1-1线性空间的概念
1.1线性空间

Ⅱ 求 (1)基I到基II的过渡矩阵; (2)向量 31 23 在基I下的坐标以及在自然基 e1 , e 2 下的坐标; T (3)向量 4,1,2 在基(I)下的坐标.
24
, e3
1.3 线性子空间 定义1.8 设V为数域P上的线性空间,W是线性空间V的 非空子集,若W关于V中的线性运算也构成数域P上的 线性空间,则称W是V的线性子空间,简称子空间. 对任何线性空间V,显然由中单个零向量构成的子 集是的子空间,称为的零子空间,记为{0};V本身也是 V的子空间.这两个子空间称为V的平凡子空间.的其它 子空间称为V的非平凡子空间. 若WV,且WV,称W是V的真子空间。
例1.2 1. n维向量空间Rn按照向量的加法以及向量与实数的数乘 都构成实线性空间. 2.全体 mn实矩阵,在矩阵的加法及数乘两种运算下构成一个 实线性空间,记为Rmn. 3.区间[a,b]上的全体连续实函数,按照函数的加法及数与函数 的乘法构成一个实线性空间,记为C[a,b]. 4.全体次数小于 n的多项式连同零多项式,按照多项式的加法 与数乘构成一个实线性空间,记为 Pn[x]. 5.齐次线性方程组 AX=0的全体解向量,在向量的加法及数乘 两种运算下构成一个线性空间,也就是通常所说的解空间; 注:非齐次线性方程组AX=b的全体解向量,在上述两种运算下 不构成一个线性空间.
4.向量组
1,2 ,L ,m线性相关当且仅当其中至少
有一个向量是其余向量的线性组合。
11
5.向量组 1 ,2 ,L , m 线性无关,而 , 1 , 2 ,L , m 线性相关,则可以由向量组 表示。
1,2 ,L ,m
唯一 线性
6.线性无关组不含零向量,等价的含零向量的向量组必定 线性相关。 7. 如果向量组 1 , 2 ,L , 线性无关,并且可由向量组 s 线性表示,则 s t 8.等价的线性无关向量组必定含有相同个数的向量.
第二节线性空间的定义与简单性质

注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
, , , … 表示线性空间 V 中的元素,用小写的
拉丁字母 a, b, c, … 表示数域 P 中的数.
注 ◆ 向量空间的定义可简单记为 “1128 ” ,
即一个数域 P,这是基础域; 一个集合V; 两个
运算,又叫做线性运算;八条规则,其中前四条是
加法的运算律,这时称V对加法做成一个加群,第
例 3 全体定义在区间 [a,b]上的连续函数组成 的集合V, 对于函数的加法及实数与连续函数的乘 法, 构成实数域上的一个线性空间. 用 C [a,b] 表示.
例 4 数域 P 上一元多项式环 P[ x ], 按通常 的多项式加法和数与多项式的乘法,构成数域 P 上 的一个线性空间. 如果只考虑其中次数小于 n 的多 项式,再添上零多项式也构成数域 P 上的一个线性 空间,用 P[ x ]n 表示. 但是,数域 P 上的 n 次多 项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.
证明 + 0 = 1 + 0 = (1 + 0) = 1 = .
所以
0 = 0 .
k0 + k = k (0 +) = k
所以
k0 = 0 .
(-1) + = (-1) + 1 =[(-1) + 1] = 0 =0 ,
所以
11线性空间

P[x]n {an xn an1xn1 a1x a0 an , an1,, a0 R}
对于通常的多项式加法,数与多项式的乘法构成线性空 间.
例 4 在实数域上, m n 矩阵全体 Rmn 按照通常矩阵的
加法,数与矩阵的乘法构成一个线性空间.
例 1. 实数域 R 按照实数间的加法与乘法,构成一 个自身上的线性空间,仍记为 R .
例 2 分量属于数域 P 的全体 n 元数组 (x1, x2 , , xn )T 按照通常的加法与数与 n 元数组的乘法,构成 P 上的一个 线性空间,记作 Pn .当 P = C 时,Pn 称为 n 元复线性空间, 记作 C n ;当 P = R 时,Pn 称为 n 元实线性空间,记作 Rn .
S x Ax , x Cn 是否构成线性空间?
例 9 设 an ,bn 是两个收敛于 0 的实数无穷序列,则
lnim(an
bn
)
lim
n
an
lim
n
bn
0;
且 a R, 有
lim
n
aan
a
lim
n
an
0;
并且易证八条性质也成立. 所以,一切收敛于 0 的实序列对于如上
此基称为 R n 的标准基. 因对于任意的 (a1, a2 , , an )T R n ,
有
a11 a2 2 an n ,
所以 在基1, 2 ,, n 下的坐标为 (a1, a2 ,, an )T .
例 15 在 Rn 中如下的 n 个向量
1 (1,1,1,,1),T 2 (0,1,1,,1)T , , n (0,0,,0,1)T 也是 R n 的一个基,因为对于任意的 (a1, a2 , , an )T R n ,有
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换

复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
第1章 线性空间与线性变换

请双面打印/复印(节约纸张)工程矩阵理论主讲: 张小向第一章 线性空间与线性变换第一节 线性空间的基本概念 第二节 基, 维数与坐标变换 第三节 子空间的和与交 第四节 线性映射 第五节 线性映射的矩阵 第六节 线性映射的值域与核 第七节 几何空间线性变换的例子 第八节 线性空间的同构第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念§1.1 线性空间的基本概念 一. 几个具体的例子 1.n= {(a1, …, an)T | a1, …, an ∈ }.2, 3).1. n. 2. [x]. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ 6. V = {α}.+, +非空集合(特例: 2. [x] ={a0+a1x+…+anxn a11 a21 … am1| a1, …, an ∈ }. .3. Mm×n( ) =a12 … a1n a22 … a2n 诸aij ∈ … …… am2 … amn共 同 点系数域 两种运算 八条规则∀k∈ .α +α = α, kα = α, ∀k∈ .第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念二. 线性空间的定义与性质 定义1.1.1 线性空间V(F). V——非空集合 F——数域 加法交换律 结合律 有零元素 每个元素都有负元素 1α = α k(lα) = (kl)α (k+l)α = kα + lα k(α+β) = kα + kβ定理1.1.1. (1) 零向量唯一; (2) 任一向量的负向量唯一; (3) 0α = θ; (4) kθ = θ; (5) (−1)α = −α, (−k)α = −(kα); (6) kα = θ ⇒ k = 0或α = θ.数乘272365083@1请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念三. 线性组合, 线性表示 1. 设α1, …, αk ∈V(F), x1, …, xk ∈F, 则称 x1α1 + … + xkαk 为α1, …, αk的一个线性组合. 2. 设α1, …, αk, β ∈ V(F). 若∃ x1, …, xk ∈ F s.t. β = x1α1 +…+ xkαk 则称β能由向量组α1, …, αk线性表示. 3. 若β1, …, βl都能由α1, …, αk线性表示,则称向量组β1, …, βl能由α1, …, αk线性表 示.四. 形式矩阵 设α1, …, αk , β1, …, βk ∈V(F). 1. 若α1 = β1, …, αk = βk , 则记(α1, …, αk) = (β1, …, βk). 2. 规定 (α1, …, αk) + (β1, …, βk) = (α1+β1, …, αk+βk). 3. 若a ∈F, 则规定 a(α1, …, αk) = (aα1, …, aαk).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念4. 若x1, …, xk ∈F, 则记 x1α1 +…+ xkαk = (α1, …, αk) x1 . xk 5. 若A = (A1, …, As) ∈ Mk×s(F), 则规定 (α1, …, αk)A = ((α1, …, αk)A1, …, (α1, …, αk)As). …注: 设α1, …, αk , β1, …, βk ∈V(F). a, b ∈ F, A, B ∈ Mk×s(F), C ∈ Ms×t(F). 记α = (α1, …, αk), β = (β1, …, βk), 则可以验证下列等式成立: ① a(α + β) = aα + aβ, ② (a+b)α = aα + bα, ③ a(bα) = (ab)α. ④ (α + β)A = αA + βA, ⑤ α(A+B) = αA + αB, ⑥ (αA)C = α(AC), ⑦ (aα)A = a(αA) = α(aA).第一章 线性空间与线性变换§1.1 线性空间的基本概念第一章 线性空间与线性变换§1.1 线性空间的基本概念五. 线性空间的子空间 定义1.1.2 子空间, W ≤ V(F) 定理1.1.2. 设∅ ≠ W ⊆ V(F), 则 W ≤ V(F) ⇔ W关于的加法和数乘封闭. 注: V(F)的两个平凡的子空间. {θ}, V(F)六. 由子集合{α1, α2, …, αk}生成的子空间 {α1, α2, …, αk}——生成系, 生成元集i=1 k∑ xiαi —— α1, α2, …, αk的一个线性组合 组合系数 W = { ∑ xiαi | ∀xi∈ F}.k记为L[α1, α2, …, αk]或span{α1, α2, …, αk}.i=1272365083@2请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换§1.2 基, 维数与坐标变换 一. 向量组的线性相关性 定义1.2.1 线性相关, 线性无关. 定理1.2.1 设(I) α1, α2, …, αs线性无关, 且能由 (II) β1, β2, …, βt线性表示, 则s ≤ t. 推论1 设(I)与(II)都线性无关, 且等价, 则s = t. 推论2 设(I)能由(II)线性表示, 且s > t, 则(I)必线性相关.二. 基、维数 定义1.2.2 基, 维数. 例子. 1. n. 2. [x], [x]n = {a0+a1x+…+an−1xn−1 | …}. 3. Mm×n( ). 4. { f(x) | f: → }. 5. = {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . 6. V = {θ}.+第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.2 若dimV = n, 则V中任意 n 个线性无 关的向量都构成V的一组基. 定理1.2.3 若W ≤ V, dimV = n, α1, …, αr 为W 的一组基, 则∃αr+1, …, αn∈ V 使得 α1, …, αr, αr+1, …, αn构成V的一组 基.三. 坐标 定义1.2.3 设α1, …, αn为V的一组基, ξ ∈ V. 若ξ = x1α1 + … + xnαn, 则称有序数组(x1, …, xn)为ξ在基 α1, …, αn下的坐标, (x1, …, xn)T称为ξ的坐标向量.第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.2 基, 维数与坐标变换定理1.2.4 设α1, …, αn为V的一组基, (β1, …, βr) = (α1, …, αn)x11 … x1r x11 … x1r xn1 … xnr … …四. 坐标变换 V的两组基 , P, 可逆X=xn1 … xnr,p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnn 称P为从基α1, …, αn到β1, …, βn的过渡矩 阵.…则β1, …, βr线性无关 ⇔ 秩(X) = r.272365083@…3请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.2 基, 维数与坐标变换第一章 线性空间与线性变换§1.3 子空间的和与交四. 坐标变换 V的两组基 P, 可逆§1.3 子空间的和与交 一. 基本概念与结论 定义1.3.1 设V1, V2 ≤ V. V1与V2的和: V1 + V2 = {α1 + α2 | α1∈V1, α2∈V2}. V1与V2的交: V1∩V2 = {α∈V | α∈V1且α∈V2}. 定理1.3.1 V1, V2 ≤ V ⇒ V1 + V2, V1∩V2 ≤ V.p11 … p1n (β1, …, βn) = (α1, …, αn) … … … , pn1 … pnnξ = (α1, …, αn)X = (β1, …, βn)Y,(α1, …, αn)PY ⇒ X = PY, Y = P−1X. ——坐标变换公式 =第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交注: ① 子空间V1∩V2与集合V1∩V2是一致的. ② 一般情况下, V1+V2 ≠ V1∪V2. 例如V =3,zOV1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴.定理1.3.2 (维数定理) 设V1, V2是V的两个有限维子空间, 则 dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2). 证明: (关键步骤) y(1) 取V1∩V2的一组基α1, …, αr ; (2) 把α1, …, αr扩充成V1的一组基 α1, …, αr, βr+1, …, βs ; (3) 把α1, …, αr扩充成V2的一组基 α1, …, αr, γr+1, …, γt ; (4) 验证α1, …, αr, βr+1, …, βs, γr+1, …, γt 线性无关(从而构成V1+V2的一组基).x③ V1+V2 = V1∪V2 的充分必要条件是 V1⊆V2 或 V2⊆V1.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交k1α1+…+krαr+kr+1βr+1+…+ksβs+lr+1γr+1+…+ltγt = 0 ⇒ lr+1γr+1+…+ltγt = −k1α1−…−krαr−kr+1βr+1−…−ksβs ∈ V1∩V2 ⇒ ∃l1, …, lr s.t. lr+1γr+1+…+ltγt = l1α1+…+lrαr i.e. l1α1+…+lrαr −lr+1γr+1−…−ltγt = 0 ⇒ l1 = … = lr = lr+1 = … = lt = 0 ⇒ k1α1+…+krαr+kr+1βr+1+…+ksβs = 0 ⇒ k1 = … = kr = kr+1 = … = ks = 0dimV1 + dimV2 = dim(V1+V2) + dim(V1∩V2) 例1(1) V = 3, V1 = xOy平面, V2 = yOz平面, V1+V2 = V, V1∩V2 = y轴, dimV1 = dimV2 = 2, dim(V1+V2) = 3, dim(V1∩V2) = 1. zOyx272365083@4请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交例1(2) V = V2 =2×2,V1 =x y z tx = y ≤ V,例1(3) V = V2 =2×2,V1 =x −x y −yx, y ∈ ≤ V,≤ V,x y z tx + y + z = 0 ≤ V,x y z tx y x yx, y ∈0 0V1+V2 = ______. V1∩V2 =x=y且x+y+z=0 ,则 0 0 , 构成V1的一组基, 1 −11 0 0 1 , 构成V2的一组基, 1 0 0 11 −1dimV1 = dimV2 = 3, dim(V1∩V2) = 2, 故dim(V1+V2) = 3 + 3 − 2 = 4 = dimV, 可见V1+V2 = V.故dimV1 = dimV2 = 2.x −x y −y ∈V2 ⇔ x = y. x −x 故V1∩V2 = x −x x ∈.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交可见1 −1 构成V1∩V2的一组基, 1 −1dim(V1∩V2) = 1. 故dim(V1+V2) = dimV1 + dimV2 − dim(V1∩V2) = 2 + 2 − 1 = 3. 事实上,1 0 0 1 1 −1 0 0 , , 1 0 , 0 1 线性相关, 0 0 1 −1二. 子空间的直和 定义1.3.2 设V1, V2 ≤ V. 若对于∀α∈V1+V2, ∃| α1∈V1, α2∈V2, s.t. α = α1 + α2, 则称V1 + V2为V1与V2的直和, 记为V1⊕V2.其中任意3个都线性无关, 因而构成V1+V2的 一组基.α = α1 + α2, α1∈V1, α2∈V2 ⇒ α = β1 + β2, β1∈V1, β2∈V2 α1 = β1, α2 = β2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.3 设V1, V2 ≤ V, 则下列条件等价: (1) V1 + V2是直和; (2) V1 + V2中0分解式唯一, 即 0 = α1+α2 (αi∈Vi) ⇒ α1 = α2 = 0; (3) V1∩V2 = {0}; 当dimV1, dimV2 < ∞时, 上述条件还等价于 (4) dim(V1+V2) = dimV1 + dimV2.定理1.3.4 设V1 ≤ V, dimV = n, dimV1 = r, 则存在V的n−r维子空间V2使得 V = V1⊕V2. 定义1.3.3 设V1, …, Vs ≤ V, 则V1, …, Vs的和 V1 + … + Vs = {α1 +…+ αs | αi∈Vi}. 若对于∀α ∈ V1 + … + Vs , ∃| αi∈Vi (i = 1, …, s) s.t. α = α1 + … + αs , 则称V1 +…+ Vs为V1, …, Vs的直和, 记为V1⊕…⊕Vs .272365083@5请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.3 子空间的和与交定理1.3.5 设Vi ≤ V (i = 1, …, s), 则TFAE: (1) V1 + … + Vs是直和; (2) V1 + … + Vs中0分解式唯一; (3) Vk∩Σi≠kVi = {0}, k = 1, …, s; 当dimVi < ∞ (i = 1, …, s)时, 上述条件还等价于 (4) Σ dimVi = dim( Σ Vi).i=1 i=1 s s例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ Fn. (2) ∀α∈Fn, 有α = (α − Aα) + Aα, A(α − Aα) = Aα − A2α = 0, A(Aα) = A2α = Aα. 可见α ∈ V1+V2. 这就证明了Fn ⊆ V1+V2. 又因为V1+V2 ⊆ Fn, 所以Fn = V1+V2.第一章 线性空间与线性变换§1.3 子空间的和与交第一章 线性空间与线性变换§1.4 线性映射例2. 设A2 = A ∈ Fn×n, V1 = {X ∈ Fn | AX = 0}, V2 = {X∈Fn | AX = X}. 证明: Fn = V1⊕V2. 证明: (1) 容易验证V1, V2 ≤ (2) Fn = V1+V2. (3) 若α∈V1∩V2, 则α = Aα = 0. Fn. 可见V1∩V2 ⊆ {0}. 又因为{0} ⊆ V1∩V2, 所以V1∩V2 = {0}. 综上所述, Fn = V1⊕V2.§1.4 线性映射 一. 映射 定义1.4.1 像 原像 • • • 映射 • • • • • • 满射 • •第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • 单射 注:• • •• • • 双射• • •f:→; a → |a| ;a→ √a2(∀a∈ ) (∀a∈ )g: →f = g —— ∀a∈ , f(a) = g(a) 一般地, 若映射f, g: A → B满足 f(a) = g(a) (∀a∈A) 则称映射f与g相等, 记为f = g.• • •• • •• •• • •不是映射不是映射272365083@6请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射• • • f • • •• • •• • • g • • • gf• • •注① 映射的复合运算满足结合律: f: A → B, g: B → C, h: C → D (hg)f = h(gf). A B f b• g C c• h D d•• • •a•[(hg)f](a) = (hg)[f(a)] = (hg)(b) = h[g(b)] = h{g[f(a)]} = h[(gf)(a)] = [h(gf)](a)f: A → B与g: B → C的乘积 gf: A → C定义为 ( gf )(a) = g[ f(a)] (∀a∈A).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② 1A: A → A, f: A → B, 1B: B → B f⋅1A = f, A a• 1A A a• f 1B⋅f = f. B b• 1B B b• • • • 双射f • • • • • • • • •f的逆映射( f⋅1A)(a) = f [1A(a)] = f(a) (1B⋅f )(a) = 1B[ f(a)] = f(a)若映射f: A → B, g: B → A满足 gf = 1A, fg = 1B, 则称g为f 的逆映射, 记为g = f −1. 注① g = f −1 ⇒ f = g−1. 注② f: A → B有逆映射⇔ f: A → B为双射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇒) 设f: A → B有逆映射g: B → A, 则 (1) ∀x, y ∈ A, 由 f(x) = f(y)可得 x = 1A(x) = gf(x) = gf(y) = 1A(y) = y. 可见 f: A → B为单射. (2) ∀b ∈ B, ∃a = g(b) ∈ A s.t. f(a) = f[g(b)] = fg(b) = 1B(b) = b. 可见 f: A → B为满射. 所以 f: A → B为双射.注② f: A → B有逆映射⇔ f: A → B为双射.证明: (⇐) 设 f: A → B为双射, 则 ∀b ∈ B, ∃| a ∈ A s.t. f(a) = b. 令g(b) = a, 可得 映射g: B → A. 而且 (1) ∀b ∈ B, 有 fg(b) = f[g(b)] = f(a) = b. 这就是说, fg = 1B. (2) ∀a ∈ A, 令b = f(a) ∈ B, 按g的定义, gf(a) = g[ f(a)] = g(b) = a. 这就是说, gf = 1A, 可见 f: A → B有逆映射g: B → A.272365083@7请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射例1. 设A为数域F上的n阶方阵, Fn = {(a1, …, an)T | a1, …, an∈F}. 映射f: Fn→ Fn定义为 f(x) = Ax. 证明下列条件等价: (1) f: Fn→ Fn为单射; (2) f: Fn→ Fn为满射; (3) A可逆.证明: (1)⇒(3) 假设A不可逆, 则|A| = 0, 故r(A) < n, 因而Ax = 0有非零解, 即存在x ≠ 0使得Ax = 0, 于是f(x) = Ax = 0 = A0 = f(0). 这与“f: F n→ F n为单射”矛盾. 所以A可逆. (3)⇒(1) 对于任意的x, y ∈ F n, 若f(x) = f(y), 即Ax = Ay, 因为A可逆, 所以x = A−1Ax = A−1Ay = y. 可见 f: F n→ F n为单射.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射证明: (2)⇒(3) 因为f: F n→ F n是满射, 所以存在n阶方阵B = (ξ1, …, ξn)使得 AB = (Aξ1, …, Aξn) = ( f(ξ1), ..., f(ξn)) = (e1, …, en) = I. 从而|A|×|B| = |AB| = |I| = 1, 故|A| ≠ 0, 因而A可逆. (3)⇒(2) 对于任意的y ∈ F n, 令x = A−1y, 则x ∈ F n, 而且f(x) = Ax = AA−1y = y. 可见f: F n→ F n为满射.二. 线性映射与线性变换 定义1.4.2 设U, V为数域F上的线性空间. 若映射 f: V → U保持加法和数乘, 即 f(α+β) = f(α) + f(β), f(kα) = kf(α), ∀α, β ∈ V, k ∈ F, 则称 f 为线性映射. 特别地, 当U = V时, 称线性映射 f: V → V为V上的线性变换. 注① f(kα+lβ) = kf(α) + lf(β), ∀α, β ∈ V, k ∈ F.第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射注② Hom(V, U) = { f: V → U | f为线性映射}. 注③ 若 f ∈ Hom(V, U), 则 f(0V) = 0U; f(−α) = −f(α); f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs); α1, …, αs线性相关 ⇒ f(α1), …, f(αs)线性相关. 注④ 若 f: V → U 满足 f(α) = 0, ∀α∈V, 则 f ∈ Hom(V, U), 称为零映射, 记为0.注⑤ 若 f: V → V 满足 f(α) = α, ∀α∈V, 则 f ∈ Hom(V, V), 称为V上的恒等变换, 记为 I 或 IdV . 注⑥ 对于 f ∈ Hom(V, U), 可以把 ( f(α1), …, f(αs))记为f(α1, …, αs). 相应地, 可以把 f(x1α1+…+xsαs) = x1 f(α1) +…+ xs f(αs) 改写成 ( α1, ), …, f(α f((α1, …, αs)X) = f(f(α1…, αs)X. s))X272365083@8请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.4 线性映射三. 线性映射的运算 定义1.4.3 (1) 线性运算 设 f, g ∈ Hom(V, U), k ∈ F. 定义 ( f + g)(α) = f(α) + g(α), (kf )(α) = kf(α), ∀α∈V. (2) 复合运算 设 f∈Hom(V, U), g∈Hom(U, W). 定义 (gf )(α) = g[ f(α)], ∀α∈V.注: 对于V上的线性变换 f 及正整数s, 定义 f 0 = I, f 1 = f, f 2 = ff, …, f s = ff s−1. 定理1.4.1(1) 设 f, g ∈ Hom(V, U), k ∈ F, 则 f + g, kf ∈ Hom(V, U). (2) 设 f∈Hom(V, U), g∈Hom(U, W), 则 gf∈ Hom(V, W). 证明: (2) (gf )(kα+lβ) = g[ f(kα+lβ)] = g[kf(α) + lf(β)] = kg[ f(α)] + lg[ f(β)] = k(gf )(α) + l(gf )(β).第一章 线性空间与线性变换§1.4 线性映射第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.4.2 设 f ∈ Hom(V, U). 若 f 可逆, 则 f −1 ∈ Hom(U, V). 证明: ∀ξ, η ∈ U, k, l ∈ F, 令α = f −1(ξ ), β = f −1(η)∈ V, 则 f [ f −1(kξ + lη)] = kξ + lη = kf(α) + lf(β) = f(kα + lβ), 故 f −1(kξ + lη) = kα + lβ = kf −1(ξ ) + lf −1(η).§1.5 线性映射的矩阵 一. 线性映射在给定的基偶下的矩阵 设α1, …, αn为V的一组基, β1, …, βs为U的一组基, f ∈ Hom(V, U), 则存在A = (aij)s×n使得 ( f(α1), …, f(αn)) = (β1, …, βs)a11 … a1n as1 … asn,简记为 f(α1, …, αn) = (β1, …, βs)A. 称为 f 在基偶{α1, …, αn}与{β1, …, βs}下 的矩阵表示. A —— f 在基偶…下的矩阵.……第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵特别地, 设α1, …, αn为V的一组基, f ∈ Hom(V, V), 则存在A = (aij)n×n使得 ( f(α1), …, f(αn)) = (α1, …, αn)a11 … a1n an1 … ann注① 零映射在任意基偶下的矩阵都是O; 恒等变换在任一组基下的矩阵都是I. 注② 设α1, …, αn为V的一组基, ,…简记为 f(α1, …, αn) = (α1, …, αn)A. 称为 f 在基{α1, …, αn}下的矩阵表示. A —— f 在基{α1, …, αn}下的矩阵.…β1, …, βs为U的一组基, f(α1, …, αn) = (β1, …, βs)A. 若ξ = x1α1 + … + xnαn = (α1, …, αn)X, 则 f(ξ) = f(x1α1 + … + xnαn) = x1 f(α1) + … + xn f(αn) = ( f(α1), …, f(αn))X = f(α1, …, αn)X = (β1, …, βs)AX.272365083@9请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例2. 在 [x]n中, D[p(x)] = p′(x), D(1, x, x2, …, xn−2, xn−1)0 0 0 . 0 … 0 1 0 … 0 0 0 2 … 0 … 2, …, xn−2, xn−1) 0 0 0 = (1, x, x n−2 0 0 0 … 0 0 0 0 … 0 … … …例3. D: [x]n → D(1, x, x2,[x]n−1, D[p(x)] = p′(x), …, xn−2, xn−1)0 0 0 . …0 1 0 … 0 0 0 2 … 0 = (1, x, x2, …, xn−2) 0 0 0 … … … ……n−1…0 0 0 … 0 n−1n−2例4. 设A ∈F s×n, f: F n → F s, f(X) = AX. f(e1, …, en) = (Ae1, …, Aen) = AIn = A = IsA = (ε1, …, εs)A.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵二. 线性映射在两对基偶下的矩阵间的联系 定理1.5.1 设 f ∈ Hom(V, U), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P; U的一组基ξ1, …, ξs到另一组基 η1, …, ηs的过渡矩阵为Q. 若 f(α1, …, αn) = (ξ1, …, ξs)A, f(β1, …, βn) = (η1, …, ηs)B, 则B = Q−1AP.证明: (β1, …, βn) = (α1, …, αn)P (η1, …, ηs) = (ξ1, …, ξs)Q f(α1, …, αn) = (ξ1, …, ξs)A f(β1, …, βn) = (η1, …, ηs)B⇒(ξ1, …, ξs)AP = f(α1, …, αn)P = f((α1, …, αn)P) = f(β1, …, βn) = (η1, …, ηs)B = (ξ1, …, ξs)QB ⇒ AP = QB ⇒ B = Q−1AP.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵定理1.5.2 设 f ∈ Hom(V, V), 其中 V的一组基α1, …, αn到另一组基 β1, …, βn的过渡矩阵为P. 若 f(α1, …, αn) = (α1, …, αn)A, f(β1, …, βn) = (β1, …, βn)B, 则B = P−1AP.三. 线性变换运算的矩阵 设V的一组基为α1, …, αn , 线性变换 f: V→V在这组基下的矩阵记为 [ f ]. 定理1.5.3 设 f, g ∈ Hom(V, V), k ∈ F, 则 (1) [ f + g] = [ f ] + [g]. (2) [kf ] = k[ f ]. (3) [ fg] = [ f ][g]. (4) f 可逆⇒[ f −1] = [ f ]−1.272365083@10请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (1)( f + g)(α1, …, αn) = (( f + g)(α1), …, ( f + g)(αn)) = ( f(α1)+g(α1), …, f(αn)+g(αn)) = ( f(α1), …, f(αn)) + (g(α1), …, g(αn)) = f(α1, …, αn) + g(α1, …, αn) = (α1, …, αn)[ f ] + (α1, …, αn)[g] = (α1, …, αn){[ f ]+[g]}.证明: (2)(kf )(α1, …, αn) = ((kf )(α1), …, (kf )(αn)) = (kf(α1), …, kf(αn)) = k( f(α1), …, f(αn)) = kf(α1, …, αn) = k{(α1, …, αn)[ f ]} = (α1, …, αn){k[ f ]}.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵证明: (3)( fg)(α1, …, αn) = (( fg)(α1), …, ( fg)(αn)) = ( f(g(α1)), …, f(g(αn))) = f(g(α1), …, g(αn)) = f(g(α1, …, αn)) = f((α1, …, αn)[g]) = f(α1, …, αn)[g] = ((α1, …, αn)[ f ])[g] = (α1, …, αn)([ f ][g]).证明: (4) 设[ f −1] = B, 即 f −1(α1, …, αn) = (α1, …, αn)B, 则(α1, …, αn) = ( ff −1)(α1, …, αn) = f( f −1(α1, …, αn)) = f((α1, …, αn)B) = f(α1, …, αn)B = ((α1, …, αn)[ f ])B = (α1, …, αn)([ f ]B), 由此可得[ f ]B = I, 因而[ f −1] = B = [ f ]−1.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵例5. 设dimV = n, f ∈ Hom(V, V), f 2 = I. 证明: [ f ]相似于 Ir O (0 ≤ r ≤ n). O −In−r证明: 令V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α}, 则V1, V2 ≤ V 且V1∩V2 = {0}. 1 1 ∀α∈V, 令β = −(α +f(α)), γ = −(α −f(α)), 2 2 则由f 2 = I 可得 f(β) = β, f(γ) = γ, 故β ∈V1, γ ∈V2, α = β + γ ∈V1 + V2. 可见V1 + V2 ⊆ V ⊆ V1 + V2.因而V = V1 + V2 = V1⊕V2 . 设V1的一组基为α1, …, αr , V2的一组基为βr+1, …, βn , f 在V的基α1, …, αr , βr+1, …, βn下的矩阵为 Ir O . O −In−r 由定理1.5.2可知, [ f ]相似于 Ir O . O −In−r272365083@11请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.5 线性映射的矩阵四. 不变子空间 定义1.5.1 设 f ∈ Hom(V, V), W ≤ V. 若∀α∈W, 有 f(α)∈W, 则称W为V的关于 f 的不变子空间, 简称为 f 的不变子空间. 此时, 定义 f |W: W → W; α → f(α), 则 f |W ∈ Hom(W, W), 称为f 在W上 的限制.例如: ① 例5中, f ∈ Hom(V, V), f 2 = I, 则 V1 = {α∈V | f(α) = α}, V2 = {α∈V | f(α) = −α} 都是 f 的不变子空间. ② ∀ f ∈ Hom(V, V), {0}和V都是 f 的不变子空间.第一章 线性空间与线性变换§1.5 线性映射的矩阵第一章 线性空间与线性变换§1.6 线性映射的值域与核注: 设dimV = n, f ∈ Hom(V, V), V = U⊕W, 其中U, W都是 f 的不变子空间, U的一组基为α1, …, αr , W的一组基为βr+1, …, βn , 则 f |U(βi) = 0, i = r+1, …, n, f |W(αi) = 0, i = 1, …, r. 设 f |U在U的基α1, …, αr下的矩阵为A, f |W在W的基βr+1, …, βn下的矩阵为B, 则 f 在V的基α1, …, αr , βr+1, …, βn下的矩 A O 阵为 O B .§1.6 线性映射的值域与核 一. 定义 设 f ∈ Hom(V, U), 则称 f(V) = { f(α) |α∈V}为 f 的值域, 记为R( f ); 称K( f ) = {α∈V | f(α) = 0}为 f 的核. VK( f )U f → f(V) 0U第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核二. 性质 定理1.6.1 设 f ∈ Hom(V, U), 则 (1) R( f ) ≤ U. (2) K( f ) ≤ V. (3) 当U = V时, R( f )和K( f )都是 f 的不变子空间. VK( f )U f → f(V) 0U例1. 设A ∈ Fs×n, f: Fn→ Fs定义为 f(X) = AX. 则R( f ) = {AX | X ∈ Fn} ≤ Fs, 这是A的列空间, 也称为A的值域, 记为R(A); K( f ) = {X ∈ Fn | AX = 0}, 这是AX = 0的解空间, 也称为A的核, 记为K(A).272365083@12请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核定理1.6.2 设 f ∈ Hom(V, U), dimV < ∞, 则 dimR( f ) + dimK( f ) = dimV. VK( f )U f → f(V) 0U ...... ...证明: 设α1, …, αk为K( f )的一组基, α1, …, αk, αk+1, …, αn为V的一组基, 则R( f ) = span{ f(αi) | i = 1, …, n} = span{ f(αi) | i = k+1, …, n}. 若ck+1 f(αk+1) + … + cn f(αn) = 0, 则 f(ck+1αk+1 + … + cnαn) = 0, 即ck+1αk+1 + … + cnαn ∈ K( f ), 故存在c1, …, ck使得 ck+1αk+1 + … + cnαn = c1α1 + … + ckαk , 即c1α1 + … + ckαk − ck+1αk+1 − … − cnαn = 0, 由此可得ck+1 = … = cn = 0. 可见 f(αk+1), …, f(αn) 线性无关, 故dimR( f ) + dimK( f ) = dimV.第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例2. 设A = 1 1 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E21) = E11 + E21, f(E12) = f(E22) = E12 + E22, 且E11 + E21, E12 + E22线性无关, 因此, E11 + E21, E12 + E22构成R( f )的一组 基.1 1设X = x1 x2 , 则 3 4 AX ⇔ x1 + x3 = x2 + x4 = 0 ⇔ X = x1(E11 − E21) + x2(E12 − E22). 又因为E11 − E21, E12 − E22线性无关, 可见E11 − E21, E12 − E22构成K( f )的一组基. (E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 0 1 0x x= (E11, E12, E21, E22) 0 1 0 1 ,1 0 −1 0 0 1 0 −1第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核(E11 + E21, E12 + E22, E11 − E21, E12 − E22)1 = (E11, E12, E21, E22) 0 1 0 1 0 1 0 0 其中r 0 1 −1 1 = 4. 1 0 0 0 1 0 −1 0 1 0 1 1 0 −1 0 0 1 , 0 −1故E11 + E21, E12 + E22, E11 − E21, E12 − E22线性 无关, 因而R( f ) + K( f )为直和.事实上, 若B ∈ R( f ) ∩ K( f ), 则存在X∈ 2×2 使得B = AX, 而且AB = O. 于是可得 2AX = A2X = A(AX) = AB = O, 故B = AX = O. 可见R( f ) ∩ K( f ) = {O}, 因此R( f ) + K( f )为直和.272365083@13请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.6 线性映射的值域与核第一章 线性空间与线性变换§1.6 线性映射的值域与核例3. 设A = 0 0 , f(X) = AX, ∀X∈ 2×2. (1) 分别求R( f )及K( f )的一组基, (2) R( f ) + K( f )是否为直和. 解: 取 2×2的一组基E11, E12, E21, E22. 则R( f ) = span{ f(E11), f(E12), f(E21), f(E22)}, 其中 f(E11) = f(E12) = O, f(E21) = E11, f(E22) = E12, 且 E11, E12 线性无关, 因此, E11, E12构成R( f )的一组基.0 1设X = x1 x2 , 则 3 4 AX ⇔ x3 = x4 = 0 ⇔ X = x1E11 + x2E12. 又因为E11, E12 线性无关, 可见E11, E12构成K( f )的一组基. 因为R( f ) = span{E11, E12} = K( f ), 因此R( f ) + K( f )不是直和.x x第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子§1.7 几何空间线性变换的例子 一. 辐射相似变换 f:3二. 平行于某矢量的投影变换 对于任意的OP ∈P e23,e3→3OP → kOP (k > 0).设OP = x1e1 + x2e2 + x3e3, 令 f(OP) = x1e1 + x2e2, 则 f ∈ Hom(3, 3),e3 P O e1 1 0 0 0 0 0 e2O e1f在3的任意一组基下的矩阵都是kI.OP − f(OP) // e3,→ 0<k<1 压缩→ k>1 放大f 在e1, e2, e3下的矩阵为 0 1 0 , R( f ) = span{e1, e2}, K( f ) = span{e3}.第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子三. 平行于某一方向的压缩(或延伸) 对于任意的OP ∈3,四. 平行于某一方向的推移 对于任意的OP ∈P e23,e3e3P e2设OP = x1e1 + x2e2 + x3e3,f(OP) = x1e1 + x2e2 + ax3e3, O (a > 0).e13, 3),设OP = x1e1 + x2e2 + x3e3,O e1f(OP) = (x1+ax2)e1 + x2e2 + x3e3, (a ≠ 0). 则 f ∈ Hom(3, 3),则 f ∈ Hom(OP − f(OP) // e3,1 0 0 0 0 a→OP − f(OP) // e1, f 在e1, e2, e3下的矩阵为 0 1 0 .0 0 1 1 a 0f 在e1, e2, e3下的矩阵为 0 1 0 .272365083@14请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子五. 旋转变换 见下一章. 六. 镜像变换 见下一章.平面上的例子:0 • 7 • 5 7 0 • 7 • 5 6• 0 5 x 7 0 y5 0 1 0 −0.2 1 0 5 x 7 0 y • 5 −1第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.7 几何空间线性变换的例子平面上的例子:平面上的例子:β αAβ = 0.5β2 0 A = 0 0.5β αcosφ sinφ B = −sinφ cosφ π/6Aα = 2 α第一章 线性空间与线性变换§1.7 几何空间线性变换的例子第一章 线性空间与线性变换§1.8 线性空间的同构平面上的例子: Cβ = β§1.8 线性空间的同构 一. 定义 设V, U都是数域F上的线性空间. 若∃双射σ∈ Hom(V, U), 则称V与U同构, 记为V ≅ U. 并且称σ为V到U的一个同构映射.βCα = − αα0 C = −1 1 0272365083@15请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构→二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇒) 设α1, …, αk线性无关, 则 c1σ(α1) + … + ckσ(αk) = 0 ⇒ σ(c1α1 + … + ckαk) = 0 = σ(0) ⇒ c1α1 + … + ckαk = 0 ⇒ c1 = … = ck = 0. 可见σ(α1), …, σ(αk)线性无关.→→第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构二. 性质 定理1.8.1 设σ为线性空间V到U的同构映射, 则中向量α1, …, αk线性无关 ⇔ σ(α1), …, σ(αk)线性无关. 证明: (⇐) 设σ(α1), …, σ(αk)线性无关, 则 c1α1 + … + ckαk = 0 ⇒ c1σ(α1) + … + ckσ(αk) = σ(c1α1 + … + ckαk) = σ(0) = 0 ⇒ c1 = … = ck = 0. 可见α1, …, αk线性无关.三. 判定 定理1.8.2 设V与U是数域F上的有限维线性空 间, 则V ≅ U ⇔ dimV = dimU. 证明: (⇒) 设σ为V到U的一个同构映射, 则R(σ) = U, K(σ) = {0}. 故dimV = dimR(σ) + dimK(σ) = dimU.第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(⇐) 设dimV = dimU = n, α1, …, αn为V的一组基, ξ1, …, ξn为U的一组基. 对于任意的α = a1α1 + … + anαn ∈ V, 令σ(α) = a1ξ1 + … + anξn, 则 (1) σ : V → U为单射. 事实上, … (2) σ : V → U为单射. 事实上, … (3) σ ∈ Hom(V, U). 事实上, … 故V ≅ U.(1) σ : V → U为单射. 事实上, 若α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, 且σ(α) = σ(β), 则 a1ξ1 + … + anξn = b1ξ1 + … + bnξn, 故(a1−b1)ξ1 + … + (an−bn)ξn = 0, 由此可得 a1−b1 = … = an−bn = 0, 即(a1, …, an) = (b1, …, bn), 因而α = a1α1 +…+ anαn = b1α1 +…+ bnαn = β.272365083@16请双面打印/复印(节约纸张)第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构(2) σ : V → U为满射. 事实上, ∀ξ∈U, 设ξ = a1ξ1 + … + anξn, 于是令α = a1α1 +…+ anαn, 则α ∈ V 且σ(α) = a1ξ1 + … + anξn = ξ.(3) σ ∈ Hom(V, U). 事实上, ∀α = a1α1 +…+ anαn, β = b1α1 +…+ bnαn, k, l ∈ F, 有 σ(kα + lβ) = σ((ka1+ lb1)α1 +…+ (kan+ lbn)αn) = (ka1+ lb1)ξ1 + … + (kan+ lbn)ξn = k(a1ξ1 +…+ anξn) + l(b1ξ1 +…+ bnξn) = kσ(α) + lσ(β).第一章 线性空间与线性变换§1.8 线性空间的同构第一章 线性空间与线性变换§1.8 线性空间的同构四. 例子 1. [x]n = {a0+…+an−1xn−1 | a0, …, an−1x∈ }. dim [x]n = n = dim 事实上, 容易验证n,2. dimM2×3( ) = 6, 故M2×3( ) ≅ 事实上, 容易验证6.故 [x]n ≅n;n.σ : M2×3( ) →a11 a12 a13 a21 a22 a236;σ : [x]n →a0+…+an−1xn−1 → 为同构映射.a0 an−1 …a11 a12 a → a13 21 a22 a23为同构映射.第一章 线性空间与线性变换§1.8 线性空间的同构3.= {x∈ | x > 0}. a⊕b = ab, ∀a, b∈ +; k⊗a = ak, ∀a∈ +, ∀k∈ . dim + = 1, 故 + ≅ . 事实上, 容易验证 → ; x → logax++为同构映射.272365083@17。
第1章 线性空间与线性变换讲义

a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn
1-1 线性空间

2. 线性空间的基与坐标
(a) 基与坐标 给定数域K上的线性空间 上的线性空间V, 中的r个 给定数域 上的线性空间 ,x1,x2,…,xr是V中的 个 中的 向量。如果满足: 线性无关; 向量。如果满足:1. x1,x2,…,xr线性无关;2. V中 中 任意一个向量都可以由 一个向量都可以由x 线性表出, 任意一个向量都可以由 1,x2,…,xr线性表出,则称 x1,x2,…,xr是V的一组基(base),并称 i为基向量。 的一组基 的一组 ,并称x 基向量。 线性空间的维数就是基中所含基向量个数。 线性空间的维数就是基中所含基向量个数。 维线性空间V的一组基 坐标系。 称n维线性空间 的一组基 1,x2,…,xn为坐标系。 维线性空间 的一组基x 对任意x∈ , 对任意 ∈V,在该组基下的线性表示为 x = ξ1 x1 + ξ 2 x2 + L + ξ n xn , 在该坐标系下的坐标 则称ξ1,ξ2,…,ξn是x在该坐标系下的坐标 在该坐标系下的 (coordinate)或分量,记为 ξ1,ξ2,…,ξn)T。 或分量,记为(
第一章
线性空间与线性变换
1.1 线性空间 1.2 线性变换及其矩阵表示 1.3 常见特殊矩阵
1.1 线性空间
1. 线性空间及其性质 2. 线性空间的基与坐标 3. 线性子空间
1. 线性空间及其性质
(a) 集合 集合(set):是指一些对象的总体。 :是指一些对象的总体。 集合 元素(element):这些对象称为集合的元素。 这些对象称为集合的元素。 元素 这些对象称为集合的元素 整数集; 整数集; 线性方程组的解集; 线性方程组的解集; 由某个平面上所有的点构成的点集。 由某个平面上所有的点构成的点集。 表示集合, 是 的元素 用S表示集合,a是S的元素 a ∈ S 表示集合 a不是 的元素 a ∉ S 不是S的元素 不是
线性空间的基本内容

(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则对任何 V ,有 01 , 02 .
由于 01,02 V , 所以 02 01 02 ,01 02 01.
01 01 02 02 01 02.
Department of Mathematics
2.负元素是唯一的.
实数间的加乘运算,则只需检验对运算的封闭性.
例1 实数域上的全体 m n 矩阵,对矩阵的加法
和数乘运算构成实数域上的线性空间,记作 Rmn.
Amn Bmn Cmn , Amn Dmn ,
Rmn是一个线性空间.
Department of Mathematics
例2 数域F上次数小于n的多项式的全体,记作: F[ x]n {an1 xn1 an2 xn2 L a1 x a0 ai F } 可以验证:F[ x]构成数域F上的线性空间 通常的多项式加法、数乘多项式的乘法两种运
Q F.
Department of Mathematics
三,线性空间的定义和举例
定义1 设V是一个非空集合,F 为一数域.在V上定
义运算如下:
ⅰ)对任意两个元素 x, y V ,总有唯一的一个元素 z
与之对应,称为 x 与 y 的和,记作 z x y
若对于任一数 F 与任一元素 x V ,总有唯
c d 2 (c d 2)(a b 2) பைடு நூலகம் b 2 (a b 2)(a b 2)
ac a2
2bd 2b2
ad bc a2 2b2
2 Q.
Q( 2)为数域. Gauss数域
类似可证 Q(i) a bi a,b Q, i 1 是数域.
Department of Mathematics
a
b
c
0,
a,
b,
c
R.
解 (1)不构成子空间. 因为对
A B 1 0
0 0
0 0
W1
有
2 0 0
A B 0
0
0
W1
,
Department of Mathematics
即W1 对矩阵加法不封闭,不构成子空间.
( 2) 因
0 0
0 0
0 0 W2 ,
即W2非空.
对任意
A a1 0
线性空间引论
哈尔滨工程大学理学院应用数学系
Department of Mathematics, College of Sciences
课前预习、课中提高效率、课后复习 作业要求 书后要求的习题,主动自觉做,抽查和不定时收取
使用教材 《 矩阵论 》哈尔滨工程大学主编
其他辅导类参考书(自选)
Department of Mathematics
Department of Mathematics
例7. 对于任意一个有限维线性空间 V, 它必有两个
平凡子空间,即由单个零向量构成的子空间 0 以及线性空间 V 本身。
例8 .设 A Rmn ,那么线性方程组 AX O的全部 解为线性空间 Rn的一个子空间,我们称其为齐次 线性方程组的解空间。
A BW2, 对任意k R有
kA ka1 kb1 0 0 0 kc1
且 ka1 kb1 kc1 0,
即 kAW2 , 故W2是R23的子空间.
Department of Mathematics
张成子空间的定义:
设x1, x2 , , xm 是线性空间V (F )中的向量,
则由 x1, x2 , , xm的所有线性组合:
证明 假设 有两个负元素 与 ,那么
0, 0.
则有 0
0 .
向量 的负元素记为 .
Department of Mathematics
3. 0 0; 1 ; 0 0. 证明 0 1 0 1 0 1 ,
0 0.
1 1 1 1 1 0 0,
验证 R 对上述加法与乘数运算构成线性空间.
Department of Mathematics
证明: a, b R , a b ab R;
R, a R , a a R .
所以对定义的加法与乘数运算封闭.
下面一一验证八条线性运算规律:
(1) a b ab ba b a;
(2)(a b) c (ab) c (ab)c a (b c);
思考题
实数域R上的n元非齐次线性方程组AX B 的所有解向量, 对于通常的向量加法和数量乘法, 是否构成R上的一个线性空间?为什么?
Department of Mathematics
思考题解答
不能构成R上的一个线性空间.
事
实上,
设X
1
,
X
都
2
是n元
非
齐
次
线
性
方
程
组
AX B的解向量,则
AX1 B,
x y (a c) (b d ) 2 Q( 2), x y (ac 2bd ) (ad bc) 2 Q( 2) 设 a b 2 0, 于是 a b 2 也不为0.
Department of Mathematics
(否则,若 a b 2 0, 则 a b 2, 于是有 a 2 Q, b 或 a 0,b 0 a b 2 0. 矛盾)
1 .
0 1 0
0.
Department of Mathematics
4.如果 0,则 0 或 0 .
证明 假设 0,
那么
1
1
0
0.
又 1 1 .
0.
同理可证:若 0 则有 0.
Department of Mathematics
(3) R中存在零元素1, 对任何a R , 有
a 1 a 1 a;
(4) a R , 有 负 元 素a1 R , 使
Department of Mathematics
a a1 a a1 1;
(5) 1a a1 a;
(6) a a a a a;
(7) oa a aa a a
(3) 在V中存在零元素0, 对任何x V ,
都有x 0 x ; (4)对任何x V , 都有x的负元素y V ,
使x y 0 ;
(5) 1x x ; (6) x x ;
(7) x x x ; (8)x y x y .
Department of Mathematics
一般线性空间的判定方法 (1)一个集合,如果定义的加法和乘数运算是通常的
Sx 是一个线性空间.
Department of Mathematics
(2) 一个集合,如果定义的加法和乘数运算不 是通 常的实数间的加乘运算,则必需检验是否满足八 条线性运算规律.
例5. 正实数的全体,记作 R ,在其中定义加法
及乘数运算为
a b ab, a a , R,a,b R .
练习:
证明:数域F 上的线性空间V若含有一个非零 向量,则V一定含有无穷多个向量
证:设 V , 且 0
k1, k2 P, k1 k2, 有 k1 , k2 V
又 k1-k2 (k1 k2 ) 0 k1 k2 .
而数域F中有无限多个不同的数,所以V中有无限 多个不同的向量. 注:只含一个向量—零向量的线性空间称为零空间.
m
ki xi
| ki K,i
1,2L
m
i1
构成的集合是V (F )的子空间,称为由 x1, x2 , , xm
张成(生成)的子空间,记为:
L( x1, x2 , , xm )或:span[x1, x2 , xm ]
零向量集合与 V 本身称为平凡子空间, 非平凡 子空间称为 V 的真子空间
Department of Mathematics
对于通常的有序数组的加法及如下定义的乘法
( x1, , xn )T 0, ,0不构成线性空间.
解答: S n对运算封闭.
但1x O, 不满足第五条运算规律.
由于所定义的运算不是线性运算,所以S n不是 线性空间.
Department of Mathematics
二,线性空间的性质
1.零元素是唯一的. 证明:
坐标变换. 难点: 基变换与坐标变换
Department of Mathematics
说明:
1)若数集F中任意两个数作某一运算的结果仍在F 中,则说数集F对这个运算是封闭的.
2)数域的等价定义:如果一个包含0,1在内的数 集F 对于加法,减法,乘法与除法(除数不为0) 是封闭的,则称集 F为一个数域.
当齐次线性方程组 AX O 有无穷多解时,其解空 间的基底即为其基础解系;解空间的维数即为基础解 系所含向量的个数。
Department of Mathematics
例9 R23的下列子集是否构成子空间?为什么?
1 b 0
(1) W1
0
c
d
b,
c,
d
R;
(2) W2
a 0
b 0
0 c
第一章
线性空间与线性映射
Department of Mathematics
教学内容和基本要求
1,理解线性空间的概念,掌握基变换与坐标变换的公式; 2, 掌握子空间与维数定理,理解子空间的相关性质; 3, 理解线性变换的概念,掌握线性变换的矩阵示表示,
了解线性空间同构的含义. 重点: 线性空间的概念;子空间的维数定理;基变换与
二、数域的性质定理
任意数域F都包括有理数域Q. 即:有理数域为最小数域.
证明: 设F为任意一个数域.由定义可知,
0 F, 1 F . 于是有 m Z , m 1 1 L 1 F
进而有 m,n Z , m F , m 0 m F .
n
n
n