§7.1 线性空间的定义与性质
线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。
本文将介绍线性空间的定义、性质以及线性变换的概念和特性。
一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。
具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。
即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。
2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。
3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。
4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。
线性空间的性质还包括零向量、负向量和线性相关性。
零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。
线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。
二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。
具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。
2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。
线性变换的性质还包括零变换、恒等变换和可逆性。
零变换表示线性变换将所有向量映射为零向量。
恒等变换表示线性变换将每个向量映射为其本身。
可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。
三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。
线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。
线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。
本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。
一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。
2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。
3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。
4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。
5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。
6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。
7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。
8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。
9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。
线性空间的例子包括n维向量空间和函数空间等。
它们满足上述定义中的所有条件。
二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。
2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。
3. 线性变换T将零向量映射为目标线性空间的零向量。
线性变换的例子包括平移、旋转和缩放等。
它们保持向量空间的线性结构和线性关系。
三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。
给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。
线性空间的基本内容

(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系
线性代数与解析几何 第7章 线性空间与线性变换

§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
7.1.2 线性空间的性质
7.1.3 子空间
§ 7.1 线性空间的定义与性质
7.1.1 线性空间的定义
定义7.1
设是一个非空集合,为实数域. 若在中定义
了两种运算,一种运算称为加法:即对于中任意两个元素
, ,在中都有唯一的元素与它们相对应,称为与的
证明
因为 a, b R , R
有 a b ab R , a a R
即R+对上述定义的加法与数乘运算封闭.
a
,
b
,
c
R
, , R 时,有
又因
(1) a b ab=ba b a ;
(2) (a b) c (ab) c (ab)c a(bc) a(b c) a (b c) ;
A R mn
又对矩阵加法和数与矩阵的乘法两种运算满足线性运算规律,
所以R mn对矩阵加法和数与矩阵的乘法,构成实数域R
上的线性空间,称此线性空间为mn矩阵空间.
§ 7.1 线性空间的定义与性质
注7.1
检验一个集合是否构成线性空间,当然不能只象例
7.1、例7.2、例7.3那样检验对运算的封闭性.若所定义的加法
(7) ( + ) a a a a a a a a ;
(8) (a b) (ab) (ab) a b
a b a b ;
所以R+对上述定义的加法与数乘运算构成线性空间.
*第7章
线性空间与线性变换
线性空间又称向量空间,是线性代数的中心内容和
线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。
集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。
★数域:一种数集,对四则运算封闭(除数不为零)。
比如有理数域、实数域(R)和复数域(C)。
实数域和复数域是工程上较常用的两个数域。
线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。
1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。
如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。
则有O x x =-+)(。
(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。
注意以下几点:1)线性空间是基于一定数域来的。
同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。
2)两种运算、八条性质。
数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。
3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。
线性空间与线性变换解析

线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。
线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。
通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。
一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。
1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。
二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。
若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。
2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。
高等代数第六章 线性空间

线性空间的维数
定义7 如果在线性空间V中有n个线性无关 的向量,但是没有更多数目的线性无关的向 量,那么V就称为n维的;如果在V中可以找 到任意多个线性无关的向量,那么V就称为 无限维的。
按照这个定义,几何空间中向量所成的 线性空间是三维的;n元数组所成的空间是n 维的;
由所有实系数多项式所成的线性空间是 无限维的,因为对于任意的N,都有N个线
线性空间的元素也称为向量. 当然,这里 所谓向量比几何中所谓向量的涵义要广泛得 多。线性空间有时也称为向量空间。以下我 们经常是用小写的希腊字母 , , ,代表线 性空间V中的元素,用小写的拉丁字母 k,l, p, 代表数域F中的数
线性空间的性质
1.零元素是唯一的。 假设01,02是线性空间V中的两个元素。
(1,0,,0),
显然
2 (0,1,,0),
n (0,0,,1)
是一组基。对每一个向量 (a1, a2,, an ) ,
都有 a11 a22 ann
所以
(a , 1
a 2
,,
a n
)
就是向量
在这组基下的坐
标。不难证明,
1 ' (1,1,,1), 2 '(0,1,,1), n ' (0,0,,1)
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么
。
, ,,
1
2
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r
线性空间中的基本定义及性质

线性空间中的基本定义及性质线性空间是现今数学中的一个基础概念。
它在向量、矩阵、微积分、拓扑等多个数学分支中都有广泛的应用。
本文将简单介绍线性空间的基本定义及其性质。
一、线性空间的基本定义线性空间是一种包含数个元素的空间,其内部具有向量加法运算和数乘运算。
具体来说,设V为一个非空集合,其中的元素称为向量。
若V上有两种运算,一种为向量加法运算,用+表示,另一种为数乘运算,用·表示,则称(V, +, ·)为一个线性空间,满足以下条件:1.加法交换律:对任意u,v∈V,有u+v=v+u;2.加法结合律:对任意u,v,w∈V,有(u+v)+w=u+(v+w);3.存在零向量:存在一个元素0∈V,使得对任意u∈V,有u+0=u;4.对任意向量u∈V,存在相反元素:对任意u∈V,存在一个元素-v∈V,使得u+(-v)=0;5.数乘结合律:对任意α,α∈R,u∈V,有(αα)u=α(αu);6.分配律:对任意α∈R,u,v∈V,有α(u+v)=αu+αv,(α+α)u=αu+αu;7.标量乘法:对任意u∈V,有1u=u。
在以上定义中,R表示实数集合上的乘法运算。
二、线性空间的性质线性空间的定义虽然简单,但它带来了许多重要的性质。
以下是几个典型的例子:1. 零向量唯一性:线性空间中仅存在一个零向量,任何向量加上该零向量等于其本身。
2. 相反元素唯一性:线性空间中任一向量的相反元素是唯一的。
3. 线性组合性质:设{u1,u2,...,un}为V中的向量。
{a1,a2,...,an}为任意实数,则线性组合a1u1+a2u2+...+anun∈V。
其中,每个ai乘以ui叫做向量ui 的系数。
4. 子空间的定义:设V为一个线性空间,如果它的子集W满足:(1)对于任意向量u,v∈W,u+v∈W;(2)对于任意α∈R,u∈W,有αu∈W;则称W是V的一个子空间。
5. 线性无关性:设V为一个线性空间,{u1,u2,...,un}为其中的向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 在实数域 R 和 R 集合(正实数全体)
上定义运算 a b aba,b R
o a a R, R
验证 R 对上述定义的加法 与数乘 o 。
运算构成实数域上的线性空间。
解 对加法封闭:对任意的 a,b R ,有
a b ab R 对数乘封闭:对任意的 R, a R ,有 o a a R
⑦ o a a aa a a oa oa
⑧ oa b oab ab ab a b o a ob 经验证 R 所定义的运算构成了线性空间。
例2 设集合 V 为:与向量 0,0,1 不平行的全体
三维数组向量。定义两种运算为:数组向量的加 法和数乘运算。验证集合 V 是否为实数域 R 上 的线性空间。
说明 求差的运算称为减法运算。
定义3 设 W 是线性空间 V 的一个非空子集,若 W 对于 V 中定义的加法与数乘运算也构成一个 线性空间,称 W 是 V 的子空间。
对于子空间,有如下定理加以判别。
定理 设 W 是线性空间 V 的一个非空子集,则 W 是 V 的子空间充要条件是 W 对于 V 的加 法与数乘运算具有封闭性,即
下面再验证满足8条规律: ① a b ab ba b a
② a b c ab c abc abc a b c
③ R 存在零元素1,对 a R 有 a 1 a1 a ④ 对 a R ,有负元素 a1 R ,使
a a1 aa1 1
⑤ 1 a a1 a
⑥ o o a o a a a o a , R
证(6)由 0 0 得
0 0 ,根据加法消去律有 0 0 证(8)若 0 ,据性质(5)可知 0 ;
若 0 ,则 1 存在,有 1 10 ,故
1 1 0 ,证毕
定义2 作为方程 x 的唯一解 x
可记为 x ,称之为 与 之差。
第七章 线性空间
线性空间是某一类事物从量方面的一个抽象, 线性变换是反映线性空间中元素间最基本的线性 联系。线性代数就是研究线性空间与线性变换的 理论学科。本章主要是用之前相关的知识去研究 线性空间与线性变换。这章将讨论两个问题: (1)线性空间的概念、基与维数、向量的坐标; (2)线性变换的概念和矩阵表示。
证 取 2,2,3V, 2,2,2V ,则 0,0,1V ,故 V 对所定义的运算不封闭,
即集合 V 在实数域上对定义的两种运算不构成 线性空间。
说明 ①线性空间的向量概念是更加抽象化。
如二阶方阵全体的集合 S 对矩阵的加法和数
0
,
P2
0
1
0
等是向量空间 S 中的元素,均可看成是向量。
②向量空间的概念是集合与运算二者的
结合。在同一集合里,若定义两种不同的线性
运算就构成不同的向量空间,因此所定义的线
性运算是向量空间的本质,而其中的元素(即
向量)是什么倒并不重要。
直接从线性空间的定义,可推出线性空间的 一些简单性质:
(1)零元素是唯一的;
(1), W ,则 W
(2) R , W ,则 W
说明 从这个定理可知,子空间线性运算的两条 (加法与数乘封闭)就可推得线性空间的8条规 则。
其次,对这两种运算满足8条运算规律(设
, , V ,, R )
①
②
③ 在 V 中存在零元素 0 ,对任何 V , 都有 0
④ 对任何 V ,都有 的负元素 V
使 0
⑤ 1
⑥ ⑦
⑧
说明 要验证 V 是否为 R 上的线性空间就看 是否满足以上10条规律。
(2)负元素是唯一的; (3)加法的消去律成立,即 , 则
(4)方程 x 在线性空间内有且只有
一个解 x
(5)0 0 (左边0是数,右边0表示零元素)
(6)0 0 (其中0是指零元素)
(7)
(8)若 0 ,则有 0 或 0 下面仅证明(6)和(8)
第七章 线性空间
§7.1 线性空间的定义与性质
定义1 设 V 为一个非空集合,R 为实数域, 对在集合 V 和实数域 R 上定义的加法和数 乘两种运算满足下列规则就称为 V (实数域 R 上的)线性空间或向量空间。
首先,对于称为加法和数乘的两种运算各自
满足封闭性,即对任意两个元素 , V 则 V 。又对任一数 V 与任一元素 V ,则 V