2020年八年级数学下册 6.2 定义与命题(2)导学案(无答案) 北师大版

合集下载

北师版八年级下6.2定义与命题

北师版八年级下6.2定义与命题

“定义”与“命题”
定义: 定义:对名称和术语的含义加 以描述,作出明确的规定, 以描述,作出明确的规定,也就 是给出它们的定义 命题:判断一件事情的句子, 命题:判断一件事情的句子,叫 做命题
问题导学1 问题导学1(3分钟) 分钟)
观察下列命题, 观察下列命题,猜测这些命题的共同的结构 特征. 特征. (1)如果两个三角形的三条边对应相等 如果两个三角形的三条边对应相等, (1)如果两个三角形的三条边对应相等,那 么这两个三角形全等; 么这两个三角形全等; (2)如果一个四边形的一组对边平行且相等 如果一个四边形的一组对边平行且相等, (2)如果一个四边形的一组对边平行且相等, 那么这个四边形是平行四边形; 那么这个四边形是平行四边形; (3)如果一个三角形是等腰三角形 如果一个三角形是等腰三角形, (3)如果一个三角形是等腰三角形,那么这 个三角形的两个底角相等; 个三角形的两个底角相等; (4)如果一个四边形的对角线相等 如果一个四边形的对角线相等, (4)如果一个四边形的对角线相等,那么这 个四边形是矩形; 个四边形是矩形; (5)如果一个四边形的两条对角线互相垂直 如果一个四边形的两条对角线互相垂直, (5)如果一个四边形的两条对角线互相垂直, 那么这个四边形是菱形. 那么这个四边形是菱形.
训练反馈1 训练反馈1
课本227页数学理解第一题 页数学理解第一题 课本 数学助学填一填的( ) 数学助学填一填的(2) )(4)( (3)( )( ) )( )(5)
问题导学2( 分钟) 问题导学 (5分钟)
看课本222页到225页 看课本222页到225页 思考 222页到225 命题由哪两部分组成? (1)命题由哪两部分组成?如何判 断一个命题是假命题还是真命题? 断一个命题是假命题还是真命题? 什么是原名,公理, (2)什么是原名,公理,定理与 证明?思考我们教材中有哪些公理? 证明?思考我们教材中有哪些公理? 命题与公理,命题与定理, (3)命题与公理,命题与定理, 定理与公理的相互关系是什么? 定理与公理的相互关系是什么?

八年级数学下册第六章平行四边形6.2平行四边形的判定6.2.3平行四边形的判定导学案北师大版(20

八年级数学下册第六章平行四边形6.2平行四边形的判定6.2.3平行四边形的判定导学案北师大版(20

八年级数学下册第六章平行四边形6.2 平行四边形的判定6.2.3 平行四边形的判定导学案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册第六章平行四边形6.2 平行四边形的判定6.2.3 平行四边形的判定导学案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册第六章平行四边形6.2 平行四边形的判定6.2.3 平行四边形的判定导学案(新版)北师大版的全部内容。

6.2.3平行四边形的判定导学案学习目标1。

探索并证明夹在平行线间的平行线段相等的性质;2。

利用平行线间的平行线段相等的性质解决有关问题,理解平行线间的距离的含义.一.自学释疑1。

直线外一点与直线引所有点的连线中,什么线段最短?2.两平行线之间的公垂线段可以作多少条?它们之间有什么关系?3.两平行线间的距离与两点间的距离,点到直线的距离有什么区别与联系?二。

合作探究探究点一问题1:下图是一段笔直的铁轨,通过观察,两根笔直的铁轨间有什么样的位置关系?夹在铁轨之间的枕木又有什么样的位置关系?两个枕木与两根笔直铁轨围成一个什么几何图形?根据这个图形的性质,夹在两根笔直的铁轨之间的枕木是一样长吗?问题2:已知,直线a//b,过直线a上任两点A,B分别向直线b作垂线,交直线b于点C,点D,如图,(1)线段AC,BD所在直线有什么样的位置关系?(2)比较线段AC,BD的长。

归纳:若两直线互相平行,其中一条直线上到另一条直线的距离,这个距离称为平行线间的 .探究点二问题1:夹在平行线之间的平行线段一定相等吗?请你说明理由.问题2:以方格纸的格点为顶点画出几个平行四边形,并说明你的画得方法和其中的道理.探究点三:问题1:如图,四边形ABCD是平行四边形,点E,A,C,F在同一直线上,且AE=CF.求证:BE=DF。

北师大版-数学-八年级下册--6.2定义与命题 第一课时 教案

北师大版-数学-八年级下册--6.2定义与命题 第一课时 教案

《八年级数学下第六章证明第二节定义与命题》教案第1课时 6.2定义与命题【教学课型】:新课◆课程目标导航:【教学目标】:(一)教学知识点1.定义的意义2.命题的概念(二)能力训练要求1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.2.从具体实例中,了解命题的概念,并会区分命题.(三)情感与价值观要求通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.【教学重点】:命题的概念【教学难点】:命题的概念的理解【教学工具】:投影片一张第一张:做一做(记作投影片§6.2.1 A)电脑制作:P177~178的实例.◆教学情景导入[师]随着时代的发展,电脑逐渐走进我们的生活,上过网或懂电脑的同学都知道什么是“黑客”.下面我们来看一段对话(电脑演示P177)小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(学生听后,大笑)[师]同学们为什么笑呢?[生甲]旁边那两个人的概念不清.[生乙]“黑客”“因特网”等都是电脑中的专用名词.……[师]同学们说得都很好.由此可知:人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就要研究:定义与命题◆教学过程设计[师]在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?[生甲]“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.[生乙]“在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程”是“一元一次方程”的定义.[生丙]“两组对边分别平行的四边形叫做平行四边形”是“平行四边形”的定义.[生丁]“角是由两条具有公共端点的射线组成的图形”是“角”的定义.……[师]同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.接下来,我们来做一做(出示投影片§6.2.1 A)如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.图6-6如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.[生甲]如果B处工厂排放污水,那么a、b、c、d处便会受到污染.[生乙]如果B处工厂排放污水,那么e、f、g处也会受到污染的.[生丙]如果C处受到污染,那么a、b、c处便受到污染.[生丁]如果C处受到污染,那么d处也会受到污染的.[生戊]如果E处受到污染,那么a、b处便会受到污染.[生己]如果h处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……[师]很好.同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗?[生甲]两直线平行,内错角相等.[生乙]无论n 为任意的自然数,式子n 2-n +11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.……[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB =a .平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.接下来我们做练习来熟悉掌握命题的概念.课堂练习(一)课本P 180随堂练习 1、2.1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB =3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA 上,任取两点B 、C.等等.(二)看课本P 177~180,然后小结.活动与探究1.现有正方形纸若干:假设正方形纸面积为1,你会折满足下列条件的正方形吗?(1)折面积为21的正方形 (2)折面积为31的正方形 (3)折面积为51的正方形 (4)折面积为71的正方形 (5)折面积为91的正方形 [过程]让学生在折纸过程中,体会数学的快乐、灵活,从而培养他们的动手、动脑能力.[结果]解:(1)折面积为21的正方形 方法:如图①①将正方形两次对折,得到各边中点E 、F 、G 、H .②连HE 、EF 、FG 和GH .则正方形EFGH 即为所求.图6-7注:图②、③的方法可折得面积为41、81的正方形. (2)折面积为31的正方形. 方法:如图④①将正方形对折,得折痕EF .②将BC 折至BG ,使G 在EF 上,得折痕BH ,则以CH 为边长的正方形即为所求. 证明:易知△GBC 为正三角形,∠HBC =30°.CH =BC tan30°=33,所以S 正方形=CH 2=31.图6-8(3)折面积为51的正方形. 方法:如图⑤①将正方形两次对折,得各边中点E 、F 、G 、H .②以AF 、HC 、ED 和BG 为折痕,交点为O 、P 、Q 、R .则正方形OPQR 即为所求.证明:易证:AF =25)21(122=+.又△ABF ∽△AP B. 所以AB AF AP AB = 即1251=AP 则:AP =52 OP =55512==AP 故: S 正方形=OP 2=51 (4)折面积为71的正方形 方法:如图⑥ ①先参照(2)中折法,折出CE =33 ②取CE 中点F ,再折EG =EF .③取BC 中点M ,折出MN ⊥BG ,N 为折痕BG 与MN 的交点,则以BN 为边长的正方形即为所求.证明:∵EG =EF =FC =63 ∴CG =23,BG =27)23(122=+由△BNM ∽△BCG .得BGBC BM BN =. 即:27121=BN ∴BN =77 S 正方形=BN 2=71图6-9(5)折面积为91的正方形 方法:如图⑦.①将正方形对折,得折痕EF .②以AC 、BE 为折痕,交点为P .③过点P 折出平行于AD 的折痕MN .则以AM 为边长的正方形即为所求.证明:由△P AE ∽△PC B.得21===CE AE PC AP MB AM 所以AM =31 S 正方形=AM 2=91 课时小结本节课我们通过具体实例,说明了定义在生活中的重要性.在具体实例中,了解了命题的概念.命题:判断一件事情的句子.◆课堂板书设计◆练习作业设计(课堂作业设计、课下作业设计)课堂作业设计一、把下列命题写成“如果……,那么……”的形式,并指出条件和结论.(1)全等三角形的对应角相等;(2)等角的补角相等;(3)同圆或等圆的半径相等;(4)自然数必为有理数;(5)同角的余角相等;二、试描述下列概念的定义,指出定义中所包含的充要条件:(1)偶数;(2)方程;(3)集合;(4)锐角;(5)直角;(6)钝角;(7)角平分线;(8)平行线参 考 答 案一、(1)如果两个三角形是全等三角形,那么它们的对应角相等;(2)如果两个角是相等角的补角,那么这两个角相等;(3)如果几个圆是相等的圆或同一个圆,那么它们的半径相等;(4)如果所给的数是自然数,那么它们必为有理数;(5)如果两个角是同一个角的余角,那么这两个角相等.二、略课下作业设计1.下列语句中,是命题的是( )A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角2.下列命题中,属于定义的是( )A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度3.________________________________叫做命题,每个命题都是由________和________两部分组成.4.命题“两直线平行,内错角相等”中,“两直线平行”是命题的________,“内错角相等”是命题的________.5.命题“直角都相等”的条件是____________________,结论是6.指出下列命题的题设和结论:(1)若a∥b,b∥c,则a∥c.(2)如果两个角相等,那么这两个角是对顶角.(3)同一个角的补角相等.7.把下列命题改写成“如果……,那么……”的形式:(1)平行于同一直线的两条直线平行.(2)同角的余角相等.(3)绝对值相等的两个数一定相等.答案1.D2.D 3判断一件事情的句子题设结论 4.题设结论 5.两个角都是直角这两个角相等 6.(1)题设:a∥b b∥c,结论:a∥c(2)题设:两个角相等,结论:这两个角是对顶角(3)题设:两个角都是同一个角的补角,结论:这两个角相等7.(1)如果两条直线平行于同一条直线,那么这两条直线平行(2)如果两个角都是同一个角的余角,那么这两个角相等(3)如果两个数的绝对值相等,那么这两个数一定相等.。

新课标北师大版 八年级数学 下册第二学期(导学案)第六章 6.2 第1课时 利用四边形边的关系判定平行四边形

新课标北师大版  八年级数学 下册第二学期(导学案)第六章 6.2 第1课时 利用四边形边的关系判定平行四边形

6.2 平行四边形的判定第1课时 利用四边形边的关系判定平行四边形【学习内容】平行四边形的判定【学习目标】1、运用类比的方法,通过合作探究,得出平行四边形的判定方法。

2、理解平行四边形的这两种判定方法,并学会简单运用。

3、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力.【学习重难点】重点:平行四边形判定方法;难点:平行四边形判定方法运用复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.平行四边形还有哪些性质?(1)平行四边形对边(2)平行四边形对角(3)平行四边形是对角线_________________探究 活动1:工具:两对长度分别相等的木条.动手:能否在平面内用这四根木条摆成一个平行四边形?思考:你能说明你所摆出的四边形是平行四边形吗?已知:如图,在四边形ABCD 中,AB=CD,BC=AD求证:四边形ABCD 是平行四边形活动2:工具:两根长度相等的木条, 两条平行线(可利用横格线).动手:请利用两根长度相等的木条能摆出以木条顶端为顶点的平行四边形吗?利用两根长度相等的木条和两条平行线,能摆出以木条顶端为顶点的平行四边形吗?思考:你能说明你所摆出的四边形是平行四边形吗?如图,在四边形ABCD 中,AB ∥CD, 且AB=CD.求证:四边形ABCD 是平行四边形.已知:如图,在ABCD 中,点E ,F 分别在AB 和CD 上,BE=DF.求证:四边形DEBF 是平行四边形.A B DE F EDCBA 基础题:1、下列几个条件中,不能判定一个四边形是平行四边形的是( )A . 一组对边相等 B. 一组对边平行且相等C . 两组对边分别平行 D. 两组对边分别相等2、小明拼成的四边形如图所示,图中的四边形ABCD 是平行四边形吗?3、 如图,四边形ABCD 中,AB//CD,且AB=CD,则四边形ABCD 是________,理由是________________________.4、四边形ABCD 中,AD ∥BC ,且AD=BC ,AB=2cm,则DC= cm发展题:5、四边形ABCD 中,AB ∥CD,若再添加一个条件 ,就可以判定四边形ABCD 是平行四边形。

2020年最新北师大版八年级数学下册导学案(全)

2020年最新北师大版八年级数学下册导学案(全)

0)时,要注意数的正、负,从而决定
( 1) x 6 y 6 ( 2) 3x 3y
(3) 2x 2 y
(4) 2x 1 2y 1
议一议 :
1. 讨论下列式子的正确与错误 .
( 1)如果 a<b,那么 a+c< b+c;
( 2)如果 a< b,那么 a-c< b- c;
( 3)如果 a<b, 那么 ac< bc;
( 6)当 a> 0, b 0 时, ab< 0;
( 7)当 a< 0, b 0 时, ab> 0;
( 8)当 a< 0, b 0 时, ab< 0.
能力提高:
1. 比较 a 与- a 的大小 . ( 说明:解决此类问题时,要对字母的所有取值进行讨论
.)
2. 有一个两位数,个位上的数字是 a,十位上的数是 b,如果把这个两位数的个位与十位上的数对
2. 长度是 L的绳子围成一个面积不小于 100的圆,绳长 L应满足的关系式为 _________________
例 1、用不等式表示
( 1)a 是正数;
( 2) a 是负数;
( 3) a 与 6 的和小于 5;
(4) x 与 2 的差小于- 1;
( 5)x 的 4 倍大于 7;
(6) y 的一半小于 3.
不等式的基本性质 1:
不等式的两边都加上(或减去)同一个整式,不等号的方向
__________
不等式的基本性质 2:
不等式的两边都乘以(或除以)同一个正数,不等号的方向____
不等式的基本性质 3:
不等式的两边都乘以(或除以)同一个负数,不等号的方向____
2. 不等式的基本性质与等式的基本性质有什么异同?
.
5. 经历求不等式的解集的过程,发展学生的创新意识

数学:6.2《定义与命题》(第2课时) 教案(北师大版八年级下)

数学:6.2《定义与命题》(第2课时) 教案(北师大版八年级下)

6.2 定义与命题(课时2)
【教学目标】
一、教学知识点
1.命题的组成.
2.命题真假的判断.
二、能力训练要求:
1.使学生能够分清命题的条件和结论,能判断命题的真假
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法三、情感与价值观要求:
1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一2.帮助学生了解数学发展史,拓展视野,激发学习兴趣
3.通过对《原本》介绍,使学生感受数学发展史和人类文明价值
【教学重点】准确的找出命题的条件和结论
【教学难点】理解判断一个真命题需要证明
【教学方法】探讨、合作交流
【教具准备】投影片。

《定义与命题》教案2(北师大版八年级下)

《定义与命题》教案2(北师大版八年级下)

6.2定义与命题(第1课时)教学目标1.从具体实例中,探索出定义,并了解定义在现实生活中的重要性.2.从具体实例中,了解命题的概念,并会区分命题.3.通过从具体例子中提炼数学概念,使学生体会数学与实践的联系.教学重点命题的概念教学难点命题的概念的理解教学过程一、巧设现实情境,引入新课随着时代的发展,电脑逐渐走进我们的生活,上过网或懂电脑的同学都知道什么是“黑客”.下面我们来看一段对话(电脑演示)小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:……小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但……”小亮说:“……”小刚说:“……”小亮说:“哈!,这个黑客终于被逮住了.”……坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着:一人说:“这黑客是个小偷吧?”另一人说:“可能是喜欢穿黑衣服的贼.”……一人说:“那因特网肯定是一张很大的网.”另一人说:“估计可能是英国造的特殊的网.”……(学生听后,大笑)同学们为什么笑呢?旁边那两个人的概念不清.“黑客”“因特网”等都是电脑中的专用名词.……由此可知:人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.这节课我们就要研究:定义与命题二、讲授新课在日常生活中,为了交流方便,我们就要对名称和术语的含义加以描述,作出明确的规定,也就是给他们下定义(definition).如:“具有中华人民共和国国籍的人,叫做中华人民共和国的公民”是“中华人民共和国公民”的定义.大家还能举出一些例子吗?“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义.……同学们举出了这么多例子.说明定义就是对名称和术语的含义加以描述,作出明确的规定.如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果E处受到污染,那么__________处便受到污染;……如果环保人员在h处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.如果B处工厂排放污水,那么a、b、c、d处便会受到污染.如果B处工厂排放污水,那么e、f、g处也会受到污染的.如果C处受到污染,那么a、b、c处便受到污染.如果C处受到污染,那么d处也会受到污染的.如果E处受到污染,那么a、b处便会受到污染.[如果h处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.……在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:熊猫没有翅膀. 对顶角相等.大家能举出这样的例子吗?两直线平行,内错角相等.无论n为任意的自然数,式子n2-n+11的值都是质数.任意一个三角形都有一个直角.如果两条直线都和第三条直线平行,那么这两条直线也互相平行.全等三角形的对应角相等.……大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:你喜欢数学吗?作线段AB=a. 平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.三、课堂练习(一)课本随堂练习1、2.1.你能列举出一些命题吗?答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点?③等于同一个角的两个角相等吗?④在射线OA上,任取两点B、C.等等.(二)看课本P190~192,然后小结.四、课时小结本节课我们通过具体实例,说明了定义在生活中的重要性.在具体实例中,了解了命题的概念.命题:判断一件事情的句子.五、作业 见作业本六、活动与探究1.现有正方形纸若干:假设正方形纸面积为1,你会折满足下列条件的正方形吗?(1)折面积为21的正方形 (2)折面积为31的正方形 (3)折面积为51的正方形 (4)折面积为71的正方形 (5)折面积为91的正方形 [过程]让学生在折纸过程中,体会数学的快乐、灵活,从而培养他们的动手、动脑能力.[结果]解:(1)折面积为21的正方形 方法:如图①将正方形两次对折,得到各边中点E 、F 、G 、H .②连HE 、EF 、FG 和GH .则正方形EFGH 即为所求.图②、③的方法可折得面积为41、81的正方形. (2)折面积为31的正方形. 方法:如图④①将正方形对折,得折痕EF .②将BC 折至BG ,使G 在EF 上,得折痕BH ,则以CH 为边长的正方形即为所求. 证明:易知△GBC 为正三角形,∠HBC =30°.CH =BC tan30°=33,所以S 正方形=CH 2=31.(3)折面积为51的正方形. 方法:如图⑤ ①将正方形两次对折,得各边中点E 、F 、G 、H .②以AF 、HC 、ED 和BG 为折痕,交点为O 、P 、Q 、R .则正方形OPQR 即为所求.证明:易证:AF =25)21(122=+. 又△ABF ∽△AP B. 所以AB AF AP AB = 即1251=AP 则:AP =52 OP =55512==AP 故: S 正方形=OP 2=51 (4)折面积为71的正方形 方法:如图⑥①先参照(2)中折法,折出CE =33 ②取CE 中点F ,再折EG =EF . ③取BC 中点M ,折出MN ⊥BG ,N 为折痕BG 与MN 的交点,则以BN 为边长的正方形即为所求.证明:∵EG =EF =FC =63 ∴CG =23,BG =27)23(122=+由△BNM ∽△BCG .得BGBC BM BN =. 即:27121=BN ∴BN =77S 正方形=BN 2=71(5)折面积为91的正方形 方法:如图⑦.①将正方形对折,得折痕EF . ②以AC 、BE 为折痕,交点为P . ③过点P 折出平行于AD 的折痕MN . 则以AM 为边长的正方形即为所求. 证明:由△P AE ∽△PC B.得 21===CE AE PC AP MB AM 所以AM =31 S 正方形=AM 2=91。

北师大版八年级数学下册导学案(全)

北师大版八年级数学下册导学案(全)
2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.
3.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.
4.训练大家能利用数学知识去解决实际问题的能力.
学习重点:了解一元一次不等式与一次函数之间的关系.
学习难点:
自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.
(3)____________(4)____________(5)____________
例1:1、下列不等式中是一元一次不等式的有____________。
(1)3x>-9(2)3(x+2)-4x<x-3(3) (4)
例2、解下列不等式,并把解集表示在数轴上。
(1)5x<200(2) <3
(3)x-4≥2(x+2)(4) <
(5)x的4倍大于7;(6)y的一半小于3.
变式训练:
1、用适当的符号表示下列关系:
(1)a是非负数;
(2)直角三角形斜边c比它的两直角边a、b都长;
(3)X与17的和比它的5倍小。
2.(1)当x=2时,不等式x+3>4成立吗?
(2)当x=1.5时,成立吗?
(3)当x=-1呢?
活动与探究:
a,b两个实数在数轴上的对应点如图1-2所示:
1.什么叫不等式的解?
能使__________成立的未知数的值,叫做不等式的解
2.什么叫不等式的解集?
一个含有未知数的不等式的___________,组成这个不等式的解集
3.什么叫解不等式?
求________________的过程叫做解不等式
4.如何将不等式的解集在数轴上表示出来?
例1:根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

$6.2 定义与命题(2)
一、读一读
学习目标:1.了解命题的构成,能区分命题中的条件和结论;
2.了解命题中的真命题、假命题、定理的含义。

二、试一试:
自学指导:
1、学习P221-222思考课本上每一个问题,完成下列填空:
一般地命题都可以写成的形式,其中引出的部分是条件,
引出的部分是结论,每个命题都有两部分组成。

2、下列各命题的条件是什么?结论是什么?
(1)如果两个角相等,那么它们是对顶角;
条件:;结论:
(2)如果a>b,b>c,那么a=c;
条件:;结论:
3、是真命题;是假命题。

4、带着“如何证明一个命题是真命题”的问题,阅读P221-222页了解“公理”、“证明”“定理”的含义。

5、本教材选用的公理有:
(1)。

(2)。

(3)。

(4)。

(5)。

(6)。

此外,等式的有关性质和不等式的有关性质都可以看做公理。

三、练一练
A1、将下列命题改成“如果……,那么……”的形式,并指出条件和结论
(1)两角和其中一角的对边对应相等的两个三角形全等;
(2)菱形的四条边都相等;
(3)全等三角形的面积相等;
(4)等角的余角相等;
(5)对顶角相等。

A2、下列句子中,哪些是命题?哪些不是命题?如果是命题,指出是真命题还是假命题。

(1) 如果两条直线相交,那么它们只有一个交点;
(2)一个角的补角只有一个;
(3) ∠1与∠2是同位角吗?
(4)直线AB与CD相交于点O;
(5)平面内两条相交的直线不可能垂直于同一条直线。

A3、在课本上完成P227数学理解1、2
B1、动动脑
甲、乙、丙、丁四个小朋友在院中玩球,一不小心击中了李大爷的窗户,李大爷跑出来查看,发现一块窗户的玻璃碎了,李大爷问:“是谁闯的祸?”
甲说:“是乙不小心造成的。


乙说:“是丙造成的。


丙说:“乙说的不是实话。


丁说:“反正不是我闯的祸。


这四个小朋友里只有一个人说了实话,请你推断一下究竟是谁闯的祸呢?
B2、课本P227-228问题解决3、4
五、记一记
1、公认的真命题称为公理,推理的过程称为证明,经过证明的真命题称为定理。

2.判断一个命题是否是真命题,可用已有的几何知识及公理进行推理证明,判断一个命题是否是假命题则可用举反例的办法。

相关文档
最新文档