 又OA=OB , ∴AH=QH ,∴△AHQ 是等腰直角三角形, ∴∠QAH=45°, ∴∠OAK=45°,∴△AOK 为等腰直角三角形, ∴OK=OA=6, ∴K (0,-6).点评:此题是一个综合运用的题,关键是正确求解析式和灵活运用解析式去解.6. 如图,直线AB 交X 轴负半轴于B (m ,0),交Y 轴负半轴于A (0,m ),OC ⊥AB 于C (-2,-2)。