线性空间的定义与性质(精)
线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
线性空间的定义与性质

s1(x) = A1sin(x+B1)= (A1)sin(x+B1) S[x],
所以, S[x]是一个线性空间.
例5: 在区间[a, b]上全体实连续函数构成的集合 记为C[a, b], 对函数的加法和数与函数的数量乘法, 构 成实数域上的线性空间. (2) 一个集合, 如果定义的加法和乘数运算不是通 常的实数间的加, 乘运算, 则必需检验是否满足八条线 性运算规律. 例6: 正实数的全体记作R+, 在其中定义加法及乘 数运算为: ab = ab, a = a, (R, a, bR+) 验证R+对上述加法与乘数运算构成(实数域R上的)线 性空间. 证明: 对任意a, bR+, R, ab = abR+, a = aR+, 所以对R+上定义的加法与乘数运算封闭.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组. 说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间. 线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性. 例1: 实数域上的全体mn矩阵, 对矩阵的加法和 数乘运算构成实数域R上的线性空间, 记作Rmn. Rmn 中的向量(元素)是mn矩阵. 例2: 次数不超过n的多项式的全体记作P[x]n, 即 P[x]n ={ p(x)=a0+a1x+· · · +anxn | a0, a1, · · · , a n R } 对通常多项式加法, 数乘构成向量空间.
二、线性空间的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, + 01 =, + 02 = , 由于01, 02V, 则有 02+01=02, 01+02=01. 所以 01=01+02 =02+01 =02.
线性空间的定义

= ( k a ) ⊕ ( k b) ;
上的线性空间. ∴ R+构成实数域 R上的线性空间. 上的线性空间
§6.2 线性空间的定义与简单性质
例6
V = f ( A) f ( x ) ∈ R[ x ], A ∈ R n×n 令
{
}
阶方阵A的实系数多项式的全体 的实系数多项式的全体, 即n 阶方阵 的实系数多项式的全体,则V关于矩阵 关于矩阵 的加法和数量乘法构成实数域R上的线性空间. 的加法和数量乘法构成实数域 上的线性空间. 上的线性空间 证:根据矩阵的加法和数量乘法运算可知
§6.2 线性空间的定义与简单性质
3、0α = 0, k 0 = 0, ( − 1)α = −α , 、 k (α − β ) = kα − k β 证明: 证明:∵ 0α + α = (0 + 1)α = α ,
∴两边加上 −α 即得 0 α =0; ∵
kα = k (α + 0) = kα + k 0
§6.2 线性空间的定义与简单性质
一、线性空间的定义
是一个非空集合, 是一个数域 在集合V中 是一个数域, 设V是一个非空集合,P是一个数域,在集合 中 是一个非空集合 定义了一种代数运算,叫做加法: 定义了一种代数运算,叫做加法:即对 ∀α , β ∈ V , 加法 在V中都存在唯一的一个元素 γ 与它们对应,称 γ 为 中都存在唯一的一个元素 与它们对应, 与 的元素之间还 α 与β 的和,记为 γ = α + β ;在P与V的元素之间还 定义了一种运算,叫做数量乘法: 定义了一种运算,叫做数量乘法:即 ∀ α ∈ V , ∀ k ∈ P , 数量乘法 中都存在唯一的一个元素δ与它们对应 在V中都存在唯一的一个元素 与它们对应,称δ为 中都存在唯一的一个元素 与它们对应, 为 数量乘积, k与α的数量乘积,记为 δ = kα.
6.2线性空间的定义与简单性质

§2 线性空间的定义与简单性质 一、线性空间的定义 二、线性空间的简单性质引例1在第三章§2中,我们讨论了数域P 上的n 维向量 空间P n ,定义了两个向量的加法和数量乘法:而且这两种运算满足一些重要的规律,如引例2数域P 上的一元多顶式环P[x ]中,定义了两个多 项式的加法和数与多项式的乘法,而且这两种运算 同样满足上述这些重要的规律,即(),(),()[],,f x g x h x P x k l P∀∈∀∈()()()()f xg x g x f x +=+(()())()()(()())f x g xh x f x g x h x ++=++()()()()k l f x kl f x =1()()f x f x =()(())0f x f x +-=()0()f x f x +=()()()()k l f x kf x lf x +=+(()())()()k f x g x kf x kg x +=+12121122(,,,)(,,,)(,,,)n n n n a a a b b b a b a b a b +=+++1212(,,,,,)(,,)n n k a a a ka k ka ka P =∈αββα+=+()()αβγαβγ++=++0αα+=()0αα+-=,,,,n P k l P αβγ∀∈∀∈1αα=()()k l kl αα=()k l k l ααα+=+()k k k αβαβ+=+一.线性空间的定义设V 是一个非空集合,P 是一个数域,在集合V 中定义了一种代数运算,叫做加法:即对在V 中 都存在唯一的一个元素r 与它们对应,称r 为αβ与的和,记为r αβ=+;在P 与V 的元素之间还定义了一种运算,叫做数量乘法:即,,V k P α∀∈∀∈在V 中都存在唯一的一个元素δ与它们对应,称δ为k α与的数量乘积,记为.k δα=如果加法和数量乘法还满足下述规则,则称V 为数域P 上的线性空间:加法满足下列四条规则:,,V αβγ∀∈ ①αββα+=+②()()αβγαβγ++=++③在V 中有一个元素0,对,0V ααα∀∈+=有(具有这个性质的元素0称为V 的零元素)④ 对,V α∀∈都有V 中的一个元素β,使得0αβ+=;(β称为α的负元素)数量乘法满足下列两条规则 :⑤ 1αα= ⑥()()k l kl αα= 数量乘法与加法满足下列两条规则:注:1. 凡满足以上八条规则的加法及数量乘法也称为线性运算. 2.线性空间的元素也称为向量,线性空间也称向量空间.但这里的向量不一定是有序数组. 3 .线性空间的判定:若集合对于定义的加法和数乘运算不封闭,或者运算封闭但不满足八条规则中的任一条,则此集合就不能构成线性空间.例1 引例1, 2中的 P n , P[x ] 均为数域 P 上的线性空间.例2 数域 P 上的次数小于 n 的多项式的全体,再添上零多项式作成的集合,按多项式的加法和数量乘法构成数域 P 上的一个线性空间,常用 P[x ]n 表示.,,V k P α∀∈∀∈⑦()k l k l ααα+=+⑧()k k k αβαβ+=+11111[]{(),,,}n nn n P x f x a x a x a a a a P ---==+++∈例3 数域 P 上m n ⨯ 矩阵的全体作成的集合,按矩阵的加法和数量乘法,构成数域 P 上的一个线性空间,用m n P ⨯表示.例4 任一数域 P 按照本身的加法与乘法构成一个数域P 上的线性空间.例5 全体正实数R +,1) 加法与数量乘法定义为:,,a b R k R +∀∈∀∈ log a a b b +=kk a a=2) 加法与数量乘法定义为: ,,a b R k R +∀∈∀∈a b ab +=k k a a = 判断 R +是否构成实数域 R 上的线性空间 . 解:1)R +不构成实数域R 上的线性空间.⊕不封闭,如2112log 122⊕==-∉R +.2) R +构成实数域R 上的线性空间.首先,R +≠∅,且加法和数量乘法对R +是封闭的. 事实上,,,a b R a b ab R ++∀∈⊕=∈ ,且 ab 唯一确定;,,k a R k R k a a R ++∀∈∀∈=∈ ,且 a k唯一确定. 其次,加法和数量乘法满足下列算律 ① a b ab ba b a ⊕===⊕② ()()()()()()a b c ab c ab c a bc a bc a b c ⊕⊕=⊕===⊕=⊕⊕ ③ 1∈R +,11,a a a ⊕==a ∀∈ R +,即1是零元; ④ a ∀∈ R +,1a ∈R +,且111a a a a ⊕==即a 的负元素是1a;⑤11a a a ==a ∀∈R +;⑥⑦ ⑧()()()k k k k kk a b k ab ab a b a b ⊕====⊕; ∴R +构成实数域 R 上的线性空间.()()()l l k l k kl k l a k a a a a kl a=====()()()k l k l k l k l a a a a a a k a l a ++===⊕=⊕()()k a k b =⊕例6令 {}()()[],n n V f A f x R x A R ⨯=∈∈即n 阶方阵A 的实系数多项式的全体,则V 关于矩阵的加法和数量乘法构成实数域R 上的线性空间.证:根据矩阵的加法和数量乘法运算可知 ()()(),()()f A g A h A kf A d A +== 其中,,(),()[]k R h x d x R x ∈∈又V 中含有A 的零多项式,即零矩阵0,为V 的零元素. 以 ()f x 的各项系数的相反数为系数作成的多项式记为-()f x ,则 f (A)有负元素-f (A). 由于矩阵的加法与数乘满足其他各条,故V 为实数域R 上的线性空间.二、线性空间的简单性质 1、零元素是唯一的.证明:假设线性空间V 有两个零元素12,o o ,则有 01=01+02=02.2、V α∀∈,α的负元素是唯一的,记为-α. 证明:假设α有两个负元素 β、γ ,则有0,0αβαγ+=+=0()()()0βββαγβαγαβγγγ=+=++=++=++=+=◇ 利用负元素,我们定义减法:()αβαβ-=+- 3、00,00,(1),()k k k k ααααβαβ==-=--=-证明:0(01),αααα+=+=∴两边加上α-即得 0α=0; ∴两边加上k α-;即得k 0=0 ;∵(1)1(1)(11)00αααααα+-=+-=-== ∴两边加上-α即得(1);αα-=- ∵()()k k k k αββαββα-+=-+=∴两边加上k β-即得().k k k αβαβ-=- 4、如果k α=0,那么k =0或α=0.证明:假若0,k ≠则111()()00.k k k k k ααα---==== 练习:1、P273:习题3 1)2)4)2、证明:数域P 上的线性空间V 若含有一个非零向量,则V 一定含有无穷多个向量. 证:设,0V αα∈≠且121212,,,,有k k P k k k k V αα∀∈≠∈1212()0k k k k ααα=-≠又- 12.k k αα∴≠而数域P 中有无限多个不同的数,所以V 中有无限多个不同的向量 注:只含一个向量—零向量的线性空间称为零空间. 作业P273 习题3:5)6)7)。
§7.1 线性空间的定义与性质

例1 在实数域 R 和 R 集合(正实数全体)
上定义运算 a b aba,b R
o a a R, R
验证 R 对上述定义的加法 与数乘 o 。
运算构成实数域上的线性空间。
解 对加法封闭:对任意的 a,b R ,有
a b ab R 对数乘封闭:对任意的 R, a R ,有 o a a R
⑦ o a a aa a a oa oa
⑧ oa b oab ab ab a b o a ob 经验证 R 所定义的运算构成了线性空间。
例2 设集合 V 为:与向量 0,0,1 不平行的全体
三维数组向量。定义两种运算为:数组向量的加 法和数乘运算。验证集合 V 是否为实数域 R 上 的线性空间。
说明 求差的运算称为减法运算。
定义3 设 W 是线性空间 V 的一个非空子集,若 W 对于 V 中定义的加法与数乘运算也构成一个 线性空间,称 W 是 V 的子空间。
对于子空间,有如下定理加以判别。
定理 设 W 是线性空间 V 的一个非空子集,则 W 是 V 的子空间充要条件是 W 对于 V 的加 法与数乘运算具有封闭性,即
下面再验证满足8条规律: ① a b ab ba b a
② a b c ab c abc abc a b c
③ R 存在零元素1,对 a R 有 a 1 a1 a ④ 对 a R ,有负元素 a1 R ,使
a a1 aa1 1
⑤ 1 a a1 a
⑥ o o a o a a a o a , R
证(6)由 0 0 得
0 0 ,根据加法消去律有 0 0 证(8)若 0 ,据性质(5)可知 0 ;
若 0 ,则 1 存在,有 1 10 ,故
1 1 0 ,证毕
§6-2线性空间的定义和性质(精)

§6-2线性空间的定义和性质一、定义:设V 是一个非空集合,P 是一个数域1、 在V 中定义一种加法运算,使对于V 中任意两个元βα,都有V 中唯一的元γ与之对应,称为α与β的和,记作βαγ+=,加法满足:① α+β=β+α;② α+(β+γ)=(α+β)+γ;③ V 中有一个元素θ,使对V 中任一元α,都有α+θ=α(θ叫做零元); ④ 对于V 中每一个元α,都有V 中元β存在,使α+β=θ(β叫做α的负元);2、 在P 中的数与V 中的元之间定义一种数量乘法运算,使P k ∈∀及V ∈∀α都有V 中唯一的元δ 与之对应,记作αδk =,且满足:⑤αα=∙1;⑥()()ααkl l k =;⑦()αααl k l k +=+;⑧()βαβαk k k +=+;满足以上运算的V ,称为数域P 上的线性空间。
例1 :数域P 上的一元多项式环[]x P ,按通常的多项式加法和数与多项式的乘法,构成一个数域P 上的线性空间。
如果只考虑其中次数小于n 的多项式,再添上零多项式也构成数域P 上的一个线性空间,用[]n x P 表示。
例2:元素属于数域P 的n m ⨯矩阵,按矩阵的加法和矩阵与数的乘法,构成数域P 上的一个线性空间,用n m P ⨯表示。
例3: C[a,b]关于函数的加法和数与函数的乘法来说作成实数域R 上的向量空间。
)()()(x af x g x f +例4: R 为实数域,V 为全体正实数组成的集合,定义V 中两个元素的加法运算⊕为:V b a ab b a ∈=⊕,,定义V 中元素与R 中元素的数乘运算“ ”为p R v a a a k k ∈∈=,,下面验证V 对于这两种运算满足定义中的八条规则:1 a b ba ab b a ⊕===⊕;2 )()()()(c b a c ab c ab c b a ⊕⊕==⊕=⊕⊕;3 a a a =⋅=⊕11;4 a 的负元素是a -1, 111==⊕--aa a a ;5 a lk a a k a l k lk l ===)(;6 )()()(a l a k a a a a l k l k l k ⊕=⊕==++;7 k k k k k k b a b a ab b a b a k ⊕===⊕=⊕)()()(=)()(b k a k ⊕;8 a a a ='= 1;所以V 是实数域上的向量空间。
线性空间与线性变换解析

线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。
线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。
通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。
一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。
1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。
二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。
若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。
2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。
6.2 线性空间的定义及性质

统一在一个数学模型下,是数学研究的一种基本思想方法.
二. 基本性质
8条算律 ― 基本法律依据(公理),以2个运算、8 条算律为基础推导其它基本性质.
以下6条基本性质:
1. V 中零向量唯一.
证明: 设 01,02 是 V 中零向量 算律3) 02=02+01=01+02=01 . □
□
依据该性质可用符号 表示向量 的负向量,即 ( ) 0 ,并
引入减法运算: ( ) → 减法不是一种独立运算.
3. .
证明: 0 ( ( )) ( ) ( ) ( ) .
(统称为运算封闭性),且满足算律:
① + + ;
⑤ (ab)α a(bα) ;
② (+ )+ +(+ ) ;
⑥ 1 ;
③ 0V , V ,0 ;
⑦ a( ) a a ;
④ V , / V , / 0 ; ⑧ (a b) a b .
向量).
5. k 0 k 0 或 0 .
证明: 若 k 0 ,命题已经成立;
1 (
k)
6)
1
(k )
1
0
=
0
.
□
k
k
k
n
5. i 1 2 n 有确定意义.
i=1
证明: 略.
n
6. i 1 2 n 可交换其中项的位置. i=1
M1×n = {(a1, a 2 , , a n ) a i P,i 1, 2, , n} 为 P 上 n 元行空 间,Mn×1 = {(a1, a 2 , , a n )/ ai P,i 1, 2, , n} 为 P 上 n 元列空 间,统一记为 Pn .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2 数域F上m行n列矩阵组成的典例:
设 Mm×n = {A:数域 P 上 m× n 矩阵},显然
A, B Mm ×n , k P AB Mm ×n , kA Mm ×n ,
即 Mm×n 对矩阵加法和数乘运算封闭; 易验证 8 条算律亦成立 →
M m? n 对矩阵加法和数乘运算构成数域 P 上的向量空间.
引入减法运算: ( ) 3.
( )) ( ) ( ) ( ) .
( ) (( ) ) 0 .
要证 ( 1) ,即证 ( 1) 是 的负向量. 事实上
( 1) 1 (1) (1 1)) 0 0 → ( 1) 成立.
8)
□
k( ) ( k) k .(即证 k( ), ( k) 是 k 的负 常用表达式为:
(统称为运算封闭性) ,且满足算律: ① ② ③ ④
+ + ;
(+ )+ +( + ) ;
⑤ ⑥ ⑦ ⑧
(ab)α a(bα) ;
1 ;
0 V , V , 0 ;
V , / V , / 0 ;
二. 基本性质
8条算律 ― 基本法律依据(公理),以2个运算、8 条算律为基础推导其它基本性质. 以下6条基本性质:
1. V 中零向量唯一.
算律 3) 证明: 设 0 1,0 2 是 V 中零向量
0 2=0 2+0 1=0 1+0 2=0 1 . □
该性质是可以用 0 表示 V 中零向量的理论依据.
a( ) a a ; (a b) a b .
例1 平面(空间)解析几何中的典例:
V2 = { :平面直角坐标系原点为始点的矢量} y
a
X 易验证 V2 关于矢量的加法和数乘运算构成一个实数域 R 上的向 量空间。V3 有类似的结论。
向量). 5.
k 0 k 0 或 0 .
证明: 若 k 0 ,命题已经成立; 若k 0
k =0
6) 1 1 1 1 ( k) (k ) 0 = 0 . k k k
□
5.
i=1
n
i
1 2
n 有确定意义.
§6.2 线性空间的定义与性质
内容提要 线性空间的定义 相关的基本性质
一 二
一. 线性空间的定义
设集合 V≠ ,F 是数域,称 V 是向量,V 是 F 上的向量 空间,如果 1) 2)
, V + V (向量加法); V, a F a V (数量乘法)
证明: 略. 6.
i=1
n
i
1 2
n 可交换其中项的位置.
证明: 略.
作业: 1. P267 习题3中1)— 8); 2. 整理笔记,熟悉一个概念、二个运算、八条算律、 六条性质.
与数量乘法封闭,易验证 8 条算律成立
C [a, b] 是数域 R 上的线性空间。
→
C [a, b] 是实变函数论研究的对象.
例4 (1)数域P是P上的线性空间; (2)数域C是R上的线性空间; (3)数域R非C上的线性空间.
证明:(2) , C, k R C, k C , 即 C 对向量加法, 数量乘法(数的乘法)封闭. 易验证 8 条算律成立 → 性空间. (3) R, k C k 不一定属于 R (例如: 1, k 1 i , 有
f , g C [a, b],
规定: x C [a, b] , k P , → g(x ) f (x ) a x g b f
( f g )( x ) f ( x ) g ( x ), kf ( x ) k ( f ( x ))
f g , kf C [a, b] ,即 C [a, b] 对连续实函数的和
□
移项变号规则成立.
4.
0 0, k 0 0, ( 1 .
8)
证明: 0 0 0 0 (0 0 ) (0 0 ) 0 (0 0) 0 0 0
0 ( 0 ) 0 . 类似可证 k 0 0 .
2.
V, 的负向量唯一.
算律 4)
证明: 设 有两个负向量 ,
3),1) 1)
0
→ □
0 ( ) ( ) ( ) 0 .
2)
依据该性质可用符号 表示向量 的负向量,即 ( ) 0 ,并 → 减法不是一种独立运算.
M1 ×n = {(a 1 , a 2 ,
, a n ) a i P,i 1, 2,
, n} 为 P 上 n 元行空
间,Mn ×1 = {(a1 , a 2 , 间,统一记为 Pn .
, a n ) / a i P,i 1, 2,
, n} 为 P 上 n 元列空
例3 C[a,b]={f:[a,b]上连续实函数}:
k 1 i R 成立) → R 非 C 上的线性空间.
C 是 R 上的线
例5 (1)数域P上一元多项式环P[x]; (2)P[x]n={f(x)|əf<n} ∪{0}.
证明: (1) P[x]对多项式的加法,数乘运算封闭,且 8 条算律成立 → P[x]构成 P 上的线性空间. (2) 显然成立. 由特殊到一般,由具体到抽象,把具体的代数对象用公理化方法 统一在一个数学模型下,是数学研究的一种基本思想方法.