第24章《圆》复习课ppt课件
第二十四章圆 复习课课件(共35张PPT)人教版九年级数学上册

学习目标
知识梳理
典型例题
当堂检测
课堂总结
4.会画三角形的外接圆和内切圆,知道三角形内心和外心的性质,知 道圆内接多边形并会相关计算. 5.知道弧长和扇形面积的计算公式,并能用这些公式进行相关计算.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
1 圆的有关概念及性质 1.定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆. 2.有关概念:
(1)弦、直径(圆中最长的弦)
O.
(2)弧、优弧、劣弧、等弧
(3)弦心距
3.不在同一条直线上的三个点确定一个圆.
学习目标
知识梳理
典型例题
当堂检测
课堂总结
2 圆的对称性 1.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数 条对称轴. 2.圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合, 即圆具有旋转不变性.
解:设直径BC与弦AD交于点E
A
∵∠D=36°,∴∠ABC=36°
∵AD⊥BC,
B
∴在直角三角形ABE中,∠BAD=90°-36°=54°
C E D
学习目标
知识梳理
典型例题
当堂检测
课堂总结
例2.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC. (1)若∠CBD=39°,求∠BAD的度数;(2)求证明:∠1=∠2.
典型例题
当堂检测
课堂总结
例3.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直 径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这 个小圆孔的宽口AB的长度为 8 mm.
解析:设圆心为O,连接AO,作出过点O的 弓形高CD,垂足为D,可AO=5mm,OD=3mm 利用勾股定理进行计算,AD=4mm, 所以AB=8mm.
人教版数学九年级上册第24章圆24.弧、弦、圆心角课件

OE与OF相等. 证明:
∵ OE⊥AB , OF⊥CD ,
∴∠AEO=∠CFO=90°,
AE= 1 AB , CF= 1 CD .
2
2
∵AB=CD , ∴AE=CF.
∵OA=OC ,
∴Rt△AOE≌ Rt △COF.
∴OE=OF.
探究 如图,AB,CD是 O的两条弦,OE⊥AB 于E,OF⊥CD于F. (2)如果OE=OF, AB与CD相等吗?为什么? 分析:
证法一: ∵AD=BC, AD BC .
AD+BD BC BD , AB CD .
∴AB=CD.
例2 已知:如图所示,在 O中, AD=BC . 求证:AB=CD.
证法二:连接OA,OD,OB,OC.
∵AD=BC, ∴∠AOD=∠BOC. ∴∠AOD+∠BOD=∠BOC+ ∠BOD, ∴∠AOB=∠DOC. ∴AB=CD.
OA =OB, A、B两点关于点O对称, 圆是中心对称图形, 它的对称中心是圆心.
思考2.把 O绕圆心O旋转任意一个角度后, 还能和本来的图形重合吗?
圆具有旋转不变性.
圆心角:我们把顶点在圆心的角叫做圆心角.
∠AOB为 O的圆心角, 圆心角∠AOB所对的弦为AB, 所对的弧为AB .
思考:如图,在 O中,当圆心角∠AOB=∠A1OB1 时,它们所对的AB 和 A1B1 、弦AB和A1B1相等吗?为 什么?
∵AB、CD是⊙O的两条直径,
∴∠AOC=∠BOD, ∵BE=BD,∴∠BOE=∠BOD, ∴∠AOC=∠BOE, ∴ AC BE.
探究 如图,AB,CD是 O的两条弦,OE⊥AB 于E,OF⊥CD于F. (1)如果AB=CD, OE与OF相等吗?为什么? (2)如果OE=OF, AB与CD相等吗?为什么?
_第24章圆复习课件___人教新课标版

幻灯片1第24章复习数学·新课标(RJ)幻灯片2第24章复习2 ┃知识归类┃知识归纳┃1.圆的对称性圆是图形,它的对称轴是,有条对称轴.圆是图形,它的对称中心是,圆绕圆心旋转和自身重合.直径所在的直线轴对称无数中心对称圆心任意角度幻灯片3第24章复习2 ┃知识归类2.垂径定理及其推论垂径定理:垂直于弦的直径,且.符号语言(如图24-12所示):∵CD是⊙O的直径,CD⊥AB,∴,,.推论:平分弦()的直径,并且.平分弦弦所对的两条弧AM=BM不是直径垂直于弦平分弦所对的两条弧数学·新课标(RJ)幻灯片4第24章复习2 ┃知识归类符号语言(如图所示):∵CD是⊙O的直径,CD平分AB,∴,,CD⊥AB数学·新课标(RJ)幻灯片5第24章复习2 ┃知识归类[易错点] 推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”中“弦不是直径”是它的重要条件,因为一个圆的任意两条直径总是互相平分的,但是它们未必垂直.数学·新课标(RJ)幻灯片6第24章复习2 ┃知识归类3.弧,弦,圆心角之间的关系定理(1)在同圆或等圆中,相等的圆心角所对的相等,所对的也相等.符号语言(如图24-13所示):∵∠AOB=∠COD,∴,.弧弦AB=CD数学·新课标(RJ)幻灯片7第24章复习2 ┃知识归类(2)在同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.[注意] 一定要在“在同圆或等圆中”这个前提下,才能使用这个定理.数学·新课标(RJ)幻灯片8第24章复习2 ┃知识归类4.圆周角定理及推论圆周角定理:在同圆或等圆中,同弧或等弧所对的相等,都等于这条弧所对的圆心角的;圆周角定理的推论:半圆(或直径)所对的圆周角是,的圆周角所对的弦是直径.相等的圆周角所对的弧.5.点与圆的位置关系d表示点到圆心的距离,r表示半径.点和圆的关系如下表:圆周角一半90°90°相等数学·新课标(RJ)幻灯片9第24章复习2 ┃知识归类图24-14数学·新课标(RJ)幻灯片10第24章复习2 ┃知识归类[注意] 要判断一个点与圆的位置关系,关键是比较d与r的大小关系;反过来,由点与圆的位置关系,也可以判定d与r的大小.6.直线与圆的位置关系设r为圆的半径,d为圆心到直线的距离.数学·新课标(RJ)幻灯片11第24章复习2 ┃知识归类1 2 d>r d =r d<r数学·新课标(RJ )幻灯片12第24章复习2 ┃ 知识归类[易错点] 将圆心到直线上某一点的距离看成是圆心到直线的距离. 7.圆与圆的位置关系在同一平面内两圆做相对运动,可以得到下面五种位置关系,其中R 和r 为两圆半径(R ≥r),d 为圆心距.数学·新课标(RJ )幻灯片13第24章复习2 ┃ 知识归类d>R+r1d=R+r2R-r<d<R+r1d=R-r0≤d<R-r[注意] 两圆内含时,如果d为0,则两圆为同心圆.[易错点] 混淆圆与圆的位置关系及相对应的d与R和r的数量关系.数学·新课标(RJ)幻灯片14第24章复习2 ┃知识归类8.三角形的外接圆和三角形的内切圆确定圆的条件:确定一个圆.三角形的外心就是三角形的交点,它到三角形的距离相等.三角形的内心就是的交点,它到三角形的距离相等.[注意] (1)经过在同一直线上的3点不能作圆;(2)找三角形外接圆只需要画出两条边的垂直平分线的交点,找三角形内切圆只需要画出两内角的角平分线交点.不在同一条直线上的三个点三个顶点三条角平分线三条边数学·新课标(RJ)幻灯片15第24章复习2 ┃知识归类9.切线长定理从圆外一点可以引圆的两条切线,它们的相等,这一点和圆心的连线平分 .10.切线的判定与性质判定定理:经过的外端并且于这条半径的直线是圆的切线.性质定理:圆的切线于过切点的半径.切线长两条切线的夹角半径垂直垂直数学·新课标(RJ)幻灯片16第24章复习2 ┃知识归类11.圆中的计算问题(1)n°的圆心角所对的弧长l=.(2)n°的圆心角所对的扇形面积S==.(3)圆锥的侧面积和全面积由于圆锥的侧面展开图是,这个扇形的半径等于圆锥的,弧长等于圆锥的,所以圆锥的侧面积S=(l为母线长,r为底面圆的半径);圆锥的全面积等于它的与的和.nπR180nπR236012lR扇形母线长底面周长πrl侧面积底面积幻灯片17第24章复习2 ┃ 知识归类[注意] ①弧长和扇形面积公式中n 不带单位.②扇形面积公式S =12lR 与三角形面积公式类似.为了便于记忆,可以把扇形看成一个曲边三角形,把弧长l 看成底边长,把R 看成底边上的高.③根据扇形面积公式和弧长公式,已知S 扇形,l ,n ,R 四个量中的任意两个,都可以求出另外两个量.数学·新课标(RJ )幻灯片18第24章复习2 ┃ 考点攻略 ┃考点攻略┃► 考点一 垂径定理及其逆定理例1 已知以点O 为圆心的两个同心圆中,大圆的弦CD 交小圆于点E 、F ,OE 、OF 的延长线分别交大圆于点A 、B.(1)求证:CE =DF ; (2)求证:AC =BD ; (3)若CD =4,EF =2, 求这两个圆围成圆环的面积.图24-15幻灯片19第24章复习2 ┃考点攻略[解析] 根据垂径定理及推论可得出线段相等、角相等、弧相等、三角形全等等结论;同时利用构造勾股定理列出方程求出圆环的面积.图24-16数学·新课标(RJ)幻灯片20第24章复习2 ┃考点攻略解:(1)证明:过点O作OH⊥CD于H,∵OH⊥CD,OH⊥EF,∴CH=DH,EH=FH,∴CH-EH=DH-FH,∴CE=DF.(2)证明:连接AC、BD.∵OA=OB,OE=OF,∴OA-OE=OB-OF,∠OEF=∠OFE,∴AE=BF.∵∠OEF=∠CEA,∠OFE=∠DFB,数学·新课标(RJ)幻灯片21第24章复习2 ┃考点攻略∴∠CEA=∠DFB. 由(1)可知CE=DF,∴△AEC≌△BFD,∴AC=BD.(3)连接OC、OD,∵CD=4,EF=2,∴CH=12CD=2,EH=12EF=1,∴S环=πOC2-πOE2=π(OC2-OE2)=π[(OH2+CH2)-(OH2+EH2)]=π(CH2-EH2)=π(22-12)=3π.数学·新课标(RJ)幻灯片22第24章复习2 ┃考点攻略方法技巧(1)垂径定理是根据圆的对称性推导出来的,该定理及其推论是证明线段相等、垂直关系、弧相等的重要依据.利用垂径定理常作“垂直于弦的直径”辅助线(往往又只是作圆心到弦的垂线段,如本例);(2)垂径定理常与勾股定理结合在一起,进行有关圆的半径R 、圆心到弦的距离d 、弦长a 等数量的计算.这些量之间的关系是R 2=d 2+⎝ ⎛⎭⎪⎪⎫a 22.数学·新课标(RJ )幻灯片23第24章复习 ┃ 考点攻略► 考点二 圆心角与圆周角例2 如图24-17所示,C 为半圆上一点,AC =CE ,过点C 作直径AB 的垂线CP ,P 为垂足,弦AE 交PC 于点D ,交CB 于点F.求证:AD =CD.图24-17数学·新课标(RJ)幻灯片24第24章复习2 ┃考点攻略[解析] 要证明AD=CD,可连接AC,只要证明△ACD为等腰三角形即可.图24-18数学·新课标(RJ)幻灯片25图24-18幻灯片26证明:连接AC,∵AB为⊙O的直径,∴∠ACB=90°.∴∠ACD+∠DCB=90°.∵CP⊥AB于P,∴∠C BA+∠DCB=90°.∴∠ACD=∠C BA.又∵AC=CE,∴∠B=∠CAD=∠ACD,∴AD=CD.第24章复习2 ┃考点攻略数学·新课标(RJ)方法技巧当图形中含有直径时,构造直径所对的圆周角是解决问题的重要思路.在证明有关问题中注意90°的圆周角的构造.幻灯片27第24章复习┃考点攻略►考点三点与圆、直线与圆的位置关系例3在Rt△ABC中,∠C=90°,AC=3 cm,BC=4 cm,以点C为圆心,2.4 cm为半径画圆.求(1)AB的中点D与⊙C的位置关系;(2)直线AB与⊙C的位置关系.图24-19数学·新课标(RJ)幻灯片28第24章复习2 ┃考点攻略[解析] 因为⊙C的半径已经给出,所以只需求出点D到点C 的距离和点C到直线AB的距离即可.数学·新课标(RJ)幻灯片29第24章复习2 ┃考点攻略解:(1)在Rt△ABC中,根据勾股定理得AB=AC2+BC2=32+42=5(cm).∵点D是AB的中点,∴CD=12AB=2.5 cm>2.4 cm.∴点D在⊙C的外部.(2)作CE⊥AB于点E,根据三角形面积公式,得AC·BC=AB·CE,∴3×4=5·CE,解得CE=2.4 cm.∴直线AB与⊙C相切.数学·新课标(RJ)幻灯片30第24章复习┃考点攻略►考点四圆和圆的位置关系例4⊙O1的半径为3 cm,⊙O2的半径为5 cm,圆心距O1O2=2 cm,两圆的位置关系是()A.外切B.相交C.内切D.内含C [解析] C 圆心距O1O2=2 cm,是两圆的半径之差,所以两圆内切.幻灯片31第24章复习┃考点攻略►考点五切线的判定和性质例5已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图24-20①所示,若AB=2,∠P=30°,求AP的长(结果保留根号);(2)如图24-20②所示,若D为AP的中点,求证:直线CD 是⊙O的切线.数学·新课标(RJ)幻灯片32第24章复习2 ┃考点攻略图24-20数学·新课标(RJ)幻灯片33第24章复习2 ┃考点攻略解:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得AP=BP2-AB2=42-22=2 3.图24-21数学·新课标(RJ)幻灯片34第24章复习2 ┃考点攻略(2)如图24-21,连接OC、AC,∵AB是⊙O的直径,∴∠BCA=90°,有∠ACP=90°.在Rt△APC中,D为AP的中点,∴CD=12AP=AD.∴∠DAC=∠DCA. 又∵OC=OA,∴∠OAC=∠OCA.数学·新课标(RJ)幻灯片35第24章复习2 ┃考点攻略∵∠OAC+∠DAC=∠PAB=90°,∴∠OCA+∠DCA=∠OCD=90°,即OC⊥CD.∴直线CD是⊙O的切线.数学·新课标(RJ)幻灯片36第24章复习2 ┃考点攻略方法技巧圆的切线的判定常见方法有两种类型:(1)当已知条件中已明确给出直线与圆的公共点时,常采用连接这点和圆心这条辅助线,去证明这个半径垂直于已知直线.这种方法简称“连半径,证垂直”.(2)当已知条件中没有明确给出直线与圆的公共点时,常采用过圆心作直线的垂线段这条辅助线,去证明垂线段的长度等于圆的半径长.这种方法简称“作垂直,证半径”.本例属于第一种类型.数学·新课标(RJ)幻灯片37第24章复习┃考点攻略►考点六圆的相关计算例6如图24-22所示,已知在⊙O中,AB=43,AC是⊙O 的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.数学·新课标(RJ)幻灯片38第24章复习2 ┃考点攻略数学·新课标(RJ)幻灯片39第24章复习2 ┃考点攻略解:(1)连接AD.∵AC⊥BD,AC是直径,∴AC垂直平分BD,∴AB=AD,BF=FD,BC=CD.∴∠BAD=2∠BAC=60°,故∠BOD=2∠BAD=120°.∵BF=12AB=23,根据勾股定理得AF=AB2-BF2=(43)2-(23)2=6.在Rt△OBF中,OB2=BF2+OF2,数学·新课标(RJ)幻灯片40第24章复习2 ┃考点攻略即(23)2+(6-OB)2=OB2.∴OB=4.∴S阴影=120π×42360=163π.(2)设圆锥的底面圆的半径为r,则周长为2πr,∴2πr=120π×4180,∴r=43.数学·新课标(RJ)幻灯片41第24章复习2 ┃考点攻略易错警示(1)扇形的周长等于弧长与经过弧的两个端点的半径的和,千万不要错误地认为扇形的周长等于扇形的弧长.(2)计算圆锥的侧面积时,要注意各量之间的关系,不要把圆锥底面圆的半径当成扇形的半径,也不要把圆锥的母线长当成扇形的弧长.数学·新课标(RJ)幻灯片42第24章复习┃考点攻略►考点七与圆有关的综合运用问题例7如图24-24所示,已知点A(63,0),B(0,6),经过A、B 的直线l以每秒1个单位的速度向下做匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向做匀速运动.设它们运动的时间为t秒.(1)用含t的代数式表示点P的坐标;(2)过O作OC⊥AB于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并说明此时⊙P与直线CD的位置关系.数学·新课标(RJ)幻灯片43第24章复习2 ┃考点攻略数学·新课标(RJ)幻灯片44第24章复习2 ┃考点攻略[解析] 求点P的坐标,即求点P到x轴与到y轴的距离.因此需过点P作x轴或y轴的垂线.然后探索运动过程中,点P的运动情况.(2)中探索⊙P与直线CD的位置关系,即探索圆的半径与圆心到直线的距离之间的关系.图24-25数学·新课标(RJ)幻灯片45第24章复习2 ┃考点攻略解:(1)作PH ⊥OB 于H(如图24-25①),∵OB =6,OA =63,∴∠OAB =30°.∵PB =t ,∠BPH =30°,∴BH =12t ,HP =32t. ∴OH =6-t -12t =6-32t , ∴P ⎝ ⎛⎭⎪⎪⎫32t ,6-32t . (2)当⊙P 在左侧与直线OC 相切时(如图24-25②),∵OB =6-t ,∠BOC =30°,数学·新课标(RJ )幻灯片46第24章复习2 ┃ 考点攻略∴BC =12(6-t)=3-12t.∴PC =3-12t -t =3-32t. 由3-32t =1,得t =43(s ).此时⊙P 与直线CD 相交. 当⊙P 在右侧与直线OC 相切时(如图24-25③),PC =t -12(6-t)=32t -3. 由32t -3=1,得t =83﹙s ﹚,此时⊙P 与直线CD 相交. 综上,当t =43 s 或83s 时,⊙P 与直线OC 相切,⊙P 与直线CD 相交.数学·新课标(RJ )幻灯片47第24章复习2 ┃ 考点攻略方法技巧解决动态问题的关键是善于抓住运动变化中暂时静止的一瞬间,进行观察、猜想,分析“主动”与“被动”,并探索“变”中的“不变”.寻找等量关系式,达到解题的目的.数学·新课标(RJ )。
最新第24章《圆》复习课ppt课件培训讲学

所以∠OCB=90°-∠ACO=90°-70°=20°.
答案:20
主题3 切线的性质和判定 【主题训练3】(2013·昭通中考)如图,已知AB是☉O的直径,点 C,D在☉O上,点E在☉O外,∠EAC =∠B =60°. (1)求∠ADC的度数. (2)求证:AE是☉O的切线.
【自主解答】(1)∵∠B与∠ADC都是 A 所C 对的圆周角,且∠B =60°, ∴∠ADC=∠B =60°. (2)∵AB是☉O的直径, ∴∠ACB=90°, 又∠B =60°,∴∠BAC=30°, ∵∠EAC =∠B =60°, ∴∠BAE =∠BAC+∠EAC=30°+60°=90°, ∴BA⊥AE,∴AE是☉O的切线.
【主题升华】 切线的性质与判定
1.切线的判定的三种方法:(1)根据定义观察直线与圆公共点的 个数.(2)由圆心到直线的距离与半径的大小关系来判断.(3)应 用切线的判定定理.应用判定定理时,要注意仔细审题,选择合适 的证明思路:①连半径,证垂直;②作垂直,证半径.
2.切线的性质是求角的度数及垂直关系的重要依据,辅助线的作 法一般是连接切点和圆心,构造垂直关系来证明或计算.切线长 定理也为线段或角的相等提供了丰富的理论依据.
1.位置关系:(1)点与圆的位置关系;(2)直线与圆的位置关系. 2.判定方法:(1)利用到圆心的距离和半径作比较; (2)利用交点的个数判断直线与圆的位置关系.
OC=R-3;由勾股定理,得:OA2=AC2+OC2,即:R2=16+(R-3)2,解得 R=2 5 cm,所以选A.
6
【主题升华】 垂径定理及推论的四个应用
1.计算线段的长度:常利用半径、弦长的一半、圆心到弦的距离 构造直角三角形,结合勾股定理进行计算. 2.证明线段相等:根据垂径定理平分线段推导线段相等. 3.证明等弧. 4.证明垂直:根据垂径定理的推论证明线段垂直.
圆复习课公开课省公开课一等奖全国示范课微课金奖课件

解: (2)连接BC,
∵ AB为⊙O直径
B
∴∠ACB= 90°
又∠BAC=30°, AB=2,
BC 1 AB 1, 2
在Rt△ABC中,由勾股定理得:
AC AB2 BC 2 22 12 3
由(1)知, ∠PAC= ∠PCA = ∠P= 60
° PA=AC 3
9/14
小结
1.经过本节课学习,你有 经哪过些本收节获课?学习, 你有2哪.本些节收课获主?要利用什么方法 说来说处,理让一大些家简分单享实一际问题? 下。
交弧AB于点C.设半径为r, 即OA=OC=r. C
∵AB=60, CD=10
A
∴ AD
1 2
AB
30,OD=OC-CD=r-10
DB 0
在Rt△OAC中,由勾股定理得:
OA2 OD2 =AD2 ,即r2 r 102 302
∴r=50
∴2r=100 即管道内径为100cm.
5/14
垂径定理推论
平分弦(不是直径)直径垂直于 弦,而且平 分弦所正确两条弧.
C
A
┗●
M
B 由 ① CD是直径 可推得 ③ AM=BM
●O
②CD⊥AB,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.
D
相关垂径定理问题常包括到 半径、弦、弦心距、平行弦、弓形高
6/14
1. 切线判定定理
2. 切线性质定理
∵OC是半径, 且AB⊥OC
解:提(醒1): ∵利用PA.切PC线为长⊙定O切理线求解
∴PA=PC, PA⊥ AB
∴∠PAC= ∠PCA, ∠PAB=90°
B
又∠BAC=30°,
∴∠PAC= ∠PAB- ∠BAC =60 ° ∴∠P= 180°-2 ∠PAC- =60 °
最新人教版九年级上册数学第二十四章《圆》优秀课件(含复习共12课时)

集合定义
圆 弦(直径) 有关 概念 弧 劣弧 半圆 优弧 等弧 能够互相重合的两段弧
同 圆 半径 相等
直径是圆中 最 长 的 弦 半圆是特殊的弧
同圆
等圆
课后作业
见本课时练习
谢谢!
[义务教育教科书]( R J ) 九 上 数 学 课 件
第二十四章 圆
24.1 圆的有关性质
24.1.2 垂直于弦的直径
证明:∵四边形ABCD是矩形, ∴AO=OC,OB=OD.
又∵AC=BD, ∴OA=OB=OC=OD.
A
D
O
B C
∴A、B、C、D在以O为圆心以OA为半径的圆上.
二 圆的有关概念
弦:
连接圆上任意两点的线段(如图中的AC)叫
A
·
B
O
C
做弦. 经过圆心的弦(如图中的AB)叫做直径.
注意 1.弦和直径都是线段.
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.进一步认识圆,了解圆是轴对称图形.
2.理解垂直于弦的直径的性质和推论,并能应用它解决一
些简单的计算、证明和作图问题.(重点) 3.灵活运用垂径定理解决有关圆的问题.(难点)
导入新课
你能通过折叠的方式找到圆形纸片的对称轴吗?
在折的过程中你有何发现? 圆是轴对称图形,任何一条直径所在直线都是 它的对称轴.
2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦 不一定是直径.
弧:
圆上任意两点间的部分叫做圆弧,简弧. 以A、B为端点的弧记作 AB ,读作“圆弧 AB”或“弧AB”. 半圆 圆的任意一条直径的两个端点把圆分成 两条弧,每一条弧都叫做半圆. A ( O · B
C
人教版数学九年级上册第24章圆章节复习课件(共38张)
( (
并且AC与BD的度数分别是96 °和36 °,动点P是AB上的任意一
点,则PC+PD的最小值是
3.
C
D
A
B PO P
D’
图b
3 与圆有关的位置关系
【例3】如图, O为正方形对角线上一点,以点O 为圆心,OA长为
半径的☉O与BC相切于点M.
(1)求证:CD与☉O相切;
(1)证明:过点O作ON⊥CD于N.连接OM ∵BC与☉O相切于点M, ∴ ∠OMC=90 °, ∵四边形ABCD是正方形,点O在AC上. ∴AC是∠BCD的角平分线, ∴ON=OM, ∴ CD与☉O相切.
二、与圆有关的位置关系 1.点与圆的位置关系 判断点与圆的位置关系可由点到圆心的距离d与圆的半径r比较
得到.
设☉O的半径是r,点P到圆心的距离为d,则有
d<r d=r d>r
点P在圆内; 点P在圆上; 点P在圆外.
【注意】点与圆的位置关系可以转化为 点到圆心的距离与半径之间的关系;反 过来,也可以通过这种数量关系判断点 与圆的位置关系.
2.扇形面积公式 半径为R,圆心角为n°的扇形面积S= _n_3_6R_0_2_或__12__l_R_. 3.弓形面积公式
弓形的面积=扇形的面积±三角形的面积
4.圆锥的侧面积 (1)圆锥的侧面展开图是一个 扇形 . (2)如果圆锥母线长为l,底面圆的半径为r,那么这个扇形的半径为 l ,
扇形的弧长为 2 r .
点C作☉O的切线交AB的延长线于点E,则∠E等于 50° .
2 垂径定理
【例2】工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的
直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,
秋人教版九年级数学上册课件:第二十四章 圆 单元复习课(共27张PPT)
的面积,S扇形FOC=
,
∴阴影部分的面积为 π.
变式训练
1. 如图1-24-51-2,⊙O是△ABD的外接圆,AB是⊙O 的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的大 小为______3_2_°__.
变式训练
2. 如图1-24-51-4,已知⊙O的直径AB=12,弦AC=10, D是 的中点,过点D作DE⊥AC,交AC的延长线于 点E. (1)求证:DE是⊙O的切线; (2)求AE的长.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/142021/9/142021/9/142021/9/149/14/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月14日星期二2021/9/142021/9/142021/9/14 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/142021/9/142021/9/149/14/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/142021/9/14September 14, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/142021/9/142021/9/142021/9/14
变式训练
(1)证明:如答图24-51-3所示,连接OD. ∵D为 的中点,∴ ∴∠BOD=∠BAE. ∴OD∥AE. ∵DE⊥AC, ∴∠AED=90°. ∴∠ODE=90°. ∴OD⊥DE,则DE是⊙O的切线.
变式训练
(2)解:如答图24-51-3所示,过点O作OF⊥AC于点 F. ∵AC=10,∴AF=CF= AC=5. ∵∠OFE=∠DEF=∠ODE=90°, ∴四边形OFED为矩形. ∴FE=OD= AB. ∵AB=12,∴FE=6. ∴AE=AF+FE=5+6=11.
第24章圆复习课件
P
B
设AB=12,则两圆构成圆环面积为_____;
O
3、下列四个命题中正确的是( ).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的 半径的直线是该圆的切线 ; ③到圆心的距离等于半径 的直线是该圆的切线 ;④过圆直径的端点,垂直于此 直径的直线是该圆的切线.
A.①② B.②③ C.③④ D.①④
r
S侧 =πr a
底面
S全=πr a+ π r2
上午12时36分
希望同学们认真听讲,积极思考,
如果一条直线满足以下三个性质中的任意两个 ,那么
第三个也成立。①经过切点、②垂直于切线、③经过圆心。
如① ②
③
① ③
②
② ③
①
1、两个同心圆的半径分别为3 cm和4 cm,大圆的 弦BC与小圆相切,则BC=_____ cm;
2、如图2,在以O为圆心的两个同心圆
中,大圆的弦AB是小圆的切线,P为切点, A
第24章 圆 复习课
上午12时36分
希望同学们认真听讲,积极思考,
1
反应迅速。
主要知识
圆的基本性质
与圆有关的位置关系
正多边形和圆
有关圆的计算
上午12时36分
希望同学们认真听讲,积极思考,
2
反应迅速。
圆的对称性
角与圆 的关系
点与圆的 位置关系
确定圆
圆
的条件
的
概
念 知识树
旋转 中心
垂径 定理
圆的对称性
切线长定理及其推论:
从圆外一点向圆所引的两条切线长
相等;并且这一点和圆心的连线平分
两条切线的夹角.
∵PA,PB切⊙O于A,B
第24章圆期末复习圆的基本性质PPT课件(沪科版)
2
O E1C D
BO⊥AD
8.如图,AB是⊙O的直径,AC,BC分别
与⊙O相交于点D,E,连接DE,现给出两个命题:
①若AC=AB,则DE=CE;②若∠C=45°,记
△CDE的面积为S1,四边形DABE的面积为S2,则
S1=S2,那么( D ).
C
A.①是真命题 ②是假命题
B.①是假命题 ②是真命题 D
并交BO、AO的延长线于点C、D,连接CD,交
⊙O于点E、F,过圆心O作OM⊥CD于点M.
求证: (2)CE=DF.
(2) ∵△ACO≌△BDO, A
B O
∴OC=OD,
∵OM⊥CD, C E M F
D
∴CM=DM, EM=FM,
∴CM-EM=DM-FM.
∴CE=DF.
D
5.如图,AB是⊙O的直径,C、D是⊙O上 的两点,分别连接AC、BC、CD、OD,若 ∠DOB=140°,则∠ACD= ( A).
A.20° B. 30° C. 40° D.70° C
A
O
B
D
6.如图,⊙O的直径CD过弦EF的中点G, 连接 CF,∠C=30°,CF= 2 ,3 则OG的长是( A).
沪科版
第24章 圆 期末复习(2)
圆的基本性质
复习要点
1.圆 (1)平面上到定点的 距离 等于定长的所有 点 组成
的图形叫做圆; 定点称为圆心, 定长 称为半径. (2)圆是轴对称图形,其对称轴是任意一条过 圆心的
直线;圆又是中心对称图形,对称中心是 圆心 . (3)不在同一条直线上的 三个点确定一个圆.
AB=AC, ∠ BAC=36°,在AB上取点D(不与点
A,B重合),连接BD,AD,则∠BAD+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(2013·镇江中考)如图,AB是半圆O的直径,点P在AB的延长线
上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=
°.
【解析】如图,连接OC.∵PC切半圆O于点C, ∴PC⊥OC即∠PCO=90°. ∵∠CPA=20°, ∴∠POC=90°-∠CPA=70°. ∵OA=OC,∴∠A=∠ACO. 又∵∠POC=∠A+∠ACO. ∴∠A=
是6,则这个圆锥的侧面积是(
A.81π B.27π C.54π
)
D.18π
1 1 【解析】选C.方法一:S圆锥的侧面积= Rl= ×6×2π×9= 2 2
54π, 方法二:S圆锥的侧面积=πrl=6×9π=54π.
阶段复习课 第二十四章
【答案速填】①垂直于弦的直径平分弦,并且平分弦所对的两条弧; ②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,其余的各组量 都相等; ③圆的切线垂直于过切点的半径; ④经过半径的外端并且垂直于这条半径的直线是圆的切线;
nR nR 2 ⑤l ;⑥S扇形 ;⑦S侧 rl. 180 360
主题3
切线的性质和判定
【主题训练3】(2013·昭通中考)如图,已知AB是☉O的直径,点 C,D在☉O上,点E在☉O外,∠EAC =∠B =60°. (1)求∠ADC的度数. (2)求证:AE是☉O的切线.
所对的圆周角,且∠B 【自主解答】(1)∵∠B与∠ADC都是 AC
=60°, ∴∠ADC=∠B =60°. (2)∵AB是☉O的直径, ∴∠ACB=90°, 又∠B =60°,∴∠BAC=30°, ∵∠EAC =∠B =60°, ∴∠BAE =∠BAC+∠EAC=30°+60°=90°, ∴BA⊥AE,∴AE是☉O的切线.
【自主解答】(1)CD与☉O相切.理由为: ∵AC为∠DAB的平分线, ∴∠DAC=∠OAC. ∵OA=OC,∴∠OAC=∠OCA, ∴∠DAC=∠OCA, ∴OC∥AD. ∵AD⊥CD, ∴OC⊥CD.∴CD与☉O相切.
(2)连接EB,由AB为直径,得到∠AEB=90°. 由(1)中AD⊥CD,OC⊥CD,∴四边形CDEF是矩形,F为EB的中点. ∴EF=DC,DE=FC,OF为△ABE的中位线.∴EF=DC=BF.
∴直线l与☉P相切.
主题5 与圆有关的计算 【主题训练5】(2013·绵阳中考)如图,AB是☉O的直径,C是半 圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交☉O于E,连 接CE.
(1)判断CD与☉O的位置关系,并证明你的结论.
的中点,☉O的半径为1,求图中阴影部分的面积. (2)若E是 AC
1.(2013·梅州中考)如图,在△ABC中,AB=2,AC=
,以点A为圆 2 .
心,1为半径的圆与边BC相切于点D,则∠BAC的度数是
【解析】如图,连接AD,则AD⊥BC;在 Rt△ABD中,AB=2,AD=1,∴∠B=30°, 因而∠BAD=60°,同理,在Rt△ACD中, ∠CAD=45°,所以∠BAC的度数是105°. 答案:105°
【解析】(1)所画☉P如图所示.由图可知,☉P的半径为 5 .
连接PD,∵PD= 12 22 5, ∴点D在☉P上.
ቤተ መጻሕፍቲ ባይዱ
(2)直线l与☉P相切.
理由如下:连接PE.
∵直线l过点D(-2,-2),E(0,-3),
∴PE2=12+32=10,PD2=5,DE2=5.
∴PE2=PD2+DE2.
∴△PDE是直角三角形,且∠PDE=90°.∴PD⊥l.
1 1 2 2 3 3 . 2 8
【主题升华】
与圆有关计算的四公式
nR (n为弧所对的圆心角的度数,R为圆的半径). 180 nR 2 1 2.扇形的面积公式S= lR (n为扇形的圆心角的度数,R 360 2
1.弧长公式l=
为圆的半径,l为扇形的弧长).
3.圆锥的侧面积S=πrl(r为圆锥的底面圆的半径,l为圆锥的母 线长). 4.圆锥的全面积公式: S=πrl+πr2(S为圆锥的全面积,r为圆锥 的底面圆的半径,l为圆锥的母线长).
【主题升华】
圆周角的四种关系 1.同圆或等圆中,等弧对的圆周角相等. 2.同圆或等圆中,同弧或等弧所对的圆周角是圆心角的一半. 3.直径对的圆周角为90°. 4.圆内接四边形对角互补.
1.(2013·衡阳中考)如图,在☉O中,∠ABC=50°,则∠AOC等 于( A.50° C.90° ) B.80° D.100°
【解析】选D.因为∠ABC=50°, 所以∠AOC=2∠ABC=100°.
2.(2013·郴州中考)如图,AB是☉O的直径,点C是圆上一点, ∠BAC=70°,则∠OCB= °.
【解析】因为AB是直径,所以∠ACB=90°, 又OA=OC,所以∠A=∠ACO=70°, 所以∠OCB=90°-∠ACO=90°-70°=20°. 答案:20
【主题升华】 与圆有关的位置关系及判定方法 1.位置关系:(1)点与圆的位置关系;(2)直线与圆的位置关系. 2.判定方法:(1)利用到圆心的距离和半径作比较; (2)利用交点的个数判断直线与圆的位置关系.
1.(2013·常州中考)已知☉O的半径是6,点O到直线l的距离为5, 则直线l与☉O的位置关系是( A.相离 B.相切 ) C.相交 D.无法判断
【解析】选C.圆心到直线的距离d=5,圆的半径r=6,∴d<r,则直 线l与☉O的位置关系是相交.
2.(2013·凉山中考)在同一平面直角坐标系中有5个点: A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3). (1)画出△ABC的外接圆☉P, 并指出点D与☉P的位置关系. (2)若直线l经过点D(-2,-2), E(0,-3),判断直线l与☉P的 位置关系.
【主题升华】 切线的性质与判定 1.切线的判定的三种方法:(1)根据定义观察直线与圆公共点的 个数.(2)由圆心到直线的距离与半径的大小关系来判断.(3)应 用切线的判定定理.应用判定定理时,要注意仔细审题,选择合 适的证明思路:①连半径,证垂直;②作垂直,证半径.
2.切线的性质是求角的度数及垂直关系的重要依据,辅助线的 作法一般是连接切点和圆心,构造垂直关系来证明或计算.切线 长定理也为线段或角的相等提供了丰富的理论依据.
1.(2013·眉山中考)用一个圆心角为120°,半径为6 cm的扇 形做成一个圆锥的侧面,这个圆锥的底面的半径是( A.1 cm B.2 cm C.3 cm D.4 cm
180
)
【解析】选B.∵设所围圆锥的底面半径为r ,则 120 6 =2πr,∴r=2 cm.
2.(2013·牡丹江中考)一个圆锥的母线长是9,底面圆的半径
1 ∠POC=35°. 2
答案:35
主题4
与圆有关的位置关系
【主题训练4】(2013·青岛中考)直线l与半径为r的☉O相交,且
点O到直线l的距离为6,则r的取值范围是( )
A.r<6
B.r=6
C.r>6
D.r≥6
【自主解答】选C.∵直线l与☉O相交, ∴圆心O到直线l的距离d<r, 即r>d=6,故选C.
6
【主题升华】
垂径定理及推论的四个应用 1.计算线段的长度:常利用半径、弦长的一半、圆心到弦的距 离构造直角三角形,结合勾股定理进行计算. 2.证明线段相等:根据垂径定理平分线段推导线段相等. 3.证明等弧. 4.证明垂直:根据垂径定理的推论证明线段垂直.
1.(2013·毕节中考)如图,在☉O中,弦AB的长
的中点, 又∵E是 AC
∴ ∠ABE=∠EAC=∠CAB=30°.
在Rt△OBF中,∠ABE=30°. ∴OF= 1 OB= 1 OC=FC,FB= 3 =EF=DC.
2 2 2 的中点,∴AE=EC. ∵E是 AC
∴图中两个阴影部分的面积和等于△DCE的面积.
∴S阴影=S△DEC=
【解析】过圆心O作AB的垂线交AB于点D, 由垂径定理,得AD= 1 AB=2,
2
在Rt△AOD中,运用勾股定理,得OD= 5 . 答案: 5
主题2
圆周角定理及其推论
【主题训练2】(2013·内江中考)如图,半圆O的直径AB=10cm,弦 AC=6cm,AD平分∠BAC,则AD的长为( )
A.4 5 cm
为8,OC⊥AB,垂足为C,且OC=3,则☉O的半径 为( A.5 ) B.10 C.8 D.6
【解析】选A.连接OA,由垂径定理可得AC=4, △OAC是直角三角形,由勾股定理可得OA2= OC2+AC2=32+42=25,所以OA=5.
2.(2013·上海中考)在☉O中,已知半径长为3,弦AB长为4,那么 圆心O到AB的距离为 .
B.3 5 cm
C.5 5 cm
D.4cm
【自主解答】选A.连接BC,BD,OD, 则OD,BC交于E.由于AD平分∠BAC,
BD , 所以 CD 所以OD⊥BC,又半圆O
的直径AB=10 cm,弦AC=6 cm,所以BC=8 cm,所以BE= 4 cm,又OB=5 cm,所以OE=3 cm,所以ED=5-3=2(cm), 在Rt△BED中,BD= DE 2 BE 2= 20 cm,又∠ADB=90°, 所以AD= AB2-BD2=4 5 cm .
主题1
垂径定理
【主题训练1】(2013·广安中考)如图, 已知半径OD与弦AB互相垂直,垂足为点C, 若AB=8 cm,CD=3 cm,则圆O的半径为( A. 25 cm
6
)
B.5 cm D. 19 cm
6
C.4 cm
【自主解答】选A.连接OA.∵OD⊥AB且OD是半径∴AC= 1 AB
2
=4cm,∠OCA=90°,Rt△OAC中,设☉O的半径为R,则OA=OD=R, OC=R-3;由勾股定理,得:OA2=AC2+OC2,即:R2=16+(R-3)2,解得 R= 25 cm,所以选A.