地铁地下结构抗震性能分析
地铁车站抗震设计分析

地铁车站抗震设计分析摘要:地铁地下结构是城市重要的公共基础设施,对城市生命和经济具有重大意义,因此对地铁地下结构进行抗震设计是非常必要的。
本文以某标准两层车站为计算模型,采用反应位移法和时程分析法两种方法进行地铁车站结构地震反应计算,并结合相关规范对计算结果进行了分析讨论,为类似工程及地下结构抗震研究具有一定的参考意义。
引言随着城市化的不断发展,为解决交通拥挤及效率问题,我国各大城市地铁建设迅猛发展。
地铁工程是城市重要的社会公共基础设施,其结构复杂且一旦损坏难以修复,会造成重大的经济损失。
而地铁等地下结构在地震中遭受重大震害的情况已有先例,如1985年墨西哥Ms8.1级地震造成的地铁隧道和车站结构破坏、1995年日本阪神Ms7.2级地震引起神户市大开地铁车站的严重破坏[1-3],因此对地下结构进行抗震分析是十分必要的。
众多学者对地铁等地下结构的抗震理论及规范进行了研究。
刘晶波等[4]阐述了地下结构抗震分析的五个关键问题,包括动力分析模型、结构-地基系统动力相互作用问题分析方法、地铁地下结构地震破坏模式和抗震性能评估方法、抗震构造措施,和地铁区间隧道穿越地震断层的设计方案及工程措施。
侯莉娜等[5]将《城市轨道交通结构抗震设计规范》和地上民用建筑抗震设计规范进行了对比分析,指出地铁地下结构可遵循“两水准、两阶段”的设计思路及地下结构抗震设计地震动参数应与其设计基准期一致等。
陈国兴等[6]对地下结构震害、动力离心机和振动台模型试验,以及工程师在地下结构抗震分析中可能用到的有效设计与分析方法等方面涉及的重要问题进行了简要和全面的回顾。
本文结合某标准两层车站的工程实例,阐述地铁地下结构抗震反应分析方法,并对计算结果进行分析,为城市地下结构抗震评估提供一定参考。
1.车站抗震反应分析概况1.1工程概况车站结构型式为地下两层两跨箱型框架结构,明挖法施工,标准段宽为20.1m,基坑开挖深度约为17m。
标准段剖面图如图1所示。
地下结构震害及抗震分析方法综述

地下结构震害及抗震分析方法综述安腾【摘要】At present, China has begun to develop underground space, especially the subway projects. Usually, the underground structure has good seismic performance, and relatively few earthquake disasters. But if the underground structure is damaged by the earthquake, it will cause serious damage and cannot be repaired. This paper mainly introduces the seismic hazard characteristics of underground structures and compared the methods of seismic analysis of underground structures, such as the reaction displacement method, free field deformation method and so on.%目前,我国开始大力发展地下空间,尤其是地铁工程.通常情况下,地下结构具有良好的抗震性能,地震灾害相对较少.但是地下结构一旦遭受地震破坏,将会带来严重损失并且难以修复.本文主要介绍了地下结构的地震灾害特征以及常用的地下结构抗震分析方法.并且对比分析了反应位移法、自由场变形法和地震系数法等的特点以及不足.【期刊名称】《价值工程》【年(卷),期】2018(037)011【总页数】2页(P244-245)【关键词】地下结构;地震灾害;抗震性能;反应位移法【作者】安腾【作者单位】榆林学院,榆林719000【正文语种】中文【中图分类】TU930 引言随着现代城市的不断发展与人口的迅速增长,人类对生活空间的需求也不断扩大,地下结构的不断发展便是其真实写照。
地下车站抗震案例分析

地下车站抗震案例分析摘要:目前是我国轨道交通行业快速发展的时期,地铁建设如火如荼。
地铁作为百年工程,关系国计民生,地铁结构必须满足抗震的要求。
本文以某地下车站为例,采用非线性时程分析法对地下车站抗震有限元计算。
关键词:轨道交通;车站;抗震;非线性时程法1、案例概况本文以某沿海城市地铁1号线某车站为例。
该车站采用明挖法施工,为地下两层12m岛式站台车站,采用地下两层双柱三跨钢筋混凝土框架结构。
本工程抗震设防分类为乙类,抗震等级为三级,按7度抗震设防烈度要求进行抗震计算。
2、抗震分析抗震设计中地震效应的计算方法有反应位移法,地震系数法,弹性时程方法,非线性时程方法等。
根据规范要求,采用反应位移法和时程分析法进行抗震效应计算。
本文仅介绍采用非线性时程分析法对车站进行有限元抗震计算。
由于本站分布均匀、规则且纵向较长,结构分析采用平面应变分析模型。
2.1计算模型建模时取1延米平面框架,柱按抗弯刚度等效原则转化为墙,根据抗弯刚度等效原则计算等效墙厚。
岩土采用平面应变单元、结构采用梁单元进行有限元建模。
岩土采用摩尔-库伦理想弹塑性模型,结构采用线弹性模型。
岩土单元的尺寸约为1m×1m,以满足动力分析的要求。
计算模型底面采用固定边界,侧面采用粘性人工边界。
模型底面取至<17-2>号散体状强风化花岗岩层面,顶面取地表面,侧面边界到结构的距离取结构水平宽度的3倍。
计算模型2.2计算地震波本文选择3组地震波进行计算:结语:非线性时程分析法进行抗震分析,能够计算地下结构的抗震能力,指导结构设计和施工。
实际施工时,需要采取必要的抗震构造措施,在薄弱部位进行加强,完善结构受力转换体系,保证结构承载力和安全性,采取必要的辅助施工措施,同时优化施工步序和现场组织。
参考文献:[1]赵真.抗震概念设计刍论[J]. 国际地震动态, 2015(5):47-48.。
某典型地铁车站结构抗震分析

一
、
引 言
率为 1 O %和 2 % 的地 震 动 加速 度 进 行 中震 和 大 震 计 算 其 幅值 分别为 5 2 g a l 和 9 6 g a l 。 中震 的加 速 度 时程 及 频 谱特 征 曲线
随着城市地铁建设 的飞速 发展 ,城市地铁 已成为城市整
体 抗 震 防灾 的重 要 组 成 部 分 ,另 外 ,地 下 结 构 一 旦 在 地 震 中
图4 中震 时 柱 端 弯 矩 时 程 曲线
2 000
l 5 00
暑 1 000
时 翅
i s
Z
g
5eo
图7 中震 时 柱 端 柱 端 横 向相 对 位 移 时程 曲线
1 2 1
图 4和 图 5分 别 为 中震 和 大 震 时柱 端 弯 矩 时 程 曲线 , 由 图 可 见 ,柱 端弯 矩 最 大 值 分 别 为 8 4 4 K N m和 1 9 3 4 K N m,
与 静 力 时 的柱 端 弯 矩 值 ( 1 5 5 K N m )相 比 ,增 量 非 常 大 。由 此 可 见 ,柱 子 为 轴 向受 力 构 件 ,静 力 时 柱 端 弯 矩 较 小 ,而在 地 震 作 用下 ,柱 子 两 端 相 对 位 移 增 加 导 致 柱 端 弯 矩 有 较 大 的
矩 和 结构 变 形 两 方 面评 价 了 结构 的抗 震 性 能 。计 算 分 析 表 明该 结 构 具 有 较 好 的 抗 震 性 能 ,结 构整 体 满 足 抗 震 要 求 。 论 文 研 究 成果 可供 相 关 类似 工 程 的设 计 提 供 参 考 。 关 键 词 : 地铁 车 站 结构 ;地 震 响应 ;抗 震 性 能 ;框 架 结 构 中图分类号:T U 5 2 8 文 献 标 识 码 :A 文章编号:1 0 0 6 — 7 9 7 3( 2 0 1 3 )0 1 — 0 1 2 0 — 0 3
城市轨道交通地下结构抗震分析与设计

城市轨道交通地下结构抗震分析与设计摘要:轨道交通在城市建设中已成为重要的交通设施,因此有必要进行抗震设计,使轨道交通工程具有更为合理的抗震害能力,更好地保证城市轨道交通结构的地震安全性,减少地震造成的破坏。
本文对城市地下轨道交通工程的结构抗震设计进行了全面的分析和研究,希望能对同行工作者提供一些有价值的参考。
关键词:轨道交通工程;轨道交通工程结构;抗震;设计引言随着城市化的发展,城市交通条件和环境条件日益恶化。
交通拥堵和低效已成为各大城市的通病。
人们逐渐认识到,以地下铁道为骨干的大运量快速公交系统是解决这一问题的重要途径。
实践证明,地铁具有快速、高效、清洁的特点,在世界发达地区如东京、莫斯科、伦敦等大城市的客运中发挥着不可替代的作用。
近年来,中国的地铁建设也得到了快速的发展。
地铁工程是生命线工程的重要组成部分,其地震问题已成为城市工程抗震防灾减灾研究的重要组成部分。
在美国、日本等国家,对地铁等地下结构的抗震设计理论进行了研究,提出了一些实用的抗震设计方法。
然而,我们对这一领域的研究却相对滞后。
到目前为止,还没有独立的抗震设计规范。
GB50157—92《地下铁道设计规范》和GB50157—2003《地铁设计规范》对地铁的抗震设计都只给出了极为笼统的规定,其原因主要是研究工作开展不够,对地下结构抗震设计方法缺乏系统研究。
长期以来,地铁结构的抗震设计基本是参照GBJ111—87《铁路工程抗震设计规范》中有关隧道部分的条文和GB50011—2001《建筑抗震设计规范》,采用地震系数法进行的。
地震系数法用于地下结构抗震计算时具有明显的缺陷,比如按照地震系数法,作用在地下结构的水平惯性力随埋深的增加而增加,这与实际情况明显不符。
出现这一局面的原因与人们对地下结构震害的认识不无关系,在地层可能发生较大变形和位移的部位,地铁等地下结构可能会出现严重的震害,因此对其抗震问题应给予高度重视。
一、关于地下结构抗震研究和地下结构较为常用的地震分析方法 1.关于原型观测的方法分析这种方法主要是研究地下结构的地震反应规律和破坏机理,主要包括地震观测和损伤调查。
轨道交通地下车站结构抗震性能化设计分析

轨道交通地下车站结构抗震性能化设计分析摘要:近年来,我国的城市化进程有了很大进展,轨道交通工程建设也越来越多。
地下铁路是大城市发展的必需,其作为城市交通的骨干,能够很好的缓解交通压力,提高交通效率。
我国地震灾害发生频繁,地下铁路结构抵抗地震破坏作用的能力非常重要,直接关系着城市交通秩序和人民生命财产安全。
我国目前地铁建设发展比较迅速,关于地下结构的设计规范逐渐完善,但是对于地下结构抗震方面相关的研究还相对较少。
因而对地铁地下结构的抗震设计与分析十分有必要。
关键词:地铁;地下车站;抗震设计;反应位移法引言城市轨道交通车站在地面以上的称之为高架车站,车站具有一般地面建筑的特征和交通建筑的形态。
其作为城市主要的交通网,承担着城市交通的主要功能,其结构自身荷载大,安全等级高,结构抗震要求严格。
1抗震设防标准(1)对轨道工程中的地下车站结构和相关的地面附属结构比如是交通控制中心建筑,整体设计要大于等于100年;(2)地下车站中支护结构为永久性构建,保证刚度的条件下,要保证有100年的使用年限。
2抗震性能分析方法概述实际工程中,主要通过数值模拟对地下结构的抗震性能进行理论分析。
常用的数值模拟方法可分为以反应位移法、反应加速度法为代表的拟静力法,和以反应谱方法、时程分析法为代表的动力分析法两类。
反应位移法根据一维土层地震反应分析得到土层相对位移,由土层变形计算得到内力,并以地基弹簧的形式施加静荷载于结构上,从而获得结构的响应。
反应加速法通过一维土层地震反应分析获得的动力响应,计算得到不同深度处水平有效惯性加速度,并将其按体积力的方式作用与结构上,最终得到结构的响应。
拟静力法缺陷在于静力计算所得内力一般较实际动力值偏大,且对地震波的等效处理往往难以符合其不规则动态传播的实际情况。
反应谱方法相对于拟静力法增加反映了地震的频谱特性,但仍然无法考虑地震力持续作用的影响,其本质上属于一种修正的拟静力分析方法。
动力时程分析法可以全面地表达地震动强度、频谱特性和持续时间三大要素,分析具有过程性,更加符合实际情况,其缺陷在于计算时有较多的物理参数难以准确设定,且计算成本较大。
地铁地下结构抗震分析及设计中的几个关键问题

地铁地下结构抗震分析及设计中的几个关键问题摘要:近年来,随着我国经济的高速发展,城市现代化进程的日益加快,人口逐渐向城市中心高度集中,为缓解交通压力,开发地下空间建立地下交通枢纽尤为重要。
与此同时,地下空间的开发必然考虑抗震的安全性要求。
大型地铁地下结构空间有限,人员高度集中,一旦地震灾难的发生必将导致生命财产的重大损失,同时也将破坏地下结构从而影响地表结构与地表建筑。
所以针对地铁地下机构的抗震分析以及优化设计地跌地下结构,合理解决设计中的关键问题极其重要。
根据我国的现状研究,发现在于地铁地下结构抗震方面的研究仍然不够完善。
本文将基于目前我国的地铁地下结构的抗震分析和设计方法的基础上,针对地铁地下机构的抗震分析和设计方法中的几个关键性问题进行重点研究与阐述。
关键字:抗震分析;地下结构;地铁设计一、重要性分析地铁工程作为一个城市交通的重要工程,也是一个城市的生命线工程,引发越来越多的人高度关注。
我国的地铁建设还在发展和探索阶段,据研究资料显示,日本和美国等,对地铁地下结构的抗震分析都做过大量的研究分析,但是中国在这领域的研究则就没有国外投入的精力多,也就相对滞后。
我国应该在这方面进行完善,对地铁地下结构的抗震问题给予更多的重视。
在1995年的日本阪神大地震中,日本神户市的地铁区间以及部分地铁车站遭遇了严重的破坏,地下结构部分出现相当大的变形,对地上交通也造成了巨大的损失。
所以,地铁的地下结构抗震问题应该要因其交通部门的高度重视,很多人都认为地震作用下,地下结构遭受的破坏程度要远远低于地上结构,但是日本的事实摆在眼前,所以我国的相关部门应该以日本的这次地震为前车之鉴,高度重视起我国的地震地下结构抗震设计,做到防范于未然,将地震给地铁的地下结构所带来的破坏程度降到最低,也最大程度上保证城市居民的出行安全。
二、地下结构的抗震研究考虑到地层的约束,相比地上结构而言,地下结构被认为具有良好的抗震性能。
但是,通过对近些年来国内外地下结构地震灾害现象的调查研究,在地震作用下,地下结构的破坏现象也相当普遍,对地下结构抗震性能的研究也在实际的设计工作中不断推进。
兰州地铁某地下车站的抗震分析

兰州地铁某地下车站的抗震分析兰州地铁某地下车站的抗震分析近年来,由于地震灾害的频发,地下建筑的抗震安全问题备受关注。
而随着城市发展的需要,地铁建设成为各大城市的重要任务之一。
作为国家西部重要的交通枢纽和省会城市,兰州市的地铁建设也在稳步推进中。
其中地下车站是地铁工程中重要的组成部分,其中的抗震设计显得尤为重要。
某地下车站位于兰州市中心区域,受到了来自兰州地壳构造的巨大挑战。
因此,为了保障乘客和工作人员在发生地震时的安全,必须进行充分的抗震分析与设计。
本文旨在对兰州地铁某地下车站的抗震性能进行分析,并提出相应的加固措施。
首先,我们需要了解地震波的特点。
地震波是地震地表运动的传播形式,包括P波、S波和表面波。
P波是最快传播的波,具有不可压缩性能,对土层和建筑物的影响相对较小。
S波由于其横向振动特性,容易引起建筑物的破坏。
而表面波是地震波中速度最慢、振幅最大的波,对地下车站的影响最大。
接下来,我们需要对地下车站的结构特点进行分析。
地下车站一般采用开挖法施工,该施工方法会对地下结构造成一定的影响。
车站通常采用多层结构,包括上部建筑和下部的地下盖板。
车站的地基是支撑整个结构的重要组成部分,其稳定性直接关系到车站的抗震性能。
在进行抗震分析时,我们首先需要对车站的地基进行评估。
地基的稳定性与地下岩层的坚固程度、地下水情况等因素密切相关。
在兰州市地下车站的地基状况中,由于兰州位于地壳构造带上,地质条件复杂,地下岩石层断层较多,岩土层间充满了断层带和节理面。
因此,在设计过程中需要充分考虑这些地质因素的影响。
其次,我们需要进行结构的抗震评估。
车站结构的抗震性能与选取的结构材料、结构形式以及连接方式等有关。
在车站建设中,一般采用钢筋混凝土结构,该结构具有一定程度的韧性,能够吸收地震能量。
同时,在地震发生时,它能够通过变形来分散地震力。
为提高车站的抗震性能,我们可以采取一系列加固措施。
首先,可以增加结构的刚度,通过加大构件尺寸或选择更高强度的材料来增强结构的抗震能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地铁地下结构抗震性能分析
摘要:随着时代的发展,大规模的地铁轨道交通的建设已越来越普遍,随之也带来了许多需要解决的工程实际问题,地铁地下结构的抗震性能研究为其中之一。
本文以地铁地下结构为研究对象,对地下结构抗震研究的主要方法进行了总结,并对地下结构振动特性及其影响因素进行了分析。
关键词:地下结构,抗震分析,混凝土损伤
引言
在我国,地下结构抗震方面的研究是相对滞后的。
迄今为止,还没有一部独立的地下结构抗震设计规范,主要原因在于地下结构抗震方面基础研究工作开展不够,资料积累不足,对地下结构的动力反应特性和抗震设计方法等方面缺乏深入系统的研究。
本文中,笔者就自己几年的工作经验,就地铁地下结构抗震性能进行分析,希望与同行一起探讨。
一、结构抗震研究方法概述
总结现有的地下结构抗震研究方法,主要可分为原型观测、理论分析和模型实验三个大的类别。
1、原型观测方法
原型观测方法主要包括地震观测和震害调查两种途径。
地震观测方法需要地震发生前在所观测的地下结构内部关键部位及围岩中埋设加速度计等有关测量装置,目前,这方面的资料正在不断地积累。
2理论分析方法。