长沙市中考数学试题压轴题总汇及答案

合集下载

中考数学 中考数学压轴题知识归纳总结及答案

中考数学 中考数学压轴题知识归纳总结及答案

一、中考数学压轴题1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.2.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.3.如图,90EOF ∠=︒,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =,3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,矩形ABCD 也停止运动,设点P 的运动时间为()t s ,PDO △的面积为S . (1)分别写出点B 到OF 、OE 的距离(用含t 的代数式表示);(2)当点P 不与矩形ABCD 的顶点重合时,求S 与t 之间的函数关系式;(3)设点P 到BD 的距离为h ,当15h OD =时,求t 的值;(4)若在点P 出发的同时,点Q 从点B 以每秒43个单位长度的速度向终点A 运动,当点Q 停止运动时,点P 与矩形ABCD 也停止运动,设点A 关于PQ 的对称点为E ,当PQE 的一边与CDB △的一边平行时,直接写出线段OD 的长.4.(1)阅读理解:如图①,在ABC 中,若8AB =,5AC =,求BC 边上的中线AD 的取值范围. 可以用如下方法:将ACD 绕着点D 逆时针旋转180︒得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠=︒,CB CD =,100BCD ∠=︒,以C 为顶点作一个50︒的角,角的两边分别交AB 、AD 于E 、F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并说明理由.5.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.(1)求抛物线的表达式;(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.9.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 3CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.10.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.11.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于AB 、两点.(1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度.(2)已知M 是O 一点,1cm OM =.①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________.②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm .12.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.13.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.14.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?15.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.16.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.17.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).19.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(12,﹣98)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣12m2关于点P(m,0)的相关函数的最大值为6,求m的值.20.已知四边形ABCD为矩形,对角线AC、BD相交于点O,AD=AO.点E、F为矩形边上的两个动点,且∠EOF=60°.(1)如图1,当点E、F分别位于AB、AD边上时,若∠OEB=75°,求证:DF=AE;(2)如图2,当点E、F同时位于AB边上时,若∠OFB=75°,试说明AF与BE的数量关系;(3)如图3,当点E、F同时在AB边上运动时,将△OEF沿OE所在直线翻折至△OEP,取线段CB的中点Q.连接PQ,若AD=2a(a>0),则当PQ最短时,求PF之长.21.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.22.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”:如图1.在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B'处.于是,由∠ACB>∠B',∠ABC=∠B',可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”:如图3.在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N .求证:AM +AN >2BD .23.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.24.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ; (2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.25.(1)如图①,在Rt ABC 中,90C ∠=︒,13AB =,5BC =,则tan A 的值是_______.(2)如图②,在正方形ABCD 中,5AB =,点E 是平面上一动点,且2BE =,连接CE ,在CE 上方作正方形EFGC ,求线段CF 的最大值.问题解决:(3)如图③,O 半径为6,在Rt ABC 中,90B ∠=︒,点, A B 在O 上,点C 在O 内,且3tan 4A =.当点A 在圆上运动时,求线段OC 的最小值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)83;(2)3或433)565x ≤<【解析】【分析】 (1)设BP=a ,则PC=8-a ,由△MBP ~△DCP 知MB BP DC CP=,代入计算可得; (2)分别求出⊙P 与边CD 相切时和⊙P 与边AD 相切时BP 的长即可得;(3)①当PM=5时,⊙P 经过点M ,点C ;②当⊙P 经过点M 、点D 时,由PC 2+DC 2=BM 2+PB 2,可求得BP=7,继而知227465PM =+=.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,228443PB-==综上所述,BP 的长为3或43.(3)如图1,当PM=5时,⊙P 经过点M ,点C ;如图3,当⊙P 经过点M 、点D 时,∵PC 2+DC 2=BM 2+PB 2,∴42+BP 2=(8-BP )2+82,∴BP=7,∴227465PM =+= 综上,565x ≤<【点睛】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.2.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立.【解析】【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】 解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥,∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠.∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒.∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH∴四边形NBHD 是矩形,∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠.∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠,∴AMN NFC ∠=∠,AM AF =.∴AMN NFC △∽△,MB CF =. ∴NM NM AM CF MB NF ==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=-- 2()()ND DM ND DM DM =-+-2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x << 该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫ ⎪⎝⎭∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.3.B解析:(1)35t ,45t ;(2)当0<t <3时,224655S t t =--+;当3<t <7时,23391052S t t =+-;(3)75;(4)132,7713,477 【解析】【分析】(1)过点B 作x 轴垂线,利用相似三角形可求得; (2)分2种情况,一种是点P 在AD 上,另一种是点P 在CD 上,然后利用三角形面积公式可求得;(3)直接令15h OD =即可求出; (4)存在3种情况,第一种是:QP ∥BD ,第二种是EP ∥CD 或EQ ∥CB ,第三种是QE ∥BD ,分别按照几何性质分析求解.【详解】(1)如下图,过点B 作x 轴垂线,垂足为点M根据平移的特点,可得∠BOM=∠DBA∵∠BMO=∠DAB=90°,∴△BMO ∽△DAB∵AB=4,AD=BC=3∴BD=5∵BM OM BO DA BA BD==,OB=t ∴BM=35t ,OM=45t (2)情况一:当0<t <3时,图形如下,过点P 作OD 的垂线,交OD 于点N∵∠NDP=∠BDA ,∠PND=∠BAD ,∴△PND ∽△BAD∵AP=t ,∴PD=3-t ∵PN BA PD BD =,∴PN=()435t - 图中,OD=5+t ∴()()243124562555OBD t S t t t -=+=--+ 情况二:当3<t <7时,图形如下,过点P 作OD 的垂线,交OD 于点N图中,PD=t -3,OD=5+t同理,△PND ∽△BCD ,可得PN=()335t - ∴()()23313395251052OBD t S t t t -=+=-+-(3)情况一:当0<t <3时则h=PN=()435t -∵15h OD =∴()43555t t-+=解得:t=75情况二:当3<t <7时则h=PN=()335t -∵15h OD =∴()33555t t-+=解得:t=7(舍)(4)情况一:QP ∥BD ,图形如下由题意可得:BQ=43t ,AP=t ,则QA=4-43t ,DP=3-t ∵BD ∥QP∴QA PA QB PD= 代入得:4()2243t t =-解得:t=32∴OD=5+t=132 情况二:如下图,EP ∥CD(或EQ ∥CB)∵点E 是点A 关于QP 对称的点∴EP=PA ,EQ=QA ,QP=QP∴△APQ ≌△EPQ∵EP ∥CD ,CD ⊥AD∴EP ⊥AD∴∠APQ=∠EPQ=45°∴△AQP 是等腰直角三角形,AQ=PA∴4-43t t = 解得:t=127∴OD=5+t=477 情况三:如下图,QE ∥BD ,延长QE 交DA 于点N∵△APQ ≌△EPQ ,∴∠QEP=∠QAP=90°∴△ENP 是等腰直角三角形∵QN ∥BD ,∴∠NQA=∠DBA ,∠A=∠A∴△QNA ∽△BDA∵BQ=43t ,AP=t ,QA=4-43t ,DP=3-t ∴QN QA AN BD BA AD== ∴QN=5-43t ,NA=3-t ∴EN=QN -QE=QN -QA=1-3t ,NP=NA -AP=3-2t ,EP=PA=t ∴在Rt △ENP 中,()2223213t t t ⎛⎫-+-= ⎪⎝⎭ 解得:t=1213或t=3(舍) ∴OD=5+t=7713 【点睛】本题考查动点问题,解题关键是利用相似将图形中各边用t 表示出来.4.F解析:(1)28AD <<;(2)见详解;(3)EF BE DF =+,理由见详解【解析】【分析】(1)根据旋转的性质可证明ADC EDB ≅,6,AC BE AD ED ===,在ABE △中根据三角形三边关系即可得出答案;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,可得出CF BM =,根据垂直平分线的性质可得出EF EM =,利用三角形三边关系即可得出结论;(3)延长AB 至N ,使BN=DF ,连接CN ,可得NBC D ∠=∠,证明NBC FDC ≅,得出,CN CF NCB FCD =∠=∠,利用角的和差关系可推出50ECN ECF ∠=︒=,再证明NCE FCE ≅,得出EN EF =,即可得出结论.【详解】解:(1)∵,,AD ED CD BD ADC BDE ==∠=∠ ∴ADC EDB ≅∴6,AC BE AD ED ===在ABE △中根据三角形三边关系可得出: AB BE AE AB BE -<<+,即4216AD << ∴28AD <<故答案为:28AD <<;(2)延长FD 至M ,使DF=DM ,连接BM ,EM ,同(1)可得出CF BM =,∵,FD MD FD DE =⊥∴EF EM =在BEM △中,BE BM EM +>∴BE CF EF +>;(3)EF BE DF =+,理由如下:延长AB 至N ,使BN=DF ,连接CN ,∵180,180ABC D ABC NBC ∠+∠=︒∠+∠=︒ ∴NBC D ∠=∠∴NBC FDC ≅∴,CF CN NCB FCD =∠=∠∵100,50BCD FCE ∠=︒∠=︒∴50ECN ECF ∠=︒=∴NCE FCE ≅(SAS )∴EN EF =∴EF EN BE BN BE DF ==+=+∴EF BE DF =+.【点睛】本题考查的知识点有旋转的性质、全等三角形的判定及性质、线段垂直平分线的性质、三角形三边关系、角的和差等,解答此题的关键是作出辅助线,构造出与图①中结构相关的图形.此题结构精巧,考查范围广,综合性强.5.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF =x , ∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+,∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x -+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴24148 2x xPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴24242()xAE ExQ-===,∴43x=,∴BF=2或43.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.6.E解析:(1)3EF EC=,见解析;(2)27BK=;(3)①AGH是等边三角形,见解析;②1(62)4- 【解析】【分析】 (1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案; ②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,32DC ==⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,3EC ==>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,32FC ==<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得11m =21m =当点在O 内部时,43(4+≥解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为12m ≤≤-或01m ≤≤(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.C解析:(1)26y x x =--;(2)Q 的坐标为()2,0或()4,0;(3)CI 的最小值为42【解析】【分析】(1)待定系数法求解析式;(2)根据//CP BQ 即点C 坐标,可以求出P 点坐标,算出CP 长,即可写出Q 点坐标; (3)利用AIM AIO ≌△△可判断出I 的运动轨迹是圆弧,设I 运动轨迹所在的圆心为G 计算出圆心G 的坐标及半径为,当G 、I 、C 三点共线时候CI 最短.【详解】(1)由题意得:A 点坐标为()2,0-,C 点坐标为()0,6-带入2y x bx c =++中得:4206b c c -+=⎧⎨=-⎩, 解得:16b c =-⎧⎨=-⎩∴抛物线的解析式为26y x x =--.(2)∵点Q 在x 轴上,又点B 、C 、P 、Q 为顶点的四边形是平行四边形∴//CP BQ ,由对称性可知,P 点的坐标为()1,6-∴1PC =,∴1BQ =.∴Q 的坐标为()2,0或()4,0.(3)连接AI ,MI ,OI∵I 为AMN 的内心∴AI 、MI 分别平分MAN ∠,AMN ∠∴MAI OAI ∠=∠又∵MN AN ⊥,∴90ANM ∠=︒∴135AIM ︒∠=.又∵MA OA =,AI AI =∴AIM AIO ≌△△∴135AIO AIM ∠=∠=︒∴I 的运动轨迹是圆弧.设I 运动轨迹所在的圆心为G∵135AIO ∠=︒,∴90AGO ∠=︒又∵AG OG =,2AO =∴圆心G 的坐标为()1,1-2当G 、I 、C 三点共线时候CI 最短∵()()2210165052CG =--++== 2GI =∴CI 的最小值为52242=综上所述:CI 的最小值为42【点睛】此题为二次函数的综合应用,第一问利用待定系数法求解属基本题型;第二问判断出//CP BQ 是解题关键;第三问判断出I 的运动轨迹是解题关键.9.C解析:(1)2233(06)53103343(68)333031503(810)2t t S t t t t t t ⎧+⎪⎪⎪⎪=-+-<⎨⎪⎪-+<⎪⎪⎩,S 的最大值为63;(2)存在,m 的值为165或32163-或163或1423-. 【解析】【分析】(1)分06t 、68t 和810t 三种情况分别表示出有关线段求得两个变量之间的函数关系即可.(2)分两种情形:①如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,即8m =.当RP BR =时,当PB BR =时,当PR PB =时,分别构建方程求解即可.②如图32-中,作RH BC ⊥于H .首先证明90BPR ∠=︒,根据BP PR =构建方程即可解决问题.【详解】解:(1)如图21-中,当06t 时,点P 与点Q 都在AB 上运动,PM AC ⊥,//NQ PM ,90ANQ AMP ∴∠=∠=︒,AQ t =,2AP t =+,60A ∠=︒,1122AN AQ t ∴==,33QN ==,112AM t =+,33PM . ∴此时两平行线截平行四边形ABCD 的面积为33S +. 如图22-中,当68t 时,点P 在BD 上运动,点Q 仍在AB 上运动.则AQ t =,12AN t =,142CN t =-,3QN t =,6BP t =-,10DP t =-,3(10)PM t =-,而43BC =,故此时两平行线截平行四边形ABCD 的面积为: BCNQ BCMP S S S =+四边形四边形()()3111434433106222t t t t ⎛⎫⎛⎫⎡⎤=+⋅-++-⋅- ⎪ ⎪⎣⎦ ⎪⎝⎭⎝ 253103343t t =-+-, 如图23-中,当810t 时,点P 和点Q 都在BD 上运动.则202DQ t =-,(202)3QN t =-,10DP t =-,(10)3PM t =-.∴此时两平行线截平行四边形ABCD 的面积为2333031503S t =-+故S 关于t 的函数关系式为2233(06)53103343(68)3331503(810)t S t t t t ⎪⎪⎪=+-<⎨-+<⎪⎩, 当06t 时,S 随t 增大而增大, 当68t <时,S 随t 增大而增大, 当810t <时,S 随t 增大而减小, ∴当t=8时,S 最大,代入可得S=63(2)如图31-中,由题意点P 在AB 上运动的时间与点R 在BC 上运动的时间相等,8m =. 当RP BR =时,3PB BR =,则有383m m -=⋅,解得165m =, 当PB BR =时,则有38m m -=,解得32163m =-, 当PR PB =时,3BR PB =,则有33(8)m m =-,解得163m =. 如图32-中,作RH BC ⊥于H .在Rt △CHR 中,2(8)CR m =-,30RCH ∠=︒, 182RH CR m ∴==-,8BP m =-,RH BP ∴=, HR BP ∥,∴四边形RHBP 是平行四边形,90RHB ∠=︒,∴四边形RHBP 是矩形,90BPR ∴∠=︒,当BP PR =时,则有83(12)m m -=-,解得1423m =- 综上所述,满足条件的m 的值为165或32163-163或1423-. 【点睛】本题属于四边形综合题,考查了平行四边形的性质,多边形的面积,等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.10.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,。

2023长沙中考数学压轴题

2023长沙中考数学压轴题

2023长沙中考数学压轴题2023年长沙市中考即将来临,对于即将参加考试的学生来说,数学考试一直是其中最具挑战性和重要性的科目之一。

为了更好地帮助同学们备考,我们为大家精心准备了一道长沙中考数学压轴题,希望能够帮助同学们提升解题能力和应试水平。

题目:计算函数f(x) = x^2 + 2x - 3在x = 4和x = -5处的函数值。

解题思路:为了求解函数在x = 4和x = -5处的函数值,我们需要先计算出函数在这两个点上的x值。

然后将这些x值带入函数中,即可得出所需的函数值。

下面是具体的解题步骤:Step 1: 计算函数在x = 4处的函数值将x = 4代入函数f(x)中得到:f(4) = 4^2 + 2 * 4 - 3 = 16 + 8 - 3 = 21所以函数在x = 4处的函数值为21。

Step 2: 计算函数在x = -5处的函数值将x = -5代入函数f(x)中得到:f(-5) = (-5)^2 + 2 * (-5) - 3 = 25 - 10 - 3 = 12所以函数在x = -5处的函数值为12。

综上所述,函数f(x) = x^2 + 2x - 3在x = 4处的函数值为21,在x = -5处的函数值为12。

通过解答这道数学压轴题,我们可以看出,在求解函数值的过程中,我们只需要将给定的x值带入函数中,然后按照运算顺序进行计算即可得出结果。

同时,这道题目也提醒我们,在考试中遇到类似的计算题目时,我们可以先将给定的数值代入公式,再进行运算,这样可以更加高效地解题,避免出错。

希望大家能够通过这道数学压轴题,加深对函数值的理解和计算能力,为2023长沙中考做好准备。

预祝同学们取得优异的成绩!。

2023年长沙中考数学压轴题

2023年长沙中考数学压轴题

2023年长沙中考数学压轴题在2023年长沙中考数学压轴题中,考生需要运用数学知识和解题技巧,回答一系列与中学数学相关的问题。

这些问题涵盖了数学的各个领域,包括代数、几何、概率统计等等。

以下是我为您准备的一篇关于2023年长沙中考数学压轴题的详细分析。

题目一:代数方程的求解1. 某代数方程的解为x=3,求解该方程的另一组解。

2. 若方程x^2-5x+k=0的两个解互为倒数,求解该方程的解。

解析:1. 若某代数方程的解为x=3,则该方程可以表示为(x-3)(x-a)=0,其中a为另一组解。

根据零乘法则,当(x-3)(x-a)=0时,x-3=0或x-a=0。

解得a=3,因此该方程的另一组解为x=3。

2. 若方程x^2-5x+k=0的两个解互为倒数,则方程可以表示为x(x-1/ x)=0。

根据零乘法则,当x(x-1/ x)=0时,x=0或x-1/ x=0。

解得x=0或x^2=1。

因此,方程的解为x=0和x=1。

题目二:几何问题1. 已知△ABC中,AB=AC,∠BAC=40°,则∠BCA=?2. 已知平行四边形ABCD中,AB=6 cm,BC=8 cm,求对角线AC的长度。

解析:1. 根据△ABC中,AB=AC,可以得知∠ABC=∠ACB,根据三角形内角和定理,∠BAC+∠ABC+∠ACB=180°。

代入已知信息,40°+∠ABC+∠ABC=180°,解得∠ABC=70°。

因此,∠BCA=∠ABC=70°。

2. 平行四边形ABCD中,对角线AC将平行四边形分为两个全等三角形△ABC 和△ACD。

根据勾股定理,AC的平方等于AB的平方加上BC的平方,即AC^2=6^2+8^2=36+64=100。

因此,AC的长度为√100=10 cm。

题目三:概率统计1. 甲、乙、丙三个学生中,至少有一个是数学竞赛的冠军,已知甲的概率为1/2,乙的概率为2/5,丙的概率为3/4,求至少有一个学生是数学竞赛冠军的概率。

2024长沙中考数学压轴题

2024长沙中考数学压轴题

选择题在直角坐标系中,点A(3,4)关于x轴对称的点的坐标是:A. (-3, -4)B. (3, -4)(正确答案)C. (-3, 4)D. (4, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = -2x + 1与y = x2 - 3x的交点个数是:A. 0个B. 1个(正确答案)C. 2个D. 3个下列四边形中,不一定是平行四边形的是:A. 两组对边分别平行的四边形B. 两组对角分别相等的四边形C. 一组对边平行且相等的四边形D. 对角线互相平分的四边形中,仅有一组对边相等的四边形(正确答案)若a、b为实数,且满足a2 + b2 - 2a + 4b + 5 = 0,则(a + b)2024的值为:A. 1(正确答案)B. -1C. 0D. 22024设集合A = {x | x2 - 5x + 6 = 0},B = {x | ax - 1 = 0},若B是A的真子集,则a的值为:A. 0或1/2B. 0或1/3(正确答案)C. 1/2或1/3D. 1/2或-1/3在圆O中,弦AB与弦CD相交于点P,若AP = 2:3,CP = 2cm,DP = 12cm,则弦AB的长为:A. 10cmB. 15cm(正确答案)C. 20cmD. 25cm已知二次函数y = ax2 + bx + c的图象经过点A(1,0),B(3,0),且顶点到x轴的距离为2,则这个二次函数的解析式为:A. y = x2 - 4x + 3B. y = -x2 + 4x - 3(正确答案)C. y = x2 - 4x + 5D. y = -x2 + 4x - 1正n边形的一个外角等于36°,则n的值为:A. 8B. 9C. 10(正确答案)D. 11。

2024年长沙市中考数学真题试卷及答案

2024年长沙市中考数学真题试卷及答案

2024年湖南省长沙市中考数学真题试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.2.我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000,建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( ) A.81.2910⨯B. 812.910⨯C. 91.2910⨯D. 712910⨯3.“玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉免号”月球车能够耐受月球表面的最低温度是-180℃,最高温度是150℃,则它能够耐受的温差是( ) A.180o C -B. 150O CD. 330O CC. 30O C4.下列计算正确的是( )A. 642x x x ÷=B.=C. 325()x x =D. 222()x y x y +=+5.为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为: 9.5 , 9.2 , 9.6 , 9.4 , 9.5 , 8.8 , 9.4,则这组数据的中位数是( ) A.9.2B.9.4C.9.5D.9.66.在平面直角坐标系中,将点(3,5)P 向上平移2个单位长度后得到点'P 的坐标为( ) A. (1,5)B. (5,5)C. (3,3)D. (3,7)7.对于一次函数21y x =-,下列结论正确的是( ) A.它的图象与y 轴交于点(0,1)- B. y 随x 的增大而减小C.当12x >时,0y < D.它的图象经过第一、二、三象限 8.如图,在ABC ∆中,60,50O O BAC B ∠=∠=,//AD BC ,则1∠的度数为( )A. 50oB. 60oC. 70oD. 80o9.如图,在O 中,弦AB 的长为8.圆心O 到AB 的距离4OE =.则O 的半径长为( )A.4B. C.5D. 10.如图,在菱形ABCD 中,6,30O AB B =∠=,点E 是BC 边上的动点,连接,AE DE ,过点A 作AF DE ⊥于点F .设,DE x AF y ==,则y 与x 之间的函数解析式为( )(不考虑自变量x 的取值范围)A.9y x=B. 12y x=C. 18y x=D. 36y x=二、填空题(本大题共6个小题,每小题3分,共18分)11.为了比较甲、乙、丙三种水稻秧苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).12.某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会.小明家参与抽奖,获得一等奖的概率为_______. 13.要使分式619x -有意义,则x 需满足的条件是______. 14.半径为4,圆心角为90o 的扇形的面积为______(结果保留π).15.如图,在ABC ∆中,点,D E 分别是,AC BC 的中点,连接DE =.若12DE =,则AB 的长为______.16.为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生、其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是____.三、解答题(本大题共9个小题,第17,18,19题每小题6分,第20,21题每小题8分第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)17.计算:101()32cos30( 6.8)4o π-+----18.先化简,再求值:2(2)(3)(3)m m m m m --++-,其中52m =.19.如图,在Rt ABC ∆中,90,2o ACB AB AC ∠===,分别以点,A B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N .作直线MN 分别交,AB BC 于点,D E ,连接,CD AE .(1)求CD 的长; (2)求ACE ∆的周长.20.中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势.2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图.请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_______人;表中a =____,b =______; (2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展入员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人21.如图,点C 在线段AD 上,,,AB AD B D BC DE =∠=∠=. (1)求证:ABC ADE ∆≅∆;(2)若60O BAC ∠=,求ACE ∠的度数.22.刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外.在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A,B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元.(1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?23.如图,在ABCD 中,对角线,AC BD 相交于点,90O O ABC ∠=.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6,8AB BC ==,求CE 的长及tan CEO ∠的值。

长沙市中考数学试题压轴题总汇及答案

长沙市中考数学试题压轴题总汇及答案

长沙市中考数学试题压轴题总汇【2013】【2012】如图半径分别为m,n )(n 0〈〈m 的两圆⊙O 1和⊙O 2相交于P,Q 两点,且点P (4,1),两圆同时与两坐标轴相切,⊙O 1与x 轴,y 轴分别切于点M ,点N ,⊙O 2与x 轴,y 轴分别切于点R ,点H 。

(1)求两圆的圆心O 1,O 2所在直线的解析式; (2)求两圆的圆心O 1,O 2之间的距离d ; (3)令四边形PO 1QO 2的面积为S 1, 四边形RMO 1O 2的面积为S 2. 试探究:是否存在一条经过P,Q 两点、开口向下,且在x 轴上截得的线段长为ds s 2-21的抛物线?若存在,亲、请求出此抛物线的解析式;若不存在,请说明理由。

【2011】如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段AP 为一边,在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .(1)求点B 的坐标;(2)求证:当点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值;(3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.【2010】如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,OA =cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.(1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ【2009】如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等. (1)求实数a b c ,,的值;第26题图(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【2008】如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA. (1)当∠BAD=75 时,求BC ⌒的长; (2)求证:BC ∥AD ∥FE ;(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.【2007】如图,平行四边形ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点(不与B 重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE=x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 运动到何处时,S 有最大值,最大值为多少?D【2006】如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.【2005】图2图1【2004】已知两点O (0,0)、B (0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,⊙A 被y 轴分成段两圆弧,其弧长之比为3:1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动. (1)求⊙A 的半径;(2)若抛物线经过O 、C 两点,求抛物线的解析式;(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC=CE ,求点E 的坐标;(4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式.长沙市中考数学试题压轴题总汇答案1.(1)连结OB 、OC ,由∠BAD=75︒,OA=OB 知∠AOB=30︒, ·········· (1分) ∵AB=CD,∴∠COD=∠AOB=30︒,∴∠BOC=120︒, ·············· (2分) 故BC⌒的长为3r 2π. ··························· (3分) (2)连结BD ,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD, ·········· (5分) 同理EF∥AD,从而BC∥AD∥FE. ··················· (6分) (3)过点B 作BM⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC=AD-2AM=2r-2AM . ··································· (7分)∵AD 为直径,∴∠ABD=90︒,易得△BAM∽△DAB∴AM=AD AB 2=rx 22,∴BC=2r -r x 2,同理EF=2r-r x 2············ (8分)∴L=4x+2(2r -r x 2)=r x x r 4422++-=()r r x r622+--,其中0<x <r 2 · (9分)∴当x=r 时,L 取得最大值6r . ····················· (10分)2、略3、26.解:(1) ∵CQ =t ,OP t ,CO =8 ∴OQ =8-t∴S △OPQ =21(8)222t t -=-+(0<t <8) …………………3分 (2) ∵S 四边形OPBQ =S 矩形ABCD -S △PAB -S △CBQ=1188)22⨯⨯-⨯⨯= ………… 5分∴四边形O PBQ 的面积为一个定值,且等于 …………6分(3)当△OPQ 与△PAB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB =90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP ………………7分8=解得:t =4 经检验:t =4是方程的解且符合题意(从边长关系和速度)此时P (0)∵B (8)且抛物线214y x bx c =++经过B 、P 两点,∴抛物线是2184y x =-+,直线BP 是:8y =- …………………8分设M (m 8-)、N (m ,2184m -+)∵M 在BP 上运动 ∴m ≤∵21184y x =-+与28y =-交于P 、B 两点且抛物线的顶点是P∴当m ≤≤12y y > ………………………………9分∴12MN y y =-=21(24m --+ ∴当m =MN 有最大值是2∴设MN 与BQ 交于H 点则4)M 、H∴S △BHM =132⨯⨯=∴S △BHM :S 五边形QOPMH ==3:29∴当MN 取最大值时两部分面积之比是3:29. …………………10分4、(1)过点B作BC⊥y轴于点C,……………………………………………1分∴AB=OB=2,∠BAO=60︒,∴BC=3,OC=AC=1,即B(3,1). …………………3分(2)当点P在x轴上运动(P不与O重合)时,不失一般性,∵∠PAQ=∠O AB=60︒,∴∠PAO=∠QAB,………………4分在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立,……………………………………………5分∴∠ABQ=∠AOP=90︒总成立,∴点P在x轴上运动(P不与O重合)时,∠ABQ为定值90︒. …………6分(3)由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行. ………………………………………………7分①当点P在x轴负半轴上时,点Q在点B的下方,此时,若AB∥O Q,四边形AOQB即是梯形.当AB∥OQ时,∠BQO=90︒,∠BOQ=∠ABO=60︒,又OB=OA=2,可求得BQ=3,由(2)可知△APO ≌△AQB , ∴OP =BQ =3,∴此时P 的坐标为(-3,0). ………………………………………… 9分 ②当点P 在x 轴正半轴上时, 点Q 在点B 的上方,此时,若AQ ∥OB ,四边形AOBQ 即是梯形. 当AQ ∥OB 时, ∠QAB =∠ABO =60°, ∠ABQ=90°,AB =2,∴BQ =32.由(2)可知△APO ≌△AQB ,∴OP =BQ =32,∴此时P 的坐标为(32,0).综上,P 的坐标为(-3,0)或(32,0).5、(1) 由题意可知,两圆的圆心都在第一、三象限的角平分线上,故所求解析式为: y=x(2) ∵O 1(m,m),O 2(n,n)(m ﹤n),两圆的半径分别为m,n ,∴O 1P=m,O 2P=n,由题意及勾股定理得:⎪⎩⎪⎨⎧=+=+222222)4-()1-)-4()1-nn n mm m ((解得:m=22-5, n=225+故d=O 1O 2=8242)-(2=⨯=n m(也可构造一元二次方程,利用韦达定理求解)(3) 方法1;∵P(4,1),根据对称性,Q(1,4),故PQ=23,∵PQ ⊥O 1O 2;∴S 1=,212823212121=⨯⨯=∙O O PQ S 2=220)-)((21=+m n n m 故ds s 2-21=182220-212=⨯;∵P(4,1),即P 到y 轴的距离=4,P 又在x 轴上方,故当抛物线开口向下时,且过P,Q 两点时,抛物线在x 轴上截得的距离不可能为1,故不存在这样的抛物线;方法2:同上求出ds s 2-21=1,设抛物线与x 轴的两个交点坐标分别为(x 1,0),(x 2,0);则,1-21=x x 设抛物线解析式为y=ax 2+bx+c ,于是有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=++=++141416ac b a c b a 解得:0110-82=+a a ,求得8175±=a ﹥0,与题意矛盾, 故不存在这样的抛物线。

02(填空题)-2021年中考数学专题(湖南长沙卷)(解析版)

02(填空题)-2021年中考数学专题(湖南长沙卷)(解析版)

2021年中考数学冲刺挑战压轴题专题汇编(湖南长沙卷)02挑战压轴题(填空题)1.(2020年长沙)如图,点P在以MN为直径的半圆上运动(点P不与M、N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F。

(1)=+PMPEPQPF(2)若MNPMPN•=2,则=NQMQ【答案】(1)1 (2)21-5【解析】90901===∴∴=∴∠=∠=∠∴︒=∠+∠︒=∠+∠∠=∠∴∠=∴⊥PFEGMEPFGFEGPEPEGFPFPEEFPQFNPEFMNEQFNPNEPENMNEPNEMNPNEEPEGPFEGGFMNEG为菱形四边形,∵,平分∵,∥。

,连接)如图:作((2)由射影定理:MN QN PN •=2 ∵MN PM PN •=2∴QN=PM 设QN=PM=m MQ=x 则MN MQ PM •=2 215(2)51(2)15()(2-==∴---=∴+=∴a x QN MQ a a x a x x m 舍去)或2.(2019年长沙)如图,函数k y x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM为等边三角形,则2k =25MF MB =,则MD=2MA .其中正确的结论的序号是_______.【答案】①③④【解析】①设点A(m,km),M(n,kn),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+2km,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.解:①设点A(m,km),M(n,kn),则直线AC的解析式为y=-kmnx+kn+km,∴C(m+n,0),D(0,()m n kmn+),∴1()()1(),()2222 ODM OCAm n k m n k k m n kS n S m nmn m m m∆∆+++ =⨯⨯==⨯+⨯=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴),AM n m OM=-=∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+2km,∵m>0,k>0,∴m=k,∵OM=AM,∴(1-m)2+(k−km)2=1+k2,∴k2-4k+1=0,∴k m>1,∴k如图,作MK∥OD交OA于K.∵OF∥MK,∴25FM OKBM KB==,∴23OKOB=,∵OA =OB ,∴23OK OA =,∴21OK KA =, ∵KM ∥OD ,∴2DM OK AM AK ==,∴DM =2AM ,故④正确. 故答案为①③④.3.(2018年长沙)如图,点A ,B ,D 在⊙O 上,∠A =20°,BC 是⊙O 的切线,B 为切点,OD 的延长线交BC 于点C ,则∠OCB = 度.【答案】50°【解析】由圆周角定理易求∠BOC 的度数,再根据切线的性质定理可得∠OBC =90°,进而可求出求出∠OCB 的度数。

湖南省各地市中考《二次函数》压轴题精编(含答案解析)

湖南省各地市中考《二次函数》压轴题精编(含答案解析)

湖南省各地市中考《二次函数》压轴题精编(解析版)(地市排序不分先后)一.解答题(共13小题)1.(长沙市)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ; ②在凸四边形ABCD 中,AB=AD 且CB ≠CD ,则该四边形 “十字形”.(填“是”或“不是”)(2)如图1,A ,B ,C ,D 是半径为1的⊙O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx +c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式; 12S S S =34S S S =“十字形”ABCD 的周长为102.(常德市)如图,已知二次函数的图象过点O (0,0).A (8,4),与x 轴交于另一点B ,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.3.(株洲市)如图,已知二次函数y=ax2﹣53x+c(a>0)的图象抛物线与x轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60°,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+12a,连接AF,满足∠ADB=∠AFE,求该二次函数的解析式.4.(永州市)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.5.(岳阳市)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=43,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.6.(郴州市)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P 的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.7.(湘潭市)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.8.(张家界市)如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A (﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.9.(邵阳市)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的13?若存在,求tan∠MAN的值;若不存在,请说明理由.10.(怀化市)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.11.(湘西州)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.12.(衡阳市)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.13.(娄底市)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.湖南省各地市中考《二次函数》压轴题精析一.解答题(共13小题)1.(长沙市)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 菱形,正方形 ; ②在凸四边形ABCD 中,AB=AD 且CB ≠CD ,则该四边形 不是 “十字形”.(填“是”或“不是”)(2)如图1,A ,B ,C ,D 是半径为1的⊙O 上按逆时针方向排列的四个动点,AC 与BD 交于点E ,∠ADB ﹣∠CDB=∠ABD ﹣∠CBD ,当6≤AC 2+BD 2≤7时,求OE 的取值范围;(3)如图2,在平面直角坐标系xOy 中,抛物线y=ax 2+bx +c (a ,b ,c 为常数,a >0,c <0)与x 轴交于A ,C 两点(点A 在点C 的左侧),B 是抛物线与y 轴的交点,点D 的坐标为(0,﹣ac ),记“十字形”ABCD 的面积为S ,记△AOB ,△COD ,△AOD ,△BOC 的面积分别为S 1,S 2,S 3,S 4.求同时满足下列三个条件的抛物线的解析式;①12S S S =+;②34S S S =+;③“十字形”ABCD 的周长为1210.【学会思考】(1)利用“十字形”的定义判断即可;(2)先判断出∠ADB +∠CAD=∠ABD +∠CAB ,进而判断出∠AED=∠AEB=90°,即:AC ⊥BD ,再判断出四边形OMEN 是矩形,进而得出OE 2=2﹣14(AC 2+BD 2),即可得出结论;(3)由题意得,A (,0),B (0,c ),C (,0),D (0,﹣ac ),求出S=12AC•BD=﹣12(ac +c )×,S 1=12OA•OB=﹣,S 2=12OC•OD=﹣,S3=12OA×OD=﹣,S4=12OB×OC=﹣,进而建立方程+=+,求出a=1,再求出b=0,进而判断出四边形ABCD是菱形,求出AD=310,进而求出c=﹣9,即可得出结论.【解】:(1)①∵菱形,正方形的对角线互相垂直,∴菱形,正方形是:“十字形”,∵平行四边形,矩形的对角线不一定垂直,∴平行四边形,矩形不是“十字形”,故答案为:菱形,正方形;②如图,当CB=CD时,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,∴当CB≠CD时,四边形ABCD不是“十字形”,故答案为:不是;(2)∵∠ADB+∠CBD=∠ABD+∠CDB,∠CBD=∠CDB=∠CAB,∴∠ADB+∠CAD=∠ABD+∠CAB,∴180°﹣∠AED=180°﹣∠AEB,∴∠AED=∠AEB=90°,∴AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=12AC,DN=12BD,四边形OMEN是矩形,∴ON=ME ,OE 2=OM 2+ME 2,∴OE 2=OM 2+ON 2=2﹣14(AC 2+BD 2), ∵6≤AC 2+BD 2≤7, ∴2﹣74≤OE 2≤2﹣32, ∴14≤OE 2≤12, ∴12(OE >0);(3)由题意得,A (,0),B (0,c ),C (,0),D (0,﹣ac ), ∵a >0,c <0,∴OA=,OB=﹣c ,OC=,OD=﹣ac ,AC=,BD=﹣ac ﹣c , ∴S=12AC•BD=﹣12(ac +c )×,S 1=12OA•OB=﹣,S 2=12OC•OD=﹣, S 3=12OA ×OD=﹣,S 4=12OB ×OC=﹣,∵12S S S =+,34S S S =+,∴+=+, ∴4a =2,∴a=1,∴S=﹣c ∆,S 1=﹣,S 4=﹣, ∵12S S S =+,∴S=S 1+S 2+212S S ,∴﹣c ∆=﹣+2, ∴﹣=﹣c•c -, ∴=4c -∴b=0,∴A(﹣c,0),B(0,c),C(c ,0),d(0,﹣c),∴四边形ABCD是菱形,∴4AD=1210,∴AD=310,即:AD2=90,∵AD2=c2﹣c,∴c2﹣c=90,∴c=﹣9或c=10(舍),即:y=x2﹣9.2.(常德市)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【学会思考】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=12x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(43t,2 3t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=12•4•t﹣12•t•23t,然后根据二次函数的性质解决问题;(3)设Q(m,14m2﹣32m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|14m2﹣32m|=2|m|;当=时,△PQO∽△CAO,则|14m2﹣3 2m|=12|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解】:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=14,∴抛物线解析式为y=14x(x﹣6),即y=14x2﹣32x;(2)设M(t,0),易得直线OA的解析式为y=12 x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (43t ,23t ), ∴S △AMN =S △AOM ﹣S △NOM =12•4•t ﹣12•t•23t =﹣13t 2+2t =﹣13(t ﹣3)2+3, 当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q (m ,14m 2﹣32m ), ∵∠OPQ=∠ACO ,∴当=时,△PQO ∽△COA ,即=,∴PQ=2PO ,即|14m 2﹣32m |=2|m |, 解方程14m 2﹣32m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,0); 解方程14m 2﹣32m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,0); ∴当=时,△PQO ∽△CAO ,即=, ∴PQ=12PO ,即|14m 2﹣32m |=12|m |, 解方程14m 2﹣32m=12m 得m 1=0(舍去),m 2=8(舍去), 解方程14m 2﹣32m=﹣12m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 综上所述,P 点坐标为(14,0)或(﹣2,0)或(4,0).3.(株洲市)如图,已知二次函数y=ax 2﹣3+c (a >0)的图象抛物线与x 轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60°,抛物线的对称轴l与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+12a,连接AF,满足∠ADB=∠AFE,求该二次函数的解析式.【学会思考】(1)根据抛物线的对称轴公式代入可得a的值;(2)根据已知得:抛物线与x轴有两个交点,则△>0,列不等式可得c的取值范围;(3)根据60°的正切表示点B的坐标,把点B的坐标代入抛物线的解析式中得:ac=12,则c=,从而得A和B的坐标,表示F的坐标,作辅助线,构建直角△ADG,根据已知的角相等可得△ADG∽△AFE,列比例式得方程可得a和c的值.【解】:(1)抛物线的对称轴是:x=﹣=﹣=3,解得:a=52;(2)由题意得二次函数解析式为:y=15x2﹣53x+c,∵二次函数与x轴有两个交点,∴△>0,∴△=b2﹣4ac=﹣4×15c,∴c<54;(3)∵∠BOD=90°,∠DBO=60°,∴tan60°===3, ∴OB=33c , ∴B (33c ,0), 把B (33c ,0)代入y=ax 2﹣53x +c 中得:23ac -5333c +c=0, 23ac ﹣5c +c=0, ∵c ≠0,∴ac=12,∴c=, 把c=代入y=ax 2﹣53x +c 中得:y=a (x 2﹣+)=a (x ﹣)(x ﹣), ∴x 1=,x 2=,∴A (,0),B (,0),D (0,), ∴AB=﹣=,AE=, ∵F 的纵坐标为3+, ∴F (,),过点A 作AG ⊥DB 于G ,∴BG=12AB=AE=,AG=92a , DG=DB ﹣BG=﹣=, ∵∠ADB=∠AFE ,∠AGD=∠FEA=90°,∴△ADG ∽△AFE ,∴,∴=,∴a=2,c=6,∴y=2x2﹣53x+6.4.(永州市)如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).(1)求抛物线的表达式;(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.【学会思考】(1)根据顶点式可求得抛物线的表达式;(2)根据轴对称的最短路径问题,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,先求E'F的解析式,它与对称轴的交点就是所求的点G;(3)如图2,先利用待定系数法求AB的解析式为:y=﹣2x+6,设N(m,﹣m2+2m+3),则Q(m,﹣2m+6),(0≤m≤3),表示NQ=﹣m2+4m﹣3,证明△QMN∽△ADB,列比例式可得MN的表达式,根据配方法可得当m=2时,MN有最大值,证明△NGP∽△ADB,同理得PG的长,从而得OP的长,根据三角形的面积公式可得结论,并将m=2代入计算即可.【解】:(1)设抛物线的表达式为:y=a(x﹣1)2+4,把(0,3)代入得:3=a(0﹣1)2+4,a=﹣1,∴抛物线的表达式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在,如图1,作E关于对称轴的对称点E',连接E'F交对称轴于G,此时EG+FG的值最小,∵E(0,3),∴E'(2,3),易得E'F的解析式为:y=3x﹣3,当x=1时,y=3×1﹣3=0,∴G(1,0)(3)如图2,∵A(1,4),B(3,0),易得AB的解析式为:y=﹣2x+6,过N 作NH ⊥x 轴于H ,交AB 于Q ,设N (m ,﹣m 2+2m +3),则Q (m ,﹣2m +6),(1<m <3),∴NQ=(﹣m 2+2m +3)﹣(﹣2m +6)=﹣m 2+4m ﹣3,∵AD ∥NH ,∴∠DAB=∠NQM ,∵∠ADB=∠QMN=90°,∴△QMN ∽△ADB , ∴, ∴, ∴MN=﹣(m ﹣2)2+, ∵﹣<0,∴当m=2时,MN 有最大值;过N 作NG ⊥y 轴于G ,∵∠GPN=∠ABD ,∠NGP=∠ADB=90°,∴△NGP ∽△ADB , ∴=24=12, ∴PG=12NG=12m , ∴OP=OG ﹣PG=﹣m 2+2m +3﹣12m=﹣m 2+32m +3, ∴S △PON =12OP•GN=12(﹣m 2+32m +3)•m , 当m=2时,S △PON =12×2(﹣4+3+3)=2. (方法2:根据m 的值计算N 的坐标为(2,3),与E 是对称点,连接EN ,同理得:EP=12EN=1,则OP=2,根据面积公式可得结论).5.(岳阳市)已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=43,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.【学会思考】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)将直线l的解析式代入抛物线F的解析式中,可求出x1、x2的值,利用一次函数图象上点的坐标特征可求出y1、y2的值,做差后即可得出y2﹣y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P 的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【解】:(1)∵抛物线y=x2+bx+c的图象经过点(0,0)和(﹣33,0),∴,解得:,∴抛物线F的解析式为y=x23.(2)将3+m代入y=x23x,得:x2=m,解得:x1=m x2m∴y1=133m m,y2133m m,∴y2﹣y1=133m m133m m)233m m>0).(3)∵m=43,∴点A的坐标为(﹣33,23),点B的坐标为(233,2).∵点A′是点A关于原点O的对称点,∴点A′的坐标为(233,﹣23).①△AA′B为等边三角形,理由如下:∵A(﹣233,23),B(233,2),A′(233,﹣23),∴AA′=83,AB=83,A′B=83,∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P 的坐标为(x,y).(i)当A′B为对角线时,有,解得:,∴点P的坐标为(23,23);(ii)当AB为对角线时,有,解得:,∴点P的坐标为(﹣233,103);(iii)当AA′为对角线时,有,解得:,∴点P的坐标为(﹣33,﹣2).综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(23,23)、(﹣233,103)和(﹣233,﹣2).6.(郴州市)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P 的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【学会思考】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(3)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【解】:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=12PF•OB=﹣32t2+92t=﹣32(t﹣32)2+278.②∵﹣32<0,∴当t=32时,S取最大值,最大值为278.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==32,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(32,154).7.(湘潭市)如图,点P为抛物线y=14x2上一动点.(1)若抛物线y=14x2是由抛物线y=14(x+2)2﹣1通过图象平移得到的,请写出平移的过程;(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.【学会思考】(1)找到抛物线顶点坐标即可找到平移方式.(2)①设出点P坐标,利用PM=PF计算BF,求得F坐标;②利用PM=PF,将QP+PF转化为QP+QM,利用垂线段最短解决问题.【解】:(1)∵抛物线y=14(x+2)2﹣1的顶点为(﹣2,﹣1)∴抛物线y=14(x+2)2﹣1的图象向上平移1个单位,再向右2个单位得到抛物线y=14x2的图象.(2)①存在一定点F,使得PM=PF恒成立.如图一,过点P作PB⊥y轴于点B设点P坐标为(a,14a2)∴PM=PF=14a2+1∵PB=a∴Rt△PBF中BF=∴OF=1∴点F坐标为(0,1)②由①,PM=PFQP+PF的最小值为QP+PM的最小值当Q、P、M三点共线时,QP+PM有最小值,最小值为点Q纵坐标加M纵坐标的绝对值.∴QP+PF的最小值为6.8.(张家界市)如图,已知二次函数y=ax2+1(a≠0,a为实数)的图象过点A (﹣2,2),一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2).(1)求a值并写出二次函数表达式;(2)求b值;(3)设直线l与二次函数图象交于M,N两点,过M作MC垂直x轴于点C,试证明:MB=MC;(4)在(3)的条件下,请判断以线段MN为直径的圆与x轴的位置关系,并说明理由.【学会思考】(1)将点A的坐标代入二次函数表达式中可求出a值,进而可得出二次函数表达式;(2)将点B的坐标代入一次函数表达式中可求出b值;(3)过点M作ME⊥y轴于点E,设点M的坐标为(x,14x2+1),则MC=14x2+1,由勾股定理可求出MB的长度,进而可证出MB=MC;(4)过点N作ND⊥x轴于D,取MN的中点为P,过点P作PF⊥x轴于点F,过点N作NH⊥MC于点H,交PF于点Q,由(3)的结论可得出MN=NB+MB=ND+MC,利用中位线定理可得出PQ=12MH,进而可得出PF=12MN,由此即可得出以MN为直径的圆与x轴相切.【解】:(1)∵二次函数y=ax2+1(a≠0,a为实数)的图象过点A(﹣2,2),∴2=4a+1,解得:a=14,∴二次函数表达式为y=14x2+1.(2)∵一次函数y=kx+b(k≠0,k,b为实数)的图象l经过点B(0,2),∴2=k×0+b,∴b=2.(3)证明:过点M作ME⊥y轴于点E,如图1所示.设点M的坐标为(x,14x2+1),则MC=14x2+1,∴ME=|x|,EB=|14x2+1﹣2|=|14x2﹣1|,∴MB=,=,=,=,=14x2+1.∴MB=MC.(4)相切,理由如下:过点N作ND⊥x轴于D,取MN的中点为P,过点P作PF⊥x轴于点F,过点N 作NH⊥MC于点H,交PF于点Q,如图2所示.由(3)知NB=ND,∴MN=NB+MB=ND+MC.∵点P为MN的中点,PQ∥MH,∴PQ=12 MH.∵ND∥HC,NH∥DC,且四个角均为直角,∴四边形NDCH为矩形,∴QF=ND,∴PF=PQ+QF=12MH+ND=12(ND+MH+HC)=12(ND+MC)=12MN.∴以MN为直径的圆与x轴相切.9.(邵阳市)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的13?若存在,求tan∠MAN的值;若不存在,请说明理由.【学会思考】(1)利用配方法得到y=x2+2x+1=(x+1)2,然后根据抛物线的变换规律求解;(2)利用顶点式y=(x+1)2得到A(﹣1,0),解方程﹣x2+4=0得D(﹣2,0),C(2,0)易得B(0,4),列举出所有的三角形,再计算出AC=3,AD=1,CD=4,17,55然后根据等腰三角形的判定方法和概率公式求解;(3)易得BC的解析是为y=﹣2x+4,S△ABC=6,M点的坐标为(m,﹣2m+4)(0≤m≤2),讨论:①当N点在AC上,如图1,利用面积公式得到12(m+1)(﹣2m+4)=2,解得m1=0,m2=1,当m=0时,求出AN=1,MN=4,再利用正切定义计算tan∠MAC的值;当m=1时,计算出AN=2,MN=2,再利用正切定义计算tan∠MAC的值;②当N点在BC上,如图2,先利用面积法计算出AN=655,再根据三角形面积公式计算出MN=253,然后利用正切定义计算tan∠MAC的值;③当N点在AB上,如图3,作AH⊥BC于H,设AN=t,则BN=17﹣t,由②得AH=655,利用勾股定理可计算出BH=755,证明△BNM∽△BHA,利用相似比可得到MN=,利用三角形面积公式得到12•(17﹣t)•=2,根据此方程没有实数解可判断点N在AB上不符合条件,从而得到tan∠MAN的值为1或4或59.【解】:(1)y=x2+2x+1=(x+1)2的图象沿x轴翻折,得y=﹣(x+1)2.把y=﹣(x+1)2向右平移1个单位,再向上平移4个单位,得y=﹣x2+4,∴所求的函数y=ax2+bx+c的解析式为y=﹣x2+4;(2)∵y=x2+2x+1=(x+1)2,∴A(﹣1,0),当y=0时,﹣x2+4=0,解得x=±2,则D(﹣2,0),C(2,0);当x=0时,y=﹣x2+4=4,则B(0,4),从点A,C,D三个点中任取两个点和点B构造三角形的有:△ACB,△ADB,△CDB,∵AC=3,AD=1,CD=4,17,55,∴△BCD为等腰三角形,∴构造的三角形是等腰三角形的概率=13;(3)存在.易得BC 的解析是为y=﹣2x +4,S △ABC =12AC•OB=12×3×4=6, M 点的坐标为(m ,﹣2m +4)(0≤m ≤2),①当N 点在AC 上,如图1,∴△AMN 的面积为△ABC 面积的13, ∴12(m +1)(﹣2m +4)=2,解得m 1=0,m 2=1, 当m=0时,M 点的坐标为(0,4),N (0,0),则AN=1,MN=4,∴tan ∠MAC==4;当m=1时,M 点的坐标为(1,2),N (1,0),则AN=2,MN=2,∴tan ∠MAC==1;②当N 点在BC 上,如图2,BC==25,∵12BC•AN=12AC•BC ,解得AN==655, ∵S △AMN =12AN•MN=2, ∴MN==253, ∴∠MAC===59; ③当N 点在AB 上,如图3,作AH ⊥BC 于H ,设AN=t ,则BN=17﹣t , 由②得AH=655,则BH==755, ∵∠NBG=∠HBA ,∴△BNM ∽△BHA ,∴=,即=,∴MN=,∵12AN•MN=2,即12•(17﹣t)•=2,整理得3t2﹣317t+14=0,△=(﹣317)2﹣4×3×14=﹣15<0,方程没有实数解,∴点N在AB上不符合条件,综上所述,tan∠MAN的值为1或4或59.10.(怀化市)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【学会思考】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a 即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣13x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣13x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解】:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组,解得或,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣13x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组,解得或,则此时P点坐标为(103,﹣139),综上所述,符合条件的点P的坐标为(73,209)或(103,﹣139),11.(湘西州)如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B (5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.【学会思考】(1)应用待定系数法;(2)利用相似三角形性质分类讨论求解;(3)由已知直线l′与x轴所夹锐角为45°,△EMN为等腰直角三角形,当沿直线l′折叠时,四边形ENE′M为正方形,表示点N、E′坐标带入抛物线解析式,可解;(4)由(3)图形旋转可知,M′K′⊥直线l′,△M'FK′只能为等腰直角三角形,则分类讨论可求解.【解】:(1)由已知点B坐标为(5,5)把点B(5,5),A(3,0)代入y=ax2+bx,得解得∴抛物线的解析式为:y=(2)由(1)抛物线对称轴为直线x=32,则点C坐标为(32,32)∴OC=,OB=52当△OBA∽△OCP时,∴∴OP=9 10当△OBA∽△OPC时,∴∴OP=5∴点P坐标为(5,0)或(910,0)(3)设点N坐标为(a,b),直线l′解析式为:y=x+c ∵直线l′y=x+c与x轴夹角为45°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙市中考数学试题压轴题总汇【2013】【2012】如图半径分别为m,n )(n 0〈〈m 的两圆⊙O 1和⊙O 2相交于P,Q 两点,且点P (4,1),两圆同时与两坐标轴相切,⊙O 1与x 轴,y 轴分别切于点M ,点N ,⊙O 2与x 轴,y 轴分别切于点R ,点H 。

(1)求两圆的圆心O 1,O 2所在直线的解析式; (2)求两圆的圆心O 1,O 2之间的距离d ; (3)令四边形PO 1QO 2的面积为S 1, 四边形RMO 1O 2的面积为S 2. 试探究:是否存在一条经过P,Q 两点、开口向下,且在x 轴上截得的线段长为ds s 2-21的抛物线?若存在,亲、请求出此抛物线的解析式;若不存在,请说明理由。

【2011】如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段AP 为一边,在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .(1)求点B 的坐标;(2)求证:当点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值;(3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.【2010】如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,OA =cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.(1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ【2009】如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等. (1)求实数a b c ,,的值;第26题图(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.【2008】如图,六边形ABCDEF 内接于半径为r (常数)的⊙O ,其中AD 为直径,且AB=CD=DE=FA. (1)当∠BAD=75 时,求BC ⌒的长; (2)求证:BC ∥AD ∥FE ;(3)设AB=x ,求六边形ABCDEF 的周长L 关于x 的函数关系式,并指出x 为何值时,L 取得最大值.【2007】如图,平行四边形ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点(不与B 重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE=x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 运动到何处时,S 有最大值,最大值为多少?D【2006】如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.【2005】图2图1【2004】已知两点O (0,0)、B (0,2),⊙A 过点B 且与x 轴分别相交于点O 、C ,⊙A 被y 轴分成段两圆弧,其弧长之比为3:1,直线l 与⊙A 切于点O ,抛物线的顶点在直线l 上运动. (1)求⊙A 的半径;(2)若抛物线经过O 、C 两点,求抛物线的解析式;(3)过l 上一点P 的直线与⊙A 交于C 、E 两点,且PC=CE ,求点E 的坐标;(4)若抛物线与x 轴分别相交于C 、F 两点,其顶点P 的横坐标为m ,求△PEC 的面积关于m 的函数解析式.长沙市中考数学试题压轴题总汇答案1.(1)连结OB 、OC ,由∠BAD=75︒,OA=OB 知∠AOB=30︒, ·········· (1分) ∵AB=CD,∴∠COD=∠AOB=30︒,∴∠BOC=120︒, ·············· (2分) 故BC⌒的长为3r 2π. ··························· (3分) (2)连结BD ,∵AB=CD,∴∠ADB=∠CBD,∴BC∥AD, ·········· (5分) 同理EF∥AD,从而BC∥AD∥FE. ··················· (6分) (3)过点B 作BM⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC=AD-2AM=2r-2AM . ··································· (7分)∵AD 为直径,∴∠ABD=90︒,易得△BAM∽△DAB∴AM=AD AB 2=r x 22,∴BC=2r -r x 2,同理EF=2r-rx 2············ (8分)∴L=4x+2(2r -r x 2)=r x x r 4422++-=()r r x r622+--,其中0<x <r 2 · (9分)∴当x=r 时,L 取得最大值6r . ····················· (10分)2、略3、26.解:(1) ∵CQ =t ,OP t ,CO =8 ∴OQ =8-t∴S △OPQ =21(8)222t t -=-+(0<t <8) …………………3分 (2) ∵S 四边形OPBQ =S 矩形ABCD -S △PAB -S △CBQ=1188)22⨯⨯-⨯⨯= ………… 5分∴四边形O PBQ 的面积为一个定值,且等于 …………6分(3)当△OPQ 与△PAB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB =90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP ………………7分8=解得:t =4 经检验:t =4是方程的解且符合题意(从边长关系和速度)此时P (0)∵B (8)且抛物线214y x bx c =++经过B 、P 两点,∴抛物线是2184y x =-+,直线BP 是:8y =- …………………8分设M (m 8-)、N (m ,2184m -+)∵M 在BP 上运动 ∴m ≤∵21184y x =-+与28y =-交于P 、B 两点且抛物线的顶点是P∴当m ≤12y y > ………………………………9分∴12MN y y =-=21(24m --+ ∴当m =MN 有最大值是2∴设MN 与BQ 交于H 点则4)M 、H∴S △BHM =132⨯⨯=∴S △BHM :S 五边形QOPMH ==3:29∴当MN 取最大值时两部分面积之比是3:29. …………………10分4、(1)过点B作BC⊥y轴于点C,……………………………………………1分∴AB=OB=2,∠BAO=60︒,∴BC=3,OC=AC=1,即B(3,1). …………………3分(2)当点P在x轴上运动(P不与O重合)时,不失一般性,∵∠PAQ=∠O AB=60︒,∴∠PAO=∠QAB,………………4分在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立,……………………………………………5分∴∠ABQ=∠AOP=90︒总成立,∴点P在x轴上运动(P不与O重合)时,∠ABQ为定值90︒. …………6分(3)由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行. ………………………………………………7分①当点P在x轴负半轴上时,点Q在点B的下方,此时,若AB∥O Q,四边形AOQB即是梯形.当AB∥OQ时,∠BQO=90︒,∠BOQ=∠ABO=60︒,又OB=OA=2,可求得BQ=3,由(2)可知△APO ≌△AQB , ∴OP =BQ =3,∴此时P 的坐标为(-3,0). ………………………………………… 9分 ②当点P 在x 轴正半轴上时, 点Q 在点B 的上方,此时,若AQ ∥OB ,四边形AOBQ 即是梯形. 当AQ ∥OB 时, ∠QAB =∠ABO =60°, ∠ABQ=90°,AB =2,∴BQ =32.由(2)可知△APO ≌△AQB ,∴OP =BQ =32,∴此时P 的坐标为(32,0).综上,P 的坐标为(-3,0)或(32,0).5、(1) 由题意可知,两圆的圆心都在第一、三象限的角平分线上,故所求解析式为: y=x(2) ∵O 1(m,m),O 2(n,n)(m ﹤n),两圆的半径分别为m,n ,∴O 1P=m,O 2P=n,由题意及勾股定理得:⎪⎩⎪⎨⎧=+=+222222)4-()1-)-4()1-nn n mm m ((解得:m=22-5, n=225+故d=O 1O 2=8242)-(2=⨯=n m(也可构造一元二次方程,利用韦达定理求解)(3) 方法1;∵P(4,1),根据对称性,Q(1,4),故PQ=23,∵PQ ⊥O 1O 2;∴S 1=,212823212121=⨯⨯=∙O O PQ S 2=220)-)((21=+m n n m 故ds s 2-21=182220-212=⨯;∵P(4,1),即P 到y 轴的距离=4,P 又在x 轴上方,故当抛物线开口向下时,且过P,Q 两点时,抛物线在x 轴上截得的距离不可能为1,故不存在这样的抛物线;方法2:同上求出ds s 2-21=1,设抛物线与x 轴的两个交点坐标分别为(x 1,0),(x 2,0);则,1-21=x x 设抛物线解析式为y=ax 2+bx+c ,于是有:⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=++=++141416ac b a c b a 解得:0110-82=+a a ,求得8175±=a ﹥0,与题意矛盾, 故不存在这样的抛物线。

相关文档
最新文档