八年级上册数学导学案
人教版八年级上册数学导学案答案

人教版八年级上册数学导学案答案数学(八年级上册)填空题:1. 周长为 42cm 的长方形,它的长是宽的 3/2,那么它的面积是_______答案:84cm²2. 若正比例函数 y = 3x,那么当 x = 8 时,y = _______答案:243. 设图中的阴影面积是 16.8dm²,那么阴影部分的周长是______ 答案:12.2dm4. 一个面积是 48平方厘米的正方形,如果面积增加 16平方厘米,它的周长会增加_______厘米。
答案:85. 已知正比例函数 y = 2x - 1,求当 x = 6 时,y = _______答案:11选择题:1. 已知一函数 y = |x - 3| + 2,那么它的定义域为()A. RB. x ≤ 3C. x > 3D. x ≠ 3答案:D2. 下列四个函数中,是奇函数的是()A. y = -1/4x³B. y = 4 - 2xC. y = 8x² + 9D. y = 2|x|答案:A3. 分式 3x/(x - 2) + 1,当 x = 2 时,分母为_______。
A. -2B. 0C. 2D. 4答案:04. 在矩形 ABCD 中,AD = 8cm,AB = 6cm,\angle C = 90^\circ,则其对角线 BD 的长为()。
A. 6cmB. 8cmC. 10cmD. 12cm答案:10cm5. 若 x + y = 6,x - y = 2,则 (1/x) - (1/y) 的值为()A. (1/6)B. (1/2)C. (1/12)D. (2/3)答案:A计算题:1. 求得物体表面积占整个球表面积的比值,已知球的半径为 5cm。
答案:(3/4)2. 已知正三角形 ABC 的边长为 8cm。
求 \angle ABD 的度数。
答案:30°3. 在等腰直角三角形 ABC中,AB = AC = 1。
最新人教版八年级数学上册导学案

新人教版八年级数学上导学案(全册)第十一章三角形11.1 与三角形有关的线段课题 11.1.1三角形的边【教学目标】1、通过观察、操作、想像、推理、交流等活动,发展空间观念、推理能力和表达能力;2、通过具体实例,进一步认识三角形的概念及其基本要素;3、学会三角形的表示及掌握对边与对角的关系;4、掌握三角形三条边之间关系.【重点难点】重点:了解三角形定义、三边关系。
难点:理解"首尾相连"等关键语句。
【教学准备】教师:课件、三角尺、屋顶架结构图等。
学生:三角尺、铅垂纸、小刀。
【教学过程】一、提出问题展示实物,播放课件,特别突出屋顶结构图,问题:1、请仔细观察实物与课件,找出不同的三角形。
2、与同伴交流各自找到的三角形。
3、这些三角形有什么特点?设计意图:通过观察课件,尤其是屋顶的框架结构图实例,使学生经历从现实世界抽象出几何模型的过程,认识三角形要素。
二、探究质疑1、三角形的概念:(1)通过学生间交流,师生共同得出,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形有哪些基本要素,师生共同得出:边、角、顶点.2、三角形表示:(1) 教师强调,为了简单起见:三角形用符号"△"表示,如图2的三角形ABC就表示成△ABC,三个顶点为:A,B、C,三边分别为:AB,BC,AC。
通常顶点A所对的边BC用a表示,顶点B所对的边AC用b表示,顶点C 所对的边AB用。
(2)请同学们找出图3中的三角形,并用符号表示出来,同时说出各个三角形要素,并指出AD是哪些三角形的边。
3、动手操作:请小组同学们画一个△ABC,分别图3量出AB,BC,AC的长,并比较下列各式大小:AB+BC_AC; AB+AC_BC; AC+ BC AB,从中你有何启发?小组合作后,对你们的结论加以解释。
师生共同得出结论:三角形任意两边之和大于第三边。
设计意图:在识别中加深认识,巩固对三角形概念及三角形要素的理解,更加深刻理解三角形表示的必要性.三、巩固新知1、指出图4中有几个三角形并用符号来表示2、有两根长度分别为5 cm, 8 cm的木棒,用长度为2 cm的木棒与它们能摆成三角形吗?为什么?长度为13 cm的木棒呢?设计意图:(1)是巩固三角形的表示方法;(2)渗透反证法思想,借助小组操作讨论,得出组成三角形的条件。
新人教版八年级数学上册全册导学案(104页)

新人教版八年级数学上册全册导学案11.1 与三角形有关的线段一.学习目标1.了解三角形的性质;学会按边划分三角形。
2.应用已掌握的三角形知识解决生活中的实际问题。
3.培养学生热爱数学,热爱生活的情感。
二.学习重难点三角形的性质和分类及应用三.学习过程第一课时三角形的边(一)构建新知1.阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1.2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1.已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查1.若一个三角形三边长分别为2,3,x,则x的值可以为 ____(只需填一个整数)。
2.设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3.若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为 ____cm。
4.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A.三边不等的三角形 B.只两边相等的三角形C.三边相等的三角形 D.不等边三角形和等腰三角形5.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()。
A.5 B.6 C.7 D.106.已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。
BCA(四)学习评价 (五)课后练习 1.学习指要 1~2页2.教材8~9页 1题,2题,6题,7题第二课时三角形的高、中线与角平分线(一)构建新知 1.阅读教材4~5页(1)如图,在△ABC 中,作BC 边上的高AD 和中线AE ;并作∠A 的角平分线AF 。
八年级数学上册导学案_(全册有答案)

八年级数学上册导学案第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的部分能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合”是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状相同,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两部分,则必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜想归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
八年级数学上册全册导学案(XX新版人教版)

八年级数学上册全册导学案(XX新版人教版)分式方程一、学教目标:1.了解分式方程的概念,和产生增根的原因..掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.二、学教重点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.三、学教难点:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根.四、自主探究:前面我们已经学习了哪些方程?是怎样的方程?如何求解?前面我们已经学过了方程。
一元一次方程是方程。
—兀一次方程解法步骤是:①去;②去_________ ;③移项;④合并______ :⑤______ 化为1。
如解方程:探究新知:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等量关系,得到方程:像这样分母中含未知数的方程叫做分式方程。
分式方程与整式方程的区别在哪里?通过观察发现得到这两种方程的区别在于未知数是否在分母上。
未知数在_____ 的方程是分式方程。
未知数不在分母的方程是________ 方程。
前面我们学过一元一次方程的解法,但是分式方程中分母含有未知数,我们又将如何解?解分式方程的基本思路是将分式方程转化为方程,具体的方法是去分母,即方程两边同乘以最简公分母。
如解方程:= ................ ①去分母:方程两边同乘以最简公分母_________________ , 得00=60 ............... ②解得V_________ .观察方程①、②中的v的取值范围相同吗?①由于是分式方程v工________ ,②而②是整式方程v可取 ______ 实数。
这说明,对于方程①来说,必须要求使方程中各分式的分母的值均不为0.但变形后得到的整式方程②则没有这个要求。
北师大八年级数学上册导学案(全套)

弦股勾1.1 探索勾股定理(1) 导学案【学习目标】在方格纸上计算面积的方法探索勾股定理,掌握勾股定理,并能运用勾股定理解决一些实际问题。
【重点】掌握勾股定理,并能运用勾股定理解决一些实际问题。
【难点】探索勾股定理。
【新课学习和探究】1、导入新课:P 22、探索发现图1图2观察图形完成下列问题: 如果正方形 A 边长为,则其面积为______;正方形 B 边长为b , 则其面积为________;正方形 C 边长为c ,则其面积为_______;你能发现正方形A 、B 、C 围住的直角三角形的两直角边长a 、b ,斜边c 之间有怎样的关系。
(小组讨论) 结论:_____________________ 3、画一画:在草稿纸上,以cm 3、cm 4为直角边画一个直角三角形,并测量斜边的长度,前面的结论对这个三角形还成立吗?4、归纳:勾股定理:直角三角形两直角边的平方和等于斜边的平方。
222ab c 或 222AC BC AB注:① 作用:知道直角三角形的任意两边可以求出第三边。
②我国古代把直角三角形中较短的直角边称为勾., 较长的直角边称为股.,斜边称为弦.. A 的面积(单位面积) B 的面积(单位面积) C 的面积(单位面积) A 、B 、C 面积关系式图1图2图3图4【巩固练习】1、【新课学习和探究】中“导入新课”中的答案为_______米。
2、正方形A的面积为______,正方形B的面积为______。
【例题精讲】如图,强台风使得一根旗杆在离地面9m处折断倒下,旗杆顶部落在离旗杆底部12m处.旗杆折断之前有多高?【巩固练习】求出下列直角三角形中未知边的长度。
(要求写出简单过程)(1)(2)【课堂小结】本节课有哪些收获?【课后作业】1、在△ABC中,∠C=90°,(l)若 a=5,b=12,则 c=;(2)若c=15,a=9,则b= .2、直角三角形的斜边长为17cm,一条直角边长为15cm,则直角三角形的面积为_________cm23、如图,求等腰△ABC的面积。
2021—2022学年人教版数学八年级上册 全册导学案

2021—2022学年人教版数学八年级上册全册导学案一、总体信息•课本名称:人教版数学八年级上册•出版社:人民教育出版社•学年:2021-2022二、教材概览数学八年级上册共包括以下八个单元:1.复习与认识2.整式的基本概念和性质3.一元二次方程的解法4.平面直角坐标系5.一次函数的初步研究6.相交线与平行线7.图形的对称性8.统计图及其应用每个单元的内容涵盖整合知识、概念解释、例题讲解、习题练习等方面。
三、导学教学目标及重点1.科学思考:培养学生的科学思维和解决实际问题的能力。
2.知识传授:掌握数学的基本概念、基础方法和技能,积累精选数学例题,掌握数学学科知识,并联合生活与实际中的问题进行深入探究。
3.技能训练:培养学生的做题方法、技巧,掌握常用的运算技能,提高计算的准确性。
4.交际拓展:在交际中形成良好的合作意识和集体协作能力,增强探究问题、解决问题的信心和自信。
四、单元内容介绍1. 复习与认识本单元主要是对七年级的复习和一些知识的介绍。
重点包括:整数、分数、小数及有理数的概念、化简带有多项式的复合分数、坐标系的概念与使用、正负数在图形中的应用、小数转分数、小数的意义等。
2. 整式的基本概念和性质本单元主要介绍整式的基本概念、常见整式的运算法则及其基本性质。
包括多项式的概念、同类项与合并同类项、多项式的加减法、多项式的乘法、因式分解、差的平方公式和完全平方公式等。
3. 一元二次方程的解法本单元主要介绍一元二次方程,包括方程的概念、一元二次方程的一般形式及求解方法,特别是通过因式分解法和配方法解一元二次方程,以及求解实际问题中的一元二次方程。
4. 平面直角坐标系本单元主要介绍平面直角坐标系,包括平面直角坐标系及其要素、点的坐标、直线的斜率、不等式和坐标系等知识,强调掌握直线的斜率与性质、直线方程的求法等。
5. 一次函数的初步研究本单元主要介绍一次函数的初步研究,包括一次函数的概念、函数图象、方程及其特点、斜率及其意义和应用等知识,重点突出函数的斜率和函数图象之间的关系。
人教版八年级数学上册全册导学案

人教版八年级数学上册全册导学案第一单元有理数导学目标- 掌握有理数的概念和表示方法;- 理解有理数的大小比较规则;- 能够进行有理数的加法和减法运算。
导学内容1. 有理数的概念:有理数是一种可以表示为分数形式的数,包括整数和分数。
2. 有理数的表示方法:- 整数可以用正负号和数字表示,如正整数用"+"表示,负整数用"-"表示;- 分数可以用分子和分母表示,分子表示分数的数值,分母表示分数的单位。
3. 有理数的大小比较规则:- 两个有理数大小比较时,可以先化为相同分母的分数,然后比较分子的大小;- 同号的有理数比较大小,绝对值大的数更大;异号的有理数比较大小,正数更大。
4. 有理数的加法和减法运算:- 加法:同号有理数相加,先相加后保持原符号;异号有理数相加,先相减后取绝对值较大的符号;- 减法:减去一个有理数等于加上它的相反数。
导学步骤1. 引入话题:通过举例子和学生互动引入有理数的概念。
2. 讲解表示方法:介绍整数和分数的表示方法,结合练让学生掌握如何表示有理数。
3. 比较大小规则:通过例题引导学生理解有理数的大小比较规则。
4. 运算操练:设计一些加法和减法的练题,让学生运用所学的规则进行计算。
5. 总结归纳:请学生总结有理数的概念、表示方法和运算规则,并进行相互讨论。
导学评价本节导学案主要介绍了有理数的概念、表示方法以及大小比较规则和运算规则。
通过学生的活动参与和练习题的操练,可以评价学生是否掌握了有关内容。
可以在课堂上进行小组讨论和个别辅导,帮助学生消化和理解所学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ca bAB C§11.1.1三角形的边主备:崔建国集备:八年级数学组审核:叶立新时间:2014年6月课时:1课时课型:新授课授课时间:年月日授课人:【学习目标】1.认识三角形,能用符号语言表示三角形,并把三角形分类.2.知道三角形三边不等的关系.3.懂得判断三条线段能否构成一个三角形的方法并能用于解决有关的问题。
【重点】知道三角形三边不等关系.【难点】判断三条线段能否构成一个三角形的方法.【学法】自主、合作、探究【学习准备】三角板、【学习过程】【预习案】1、阅读教科书P2—P3内容,并完成下列问题:(1)三角形概念:叫做三角形。
组成三角形的叫做三角形的边,所组成的角叫做三角形的内角,简称角,相邻两边的是三角形的顶点。
如图,线段、______、______是三角形的边;三角形的顶点是______、、、三角形的角有、、、图中以A、B、C为顶点的三角形记作__________。
(2)三角形按角分类可分为___________、___________、______________。
(3)等腰三角形概念:的三角形叫做等腰三角形。
等边三角形概念:的三角形叫做等边三角形。
注意:等边三角形是特殊的_______三角形如图,等腰三角形ABC中,AB=AC,腰是______,底是______, 顶角指_____ __,底角指。
(4)三角形按边分类可分为三角形AB C白山市第二十中学八年级数学(上)导学案班级:姓名:【探究案】探究:1、假设一只小虫从点B出发,沿三角形的边爬到点C,有路线。
路线最近,根据是:,于是有:(得出的结论)。
2、请同学们画一个△ABC,分别量出AB,BC,AC的长,并比较下列各式大小:边测量长度ABACBCAB+BC_____AC AB + AC _____ BC AC +BC _____ AB结论:3、三角形三边关系的应用。
阅读教科书例题,仿照例题解法完成下面这个问题:一个等腰三角形的周长是28cm,(1)已知腰长是底边长的3倍,求各边长。
(2)已知其中一边长为6cm,求其他两边长。
【课堂小结】①本节课你有哪些收获?②你还有什么问题或想法需要和大家交流?【作业】1、必做题:教科书 8页1、2、6、72、选做题:1、若△ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是___________.2、已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。
【训 练 案】1、如图.下列图形中是三角形的___________?2、图3中有几个三角形?用符号表示这些三角形.3、下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,104、下列说法正确的是(1)等边三角形是等腰三角形(2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边(4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是( )A 、1个 B 、2个 C 、3个 D 、4个5、△ABC 中,如果AB=8cm ,BC=5cm ,那么AC 的取值范围是______________.6、有四根木条,长度分别是12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,能组成三角形的个数是_______个。
7、如果三角形的两边长分别是3和5,那么第三边长可能是( )A 、1B 、9C 、3D 、108、一个三角形有两条边相等,周长为20cm ,三角形的一边长6cm ,求其他两边长。
9、一个等腰三角形的两边长分别是2和5,则它的周长是( )A 、7B 、9C 、12D 、9或12 10、若三角形的周长是60cm ,且三条边的比为3:4:5,则三边长分别为___________. 11、一个等腰三角形的周长是36cm ,(1)已知腰长是底边长的2倍,求各边长。
(2)已知其中一边长为8cm ,求其他两边长。
板 书 设 计课 后 反 思§11.1.2三角形的高,中线,角平分线主备:崔建国 集备:八年级数学组 审核:叶立新 时间:2014年6月 课时:1课时 课型:新授课 授课时间: 年 月 日 授课人: 【学习目标】1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题; 【重点】认识三角形的高线、中线与角平分线,并会画出图形 【难点】画出三角形的高线、中线与角平分线. 【学法】自主、合作、探究 【学习准备】三角板 【学习过程】【预 习 案】自学教科书P4—P5内容,并完成下列各题:(1)、三角形的高的定义:从三角形的一个顶点向它的对边画垂线,顶点和 之间的线段叫做三角形的高。
几何语言: AD 是△ABC 的高∴AD ⊥BC 于点D (或∠ =∠ =90º)逆向: AD ⊥BC 于点D (或∠ =∠ =90º) ∴AD 是△ABC 中BC 边上的高(2)、三角形的中线的定义:在三角形中,连接一个顶点和它的对边 的线段叫做三角形的中线。
几何语言: AD 是△ABC 的中线∴ = 逆向 =∴AD 是△ABC 的中线 (3)三角形的角平线的定义:三角形的一个角平分线与 这个角的对边相交,这个角的顶点和 的线段叫做三角形的角平线。
几何语言(右图):AD 是△ABC 的角平分线∴∠ =∠ 逆向: ∠ =∠ ∴AD 是△ABC 的角平分线 【探 究 案】一、三角形的高1、作出下列三角形三边上的高:A CB A CB AB CD AB C DA B C D 1 2 白山市第二十中学 八年级数学(上)导学案 班级: 姓名:2、上面第1图中,AD 是△ABC 的边BC 上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点; (2)锐角三角形的三条高相交于三角形的 (填“内部”、“外部”); (3)钝角三角形的三条高所在直线相交于三角形的 ; (4)直角三角形的三条高相交三角形的 ; 二、三角形的中线1、作出下列三角形三边上的中线2、AD 是△ABC 的边BC 上的中线,则有BD = =21,3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交于三角形的 ; (3)钝角三角形的三条中线相交于三角形的 ; (4)直角三角形的三条中线相交于三角形的 ; 三角形三条中线的交点叫做三角形的重心..................。
. 三、三角形的角平分线1、作出下列三角形三角的角平分线:2、AD 是△ABC 中∠BAC 的角平分线,则∠BAD=∠ =3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ; (3)钝角三角形的三条角平分线相交三角形的 ; (4)直角三角形的三条角平分线相交三角形的 ; 三角形角平分线的交点叫做三角形的内心..................。
. 思考:三角形的角平分线与一个角的角平分线有何异同?【课堂小结】①本节课你有哪些收获?②你还有什么问题或想法需要和大家交流?AC B ACB AC BAC BADE CB 【作业】1、必做题:教科书第8页 3、4、8、9 2、选做题:如图,在△ABC 中,AC=6,BC=8,AD⊥BC 于D ,AD=5, BE⊥AC于E ,求BE 的长.【训 练 案】1、如图所示,画△ABC 的一边上的高,下列画法正确的是( ).2、如图,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是△ 中 边上的中线,BE 是△ 中___上的中线;3、如图,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 . 4.三角形的角平分线是( ).A .直线B .射线C .线段D .以上都不对5、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.锐角三角形 6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线; ③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点, 其中说法正确的有( ). A .1个 B .2个 C .3个 D .4个 7.AD 是△ABC 的边BC 上的中线,已知AB=5cm ,AC=3cm , 求△ABD 与△ACD 的周长之差.板 书 设 计课 后 反 思§11.1.3三角形的稳定性主备:崔建国 集备:八年级数学组 审核:叶立新 时间:2014年6月 课时:1课时 课型:新授课 授课时间: 年 月 日 授课人: 【学习目标】1.认识三角形的稳定性,并会用其解决一些实际问题;2、进一步巩固三角形的边和相关线段。
【重点】三角形的稳定性【难点】三角形的稳定性的理解 【学法】自主、合作、探究 【学习准备】三角板 【学习过程】【预 习 案】 自学教科书内容,回答下列问题:1、通过观察,你发现生活中哪些物体的结构是三角形?2、做一做 (1)、用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(2)、用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗? (3)、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(4)、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?由上面的操作我们发现,三角形木架的形状__________,而四边形木架的形状_______.这就是说,三角形是具有__________的图形,而四边形没有__________ . 6、在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用?白山市第二十中学 八年级数学(上)导学案 班级: 姓名:【探究案】1、已知,AD、AE分别是△ABC的高和中线,已知AD=5cm,EC=2cm,求△ABE和△AEC 的面积。
2、已知△ABC中,AB=AC,BD为AC边上的中线,BD将△ABC的周长分成9和12两部分,求三角形的边长。
【课堂小结】①本节课你有哪些收获?②你还有什么问题或想法需要和大家交流?【作业】1、必做题:教科书第8页5、102、选做题:三角形具有稳定性,而其它多边形不具有稳定性,要使多边形也具有稳定性必须额外加一些线段,将其转化为几个三角形。
试探究要使四边形不变形,至少需要加条线段,五边形至少需要加条线段,六边形至少需要加条线段,n边形(n﹥3)最少需要条线段才具有稳定性。