中职数学教案8.2.1直线与方程教学设计
中职数学教学设计 直线的方程

【课题】8.2 直线的方程(二)【教学目标】知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.【教学重点】直线方程的点斜式、斜截式方程.【教学难点】根据已知条件,选择直线方程的适当形式求直线方程.【教学设计】采用“问题——分析——联系方程”的步骤,从学生熟知的一次函数图像入手,分析图像上的坐标与函数解析式的关系,把函数的解析式看作方程,图像是具有某种特征的平面点集(轨迹).很自然地建立直线和方程的关系,把函数的解析式看作方程是理解概念的关键.导出直线的点斜式方程过程,是从直线与方程的关系中的两个方面进行的.首先是直线上的任意一点的坐标都是方程的解,然后是以方程的解为坐标的点一定在这条直线上.直线的斜截式方程是直线的点斜式方程的特例.直线的斜截式方程与一次函数的解析式具有相同的形式.要强调公式中b的意义.直线的一般式方程的介绍,分两个层次来处理也是唯一的.首先,以问题的形式提出前面介绍的两种直线方程都可以化成一般的二元一次方程的形式.然后按照二元一次方程Ax By C++=的系数的不同取值,进行讨论.对CyB=-与CxA=-只是数形结合的进行说明.这种方式比较适合学生的认知特征.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间*创设情境 兴趣导入 【问题】我们知道,方程10x y -+=的图像是一条直线,那么方程的解与直线上的点之间存在着怎样的关系呢?质疑 引导分析 思考启发 学生思考5 *动脑思考 探索新知 【新知识】 已知直线的倾角为45,并且经过点0(0,1)P ,由此可以确定一条直线l .设点(,)P x y 为直线l 上不与点0(0,1)P 重合的任意一点(图8-6).图8-61tan 450-==-y k x , 即 10x y -+=.这说明直线上任意一点的坐标都是方程10x y -+=的解.设点111(,)P x y 的坐标为方程10x y -+=的解,即1110x y -+=,则111tan 450-==-y k x ,已知直线的倾角为45,并且经过点0(0,1)P ,只可以确定一条直线l .这说明点111(,)P x y 在经过点0(0,1)P 且倾角为45的直线上.讲解 说明引领 分析思考 理解 思考带领 学生 分析过 程行为 行为 意图 间一般地,如果直线(或曲线)L 与方程(,)0F x y =满足下列关系:⑴ 直线(或曲线)L 上的点的坐标都是二元方程(,)0F x y =的解;⑵ 以方程(,)0F x y =的解为坐标的点都在直线(或曲线)L 上.那么,直线(或曲线)L 叫做二元方程(,)0F x y =的直线(或曲线),方程(,)0F x y =叫做直线(或曲线)L 的方程. 记作曲线L :(,)0F x y =或者曲线(,)0F x y =.例如,直线l 的方程为10x y -+=,可以记作直线:10l x y -+=,也可以记作直线10x y -+=.下面求经过点000(,)P x y ,且斜率为k 的直线l 的方程(如图8-7).图8-7在直线l 上任取点(,)P x y (不同于0P 点),由斜率公式可得 0y y k x x -=-,即 00()y y k x x -=-.显然,点000(,)P x y 的坐标也满足上面的方程. 方程00()y y k x x -=-, (8.4)叫做直线的点斜式方程.其中点000(,)P x y 为直线上的点,k 为仔细 分析 讲解 关键 词语理解 记忆引导 式启 发学 生得 出结 果;1).,故斜率为α,tan451==,所以直线方程为,过程行为行为意图间30 *动脑思考探索新知【新知识】如图8-8所示,设直线l与x轴交于点(,0)A a,与y轴交于点(0,)B b.则a叫做直线l在x轴上的截距(或横截距);b叫做直线l在y轴上的截距(或纵截距).【想一想】直线在x轴及y轴上的截距有可能是负数吗?图8-8【新知识】设直线在y轴上的截距是b,即直线经过点(0,)B b,且斜率为k.则这条直线的方程为(0)y b k x-=-,即y kx b=+.方程y kx b=+(8.5)叫做直线的斜截式方程.其中k为直线的斜率,b为直线在y 轴的截距.总结归纳仔细分析讲解关键词语思考归纳理解记忆带领学生总结40*巩固知识典型例题例3设直线l的倾角为60°,并且经过点P(2,3).(1)写出直线l的方程;(2)求直线l在y轴的截距.解(1)由于直线l的倾角为60°,故其斜率为引领观察通过=.603,由公式(8.4)x-3(2)过 程行为 行为 意图 间0Ax By C ++=就是直线的方程呢?*动脑思考 探索新知 【新知识】(1)当0A ≠,0B ≠时,二元一次方程0Ax By C ++=可化为A C y x B B =--.表示斜率为A k B =-,纵截距Cb B=-的直线.(2)当0A =,0B ≠时,方程为Cy B=-,表示经过点0,C P B ⎛⎫- ⎪⎝⎭且平行于x 轴的直线(如图8-9).(3)当0A ≠,0B =时,方程为Cx A=-,表示经过点,0C P A ⎛⎫- ⎪⎝⎭且平行于y 轴的直线(如图8-10). 所以,二元一次方程0Ax By C ++=(其中A 、B 不全为零)表示一条直线.图8-9 图8-10方程0Ax By C ++=(其中A 、B 不全为零) (8.6)叫做直线的一般式方程.总结 归纳 仔细 分析 讲解 关键 词语思考 归纳 理解 记忆带领 学生 总结72 *巩固知识 典型例题例4 将方程12(1)2y x -=+化为直线的一般式方程,并分别 说明 强调观察【教师教学后记】。
中职数学(基础模块)教案

中职数学(基础模块)教案1.1集合的概念知识目标:(1)理解集合、元素及其关系;(2)掌握集合的列举法与描述法,会用适当的方法表示集合.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力.教学重点:集合的表示法.教学难点:集合表示法的选择与规范书写.课时安排:2课时.1。
2集合之间的关系知识目标:(1)掌握子集、真子集的概念;(2)掌握两个集合相等的概念;(3)会判断集合之间的关系。
能力目标:通过集合语言的学习与运用,培养学生的数学思维能力。
教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.课时安排:2课时.1。
3集合的运算(1)知识目标:(1)理解并集与交集的概念;(2)会求出两个集合的并集与交集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过交集与并集问题的研究,培养学生的数学思维能力.教学重点:交集与并集.教学难点:用描述法表示集合的交集与并集.课时安排:2课时.1.3集合的运算(2)知识目标:(1)理解全集与补集的概念;(2)会求集合的补集.能力目标:(1)通过数形结合的方法处理问题,培养学生的观察能力;(2)通过全集与补集问题的研究,培养学生的数学思维能力.教学重点:集合的补运算.教学难点:集合并、交、补的综合运算.课时安排:2课时.1.4充要条件知识目标:了解“充分条件”、“必要条件”及“充要条件”.能力目标:通过对条件与结论的研究与判断,培养思维能力.教学重点:(1)对“充分条件"、“必要条件”及“充要条件"的理解.(2)符号“",“”,“”的正确使用.教学难ZYB重油煤焦油专用泵点:“充分条件”、“必要条件”、“充要条件”的判定.课时安排:2课时.2.1不等式的基本性质知识目标:⑴理解不等式的基本性质;⑵了解不等式基本性质的应用.能力目标:⑴了解比较两个实数大小的方法;⑵培养学生的数学思维能力和计算技能.教学重点:⑴比较两个实数大小的方法;⑵不等式的基本性质.教学难点:比较两个实数大小的方法.课时安排:1课时.2.2区间知识目标:⑴掌握区间的概念;⑵用区间表示相关的集合.能力目标:通过数形结合高温导热油泵的学习过程,培养学生的观察能力和数学思维能力.教学重点:区间的概念.教学难点:区间端点的取舍.课时安排:1课时.2.3一元二次不等式知识目标:⑴了解方程、不等式、函数的图像之间的联系;⑵掌握一元二次不等式的图像解法.能力目标:⑴通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力;⑵通过求解一元二次不等式,培养学生的计算技能.教学重点:⑴方程、不等式、函数的图像之间的联系;⑵一元二次不等式的解法.教学难点:一元二次不等式的解法.课时安排:2课时.2。
中职数学第八章《直线和圆的方程》全部教学设计7份教案(高教版)

【课题】8.1 两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.【教学重点】两点间的距离公式与线段中点的坐标公式的运用【教学难点】两点间的距离公式的理解【教学设计】两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.例1是巩固性练习题.题目中,两个点的坐标既有正数,又有负数.讲授时,要强调两点间的距离公式的特点特别是坐标为负数的情况.例2是中点公式的知识巩固题目.通过连续使用公式(8.2),强化学生对公式的理解与运用.例3是本节两个公式的综合性题目,是知识的简单综合应用.要突出“解析法”,进行数学思维培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】212(==P P P P x、N、P、Q、R各点的坐标.在平面直角坐标系内,描出下列各点:(1,1)A、(3,4)B .并计算每两点之间的距离.第1题图12)(=-x x 01012-=⎧⎨-=-⎩x x y y y y图8-2【教师教学后记】【课题】8.2 直线的方程【教学目标】知识目标:(1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.【教学重点】直线的斜率公式的应用.【教学难点】直线的斜率概念和公式的理解.【教学设计】本教材采用的定义是:“当直线与x 轴相交于点P 时,以点P 为顶点,始边指向x 轴正方向,终边落在直线上的最小正角叫做直线的倾角.当直线与x 轴不相交(或重合)时,规定倾角为零角”.这样就使得关于角的概念一致起来.结合图形,让学生观察倾角的取值范围,要注意倾角的取值范围是[0,180) 而非 [0,180].教材中的“试一试”有助于巩固学生对倾角概念的理解.教材采用“数形结合”的方法,分成两种情况来研究斜率公式.教学中要注意这种分类讨论问题的思考方法的教育,培养学生有条理的思考问题.要强调应用斜率公式的条件12x x .例1是斜率概念及公式的巩固题目,属于简单题.通过例题加强对概念和公式的理解.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-3动脑思考探索新知【新知识】为了确定直线对x轴的倾斜程度,我们引入直线的倾角的概念.轴垂直(如图8−5()3=.31,2)与点B上的任意两点,则直线此节的书面作业习题里没有【课题】8.2 直线的方程(二)【教学目标】知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.【教学重点】直线方程的点斜式、斜截式方程.【教学难点】根据已知条件,选择直线方程的适当形式求直线方程.【教学设计】采用“问题——分析——联系方程”的步骤,从学生熟知的一次函数图像入手,分析图像上的坐标与函数解析式的关系,把函数的解析式看作方程,图像是具有某种特征的平面点集(轨迹).很自然地建立直线和方程的关系,把函数的解析式看作方程是理解概念的关键.导出直线的点斜式方程过程,是从直线与方程的关系中的两个方面进行的.首先是直线上的任意一点的坐标都是方程的解,然后是以方程的解为坐标的点一定在这条直线上.直线的斜截式方程是直线的点斜式方程的特例.直线的斜截式方程与一次函数的解析式具有相同的形式.要强调公式中b的意义.直线的一般式方程的介绍,分两个层次来处理也是唯一的.首先,以问题的形式提出前面介绍的两种直线方程都可以化成一般的二元一次方程的形式.然后按照二元一次方程Ax By C++=的系数的不同取值,进行讨论.对CyB=-与CxA=-只是数形结合的进行说明.这种方式比较适合学生的认知特征.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】)y 为直线-x 11,)x y 在经过点图8-7上任取点(,)P x y (不同于0P 点) 0y y k x x -=-,1).αtan=,所以直线方程为图8-8B b,且斜即直线经过点(0,)3=.,由公式(8.4)【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩αα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】当直线1l 、2l 的斜率都是与x 轴平行,所以1l 当两条直线1l 、直线1l 与直线2l 都与图8-11-11(1)【课题】8.3 两条直线的位置关系(二)【教学目标】知识目标:(1)掌握两条直线平行的条件; (2)能应用点到直线的距离公式解题. 能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线的位置关系,点到直线的距离公式.【教学难点】两条直线的位置关系的判断及应用.【教学设计】与倾角的定义相类似,本教材将两条直线夹角的定义建立在任意角定义的基础上.两条直线相交所形成的最小正角叫做这两条直线的夹角.同时规定,两条直线平行或重合时两条直线的夹角为零角,这样两条直线的夹角的范围是0,90⎡⎤⎣⎦.教材采用“数形结合”、“看图说话”的方法,导入两条直线垂直的条件,过程简单易懂.两条直线垂直的实质就是这两条直线的夹角为90.运用垂直条件时,要注意斜率不存在的情况.例4是巩固性题目.属于基础性题.首先将直线的方程化为斜截式方程,再根据斜率判断两条直线垂直是本套教材判断两条直线垂直的主要方法.例5是利用垂直条件求直线的方程的题目,属于基础性题.首先利用垂直条件求出直线的斜率,然后写出直线的点斜式方程,最后将方程化为一般式方程.这一系列解题程序,蕴含着“解析法”的思想方法.需要强调,点到直线的距离公式中的直线方程必须是一般式方程.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-12探索新知图8-13我们把两条直线相交所成的最小正角叫做这)是直线图8-148-1511tan BCk ABα==, 233tan tan()tan ==-=-=-AB BCααα180 121k k ⋅=-.上面的过程可以逆推,即若121k k ⋅=-,则1l ⊥由此得到结论(两条直线垂直的条件):2l1l【课题】8.4 圆(一)【教学目标】知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程. 能力目标:培养学生解决问题的能力与计算能力.【教学重点】圆的标准方程和一般方程的理解与应用.【教学难点】对圆的标准方程和一般方程的正确认识.【教学设计】用“解析法”推导圆的标准方程的过程,学生比较容易掌握,可以引导学生自己完成.要强化对圆的标准方程()()222x a y b r -+-=的认识,其中半径为r ,圆心坐标为(),O a b '.经常容易发生错误的地方是认为半径是2r ,圆心坐标为(),O a b '--.教学中应予以强调,反复强化.例1和例2是圆的标准方程的知识巩固性题目,属于基础性题目.可以由学生自己完成.通过例题,进一步熟悉圆的标准方程.再介绍圆的一般方程时,教材首先将圆的标准方程展开,分析系数特点,然后将方程配方成圆的标准方程.这一系列的过程,不但介绍圆的一般方程及其与标准方程的联系,还显示出用代数的方法研究几何问题的魅力.例3是圆的方程巩固性题目.题中的两种解法,都是经常使用的方法.特别是解法1,通常采用配方法,将方程化为标准方程,求出圆心坐标与半径.这类题目的训练,有助于学生数学运算能力的提高.求圆的方程,基本有两种基本方法.一种是根据已知条件求出圆心和半径,然后写出圆的标准方程,例4就是这种类型的基础性题目;另一种是,设出圆的方程,然后,利用待定系数法确定相应的常数,例5就是这种类型的基础性题目.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】8.4 圆(二)【教学目标】知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】直线与圆的位置关系的理解和掌握.【教学难点】直线与圆的位置关系的判定.【教学设计】直线与圆的位置关系的判定是本节的难点,将直线的方程与圆的方程联立组成方程组,通过对方程组的解的讨论,来研究直线和圆的位置关系,理论上讲是很简单的,但是,实际操作的运算过程很麻烦.教材采用“数”“形”结合的方式,利用比较半径与圆心到直线的距离大小的关系来讨论的方法,相对比较简单.平面几何中,学生对这样判断直线与圆的位置关系比较熟悉,现在通过比较半径与圆心到直线的距离的大小,来判定直线与圆的位置关系,学生容易接受,例6就是采用这种方法进行讨论的.经过一点求圆的切线方程,通常作法是设出点斜式方程,利用圆心到切线的距离与半径相等来确定斜率,从而得到切线方程,其中蕴含着“待定系数法”和“解析法”等数学方法.例8是直线在科技领域中的应用知识,根据光学原理,反射角等于入射角,利用直线的斜率公式可以求得反射点P的坐标.例9是圆在生产实践中的应用知识.解决这类实际问题首先要选择直角坐标系.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】动脑思考 探索新知 【新知识】图8-21图8-22。
直线与方程 教案

《直线的方程》教案【教学目标】 1.知识与技能:(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;掌握直线方程的两点的形式特点及适用范围;明确直线方程一般式的形式特征。
(2)正确利用点斜式、斜截式公式以及两点式公式求直线方程,会把直线方程的一般式化为斜截式,进而求斜率和截距,会把直线方程的点斜式、两点式化为一般式。
2.过程与方法:(1) 在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。
(2)让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。
(3)让学生学会用分类讨论的思想方法解决问题。
3.情感态度价值观:(1)通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。
(2)认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。
【教学重点】直线的点斜式方程和斜截式方程,直线方程两点式,直线方程的一般式。
【教学难点】直线的点斜式方程和斜截式方程的应用,两点式推导过程的理解,对直线方程一般式的理解与应用 【课型】新课【课时安排】两课时(90min ) 【教学器具】多媒体【教学方式】教师引导学生独自思考 【教学过程】3.2.1直线的点斜式方程一.引出问题:在直线坐标系内确定一条直线,应知道哪些条件? 二.引导答案:直线l 经过点),(000y x P ,且斜率为k 。
设点),(y x P 是直线l 上的任意一点,请建立y x ,与00,,y x k 之间的关系。
yxOP P 0(1)1.坐标满足方程(1)的点都在经过),(000y x P ,斜率为k 的直线l 上吗? 答:方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式。
“直线的方程”(第一课时)教学设计

“直线的方程”(第一课时)教学设计王少青1 教材分析本节课是江苏教育出版社中职数学第二册第八章“直线与圆的方程”的“§8.3直线的方程”第一课时.本节课的学习任务是建立直线的点斜式方程和斜截式方程,它是继初中阶段研究了一次函数和本章中学习了直线的倾斜角和斜率之后进行研究的.建立和理解直线的点斜式方程和斜截式方程,不仅为直线方程的一般式方程的建立提供方法论的依据,也为研究直线之间的位置关系、直线和圆之间的位置关系提供基础,同时为学生进一步领会解析几何“用代数手段研究几何问题”这一基本方法创造条件。
2 学情分析一方面,学生在初中阶段已经学习了一次函数解析式、图像和性质,并且在本章中学习了直线倾斜角和斜率,具备了探究直线点斜式方程和斜截式方程的知识基础.另一方面,这一阶段的学生具有一定的逻辑思维能力,形成了分类讨论、数形结合等基本的数学思想方法,有探究学习的欲望和积极思考的习惯。
3 教学目标3.1 教学目标(1)经历对直线点斜式方程和斜截式方程的探究过程,能利用这两种直线方程解决问题,认识到这两种方程的局限性,能求出直线方程。
(2)经历由特殊到一般又由一般到特殊的研究过程,引导学生从不同的角度思考问题,在进一步培养数形结合、分类讨论等基本数学思想方法的同时,提升学生思维的严谨性。
(3)通过研究直线的方程,激发学生主动学习数学的欲望和积极性,建立几何与代数间的联系,发现数学多层次的美。
3.2 重难点分析重点:建立直线的点斜式方程和斜截式方程。
难点:直线方程点斜式和斜截式的推导及运用。
4 教学过程4.1 回顾旧知问题1:确定一条直线的位置,需要哪几种条件?生:已知两点,或已知一点与它的斜率。
4.2 引入新知师:当我们用代数的思想方法来研究几何问题时,我们需要建系得到点的坐标。
问题2:已知直线l经过点A(-1,3),且斜率为-2.(1)你能在直线l上再找一点,并写出它的坐标吗?(2)这条直线上的任意一点P(x,y)的横坐标x和纵坐标y满足什么关系呢?在学生列举出了直线l一些点之后,教师提出下面的问题:师:对于第二问,当点P(x,y)在直线l上运动时,你能根据什么条件确定点P横坐标、纵坐标之间的关系?生:点P与定点A(-1,3)所确定的直线斜率恒等于-2,故有y-3x-(-1)=-2①。
《直线与方程》教学设计案例

《直线与方程》教学设计案例《《直线与方程》教学设计案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!单元教学设计是指对某一单元的教学内容作出具体的教学活动设计,这里的单元可是一章,也可是以某个知识内容为主的知识模块。
单元教学设计要有整体性、相关性、阶梯性和综合性。
本文以人教A 版高中数学必修2《直线与方程》一章为例进行了单元教学设计,设计内容包括单元教学目标、要素分析(其中包含数学分析、标准分析、学生分析、重点分析、教材比较分析、教学方式分析等)、教学流程设计、典型案例设计和反思与改进等。
一、单元教学目标(1)理解并体会用代数方法研究直线问题的基本思路:先在平面直角坐标系中建立直线的代数方程,再通过方程,用代数方法解决几何问题。
(2)初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
二、要素分析1.数学分析:直线与方程为人教A版教材必修2第三章内容,必修2包括立体几何初步、解析几何初步,其中立体几何初步分为空间几何体,点、直线、平面之间的位置关系。
直线与方程是继立体几何的学习之后从代数的观点认识、描述、刻画直线,是在平面直角坐标系中建立直线的方程,运用代数方法研究它们的几何性质及其相互位置关系。
它在高中数学中的地位非常重要,可以说是高中数学体系中的“交通枢纽”。
它与代数中的一次函数、二元一次方程、几何中的直线和不等式及线性规划等内容都有关联。
在本章教学中,学生应该经历如下的过程:首先将直线的倾斜角代数化,探索确定直线位置的几何要素,建立直线的方程,把直线问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种数形结合的思想贯穿教学的始终,并且在后续课程中不断体现。
2.标准分析:①坐标法的渗透与掌握:解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法。
②作为后续学习的基础,要灵活地根据条件确定或者待定直线的方程,如将直线方程预设成点斜式、斜截式或一般式,等等。
直线与方程教案

直线与方程教案直线与方程教案引言:数学是一门抽象而又实用的学科,而直线与方程是数学中最基本的概念之一。
在初中数学教学中,直线与方程的教学是非常重要的一环。
通过深入浅出的教学方法,能够帮助学生理解直线与方程的关系,培养他们的逻辑思维和问题解决能力。
本文将探讨如何设计一堂生动有趣的直线与方程教案,以帮助学生更好地掌握这一概念。
一、知识概述直线是数学中最基本的几何图形之一,它由无数个点组成,而方程则是用代数语言来描述直线的数学表达式。
在教学开始前,我们需要向学生介绍直线和方程的基本概念,以及它们之间的关系。
二、引入问题为了激发学生的学习兴趣,我们可以通过提出一个有趣的问题引入直线与方程的教学。
例如,我们可以给学生展示一张地图,并问他们如何用直线和方程来描述两个城市之间的最短路径。
通过这个问题,学生可以感受到直线与方程在实际生活中的应用,并对学习产生浓厚的兴趣。
三、直线的一般方程接下来,我们可以向学生介绍直线的一般方程。
通过示意图和具体的例子,我们可以清晰地解释直线的斜率和截距的概念,并推导出直线的一般方程。
在讲解的过程中,我们可以引导学生思考直线的斜率与截距对方程的影响,以及如何根据直线上的两个点确定直线的方程。
四、直线的点斜式方程在学习了直线的一般方程后,我们可以向学生介绍直线的点斜式方程。
通过具体的例子和示意图,我们可以解释点斜式方程的意义和使用方法。
同时,我们可以引导学生思考如何根据直线上的一个点和斜率来确定直线的方程。
五、直线的截距式方程除了一般方程和点斜式方程,直线还可以用截距式方程来表示。
我们可以通过具体的例子和图示,向学生解释截距式方程的概念和推导过程。
同时,我们可以引导学生思考如何根据直线在坐标轴上的截距来确定直线的方程。
六、练习与应用在学习了直线与方程的基本知识后,我们可以通过练习题和实际应用问题来巩固学生的理解。
练习题可以包括求解直线的方程、确定直线的斜率和截距等。
而实际应用问题可以涉及到直线在几何图形中的应用,如求解两直线的交点、判断点是否在直线上等。
中职数学教学设计82 直线的方程

【课题】8.2 直线的方程【教学目标】知识目标:(1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.【教学重点】直线的斜率公式的应用.【教学难点】直线的斜率概念和公式的理解.【教学设计】本教材采用的定义是:“当直线与x 轴相交于点P 时,以点P 为顶点,始边指向x 轴正方向,终边落在直线上的最小正角叫做直线的倾角.当直线与x 轴不相交(或重合)时,规定倾角为零角”.这样就使得关于角的概念一致起来.结合图形,让学生观察倾角的取值范围,要注意倾角的取值范围是[0,180) 而非 [0,180].教材中的“试一试”有助于巩固学生对倾角概念的理解.教材采用“数形结合”的方法,分成两种情况来研究斜率公式.教学中要注意这种分类讨论问题的思考方法的教育,培养学生有条理的思考问题.要强调应用斜率公式的条件12x x .例1是斜率概念及公式的巩固题目,属于简单题.通过例题加强对概念和公式的理解.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间*创设情境 兴趣导入如图8-3所示,直线1l 、2l 、3l 虽然都经过点P ,但是它们相对于x 轴的倾斜程度是不同的.图8-3观察 质疑 引导 分析思考 自我 分析从实例出发使学生自然的走向知识点10 *动脑思考 探索新知 【新知识】为了确定直线对x 轴的倾斜程度,我们引入直线的倾角的概念.设直线l 与x 轴相交于点P ,A 是x 轴上位于点P 右方的一点,B 是位于上半平面的l 上的一点(如图8-4),则APB ∠叫做直线l 对x 轴的倾斜角,简称为l 的倾角.若直线l 平行于x 轴,规定倾角为零,这样,对任意的直线,均有0≤180<α.图8-4下面研究如何根据直线上的任意两个点的坐标来确定倾角的大小. 设111(,)P x y 、222(,)P x y 为直线l 上的任意两点,可以得到(如图8-5):总结 归纳仔细分析讲解 关键 词语总结 归纳思考 理解 记忆 思考带领 学生 分析O A BP x yP A BO xy过 程行为 行为 意图 间图8−5当90≠α时,12x x ≠,2121tan y y x x α-=-(如图8−5(1)、(2)); 当90=α时,12x x =,tan α的值不存在,此时直线l 与x 轴垂直(如图8−5(3)).倾角()90≠αα的正切值叫做直线l 的斜率,用小写字母k 表示,即tan k α=.设点111(,)P x y 、222(,)P x y 为直线l 上的任意两点,则直线l 的斜率为211221()y y k x x x x -=≠-. (8.3)【想一想】当1P 、2P 的纵坐标相同时,斜率是否存在?倾斜角是多少?仔细 分析 讲解 关键 词语理解 记忆引导 式启 发学 生得 出结 果35 *巩固知识 典型例题例1 根据下面各直线满足的条件,分别求出直线的斜率: (1)倾角为30;(2)直线过点(2,2)A -与点(3,1)B -.解 (1)由于倾斜角30=α,故直线的斜率为说明 强调观察注意 观察 学生330=.,由公式8.31,2)与点B上的任意两点,则直线【教师教学后记】此节的书面作业习题里没有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.1 直线与方程
【教学目标】
1. 理解直线的方程的概念,会判断一个点是否在一条直线上.
2. 培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.
【教学重点】
直线的特征性质,直线的方程的概念.
【教学难点】
直线的方程的概念.
【教学方法】
这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.
【教学过程】。