材料力学 第七章

合集下载

材料力学第七章应力状态和强度理论

材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y

x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2

x
y

2
4 2 xy
x
yx xy x
y
R c

x y
2
2
x
xy

dA
yx

y
x y 1 2 2 2

40

x y
2 0.431MPa
sin( 80 ) xy cos(80 )

C
C

C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa

材料力学 第07章 应力状态分析与强度理论

材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力

材料力学第七章知识点总结

材料力学第七章知识点总结

p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。

b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。

c、三向应力状态:三向主应力都不等于零的应力状态。

平面应力状态:单向应力状态和二向应力状态的总称。

空间应力状态:三向应力状态
简单应力状态:单向应力状态。

复杂应力状态:二向应力状态和三向应力状态的总称。

纯剪切应力状态:单元体上只存在剪应力无正应力。

y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。

材料力学第七章 应力状态

材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y

材料力学第七章组合变形

材料力学第七章组合变形

P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12

h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力

材料力学第07章应力状态与应变状态分析

材料力学第07章应力状态与应变状态分析

以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A

材料力学 第七章 应力状态和强度理论

材料力学 第七章  应力状态和强度理论

y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。

材料力学第七章

材料力学第七章

若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7-1(7-3) 一拉杆由两段杆沿m-n面胶合而成。

由于实用的原因,图中的角限于范围内。

作为“假定计算”,对胶合缝作强度计算时可以把其上的
正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力为许
用拉应力的3/4,且这一拉杆的强度由胶合缝的强度控制。

为了使杆能承受最大的荷载F,试问角的值应取多大?
解:按正应力强度条件求得的荷载以表示:
按切应力强度条件求得的荷载以表示,则
即:
当时,,,
时,,,
时,,
时,,
由、随而变化的曲线图中得出,当时,杆件承受的荷载最大,。

若按胶合缝的达到的同时,亦达到的条件计算

即:


故此时杆件承受的荷载,并不是杆能承受的最大荷载。

返回
7-2(7-7) 试用应力圆的几何关系求图示悬臂梁距离自由端为0.72m的截面上,在顶面以下40mm的一点处的最大及最小主应力,并求最大主应力与x轴之间的夹角。

解:
=
由应力圆得
返回
7-3(7-8) 各单元体面上的应力如图所示。

试利用应力圆的几何关系求:(1)指定截面上的应力;
(2)主应力的数值;
(3)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,

(b),,,,
(c)
, , ,
(d),,
,,,
返回
7-4(7-9) 各单元体如图所示。

试利用应力圆的几何关系求:
(1)主应力的数值;
(2)在单元体上绘出主平面的位置及主应力的方向。

解:(a),,,
(b),,,
(c),


(d)



返回
7-5(7-10) 已知平面应力状态下某点处的两个截面上的应力如图所示。

试利用应力圆求该点处的主应力值和主平面方位,并求出两截面间的夹角值。

解:由已知按比例作图中A,B两点,作AB的垂直平分线交
轴于点C,以C为圆心,CA或CB为半径作圆,得
(或由

半径)
(1)主应力
(2)主方向角
(3)两截面间夹角:
返回
7-6(7-13) 在一块钢板上先画上直径的圆,然后在板上加上应力,如图所示。

试问所画的圆将变成何种图形?并计算其尺寸。

已知钢板的弹性常数E=206GPa,=0.28。

解:
所画的圆变成椭圆,其中
(长轴)
(短轴)
返回
7-7(7-15) 单元体各面上的应力如图所示。

试用应力圆的几何关系求主应力及最大切应力。

解:(a)由xy平面内应力值作a,b点,连接ab交轴
得圆心C(50,0)
应力圆半径

(b)由xz平面内应力作a,b点,连接ab交轴于C点,OC=30,故应力圆半径
则:
(c)由图7-15(c)yz平面内应力值作a,b点,圆心为O,半径为50,作应力圆得
返回
7-8(7-18) 边长为20mm的钢立方体置于钢模中,在顶面上受力F=14kN作用。

已知=0.3,假设钢模的变形以及立方体与钢模之间的摩擦力可略去不计。

试求
立方体各个面上的正应力。

解:(压)
(1)
(2)
联解式(1),(2)得
(压)
返回
7-9(7-20) D=120mm,d=80mm的空心圆轴,两端承受一对扭转力偶矩,如图所示。

在轴的中部表面A点处,测得与其母线成方向的线应变为。

已知材料的弹性常数,,试求扭转力偶矩。

解:方向如图
返回
7-10(7-22) 一直径为25mm的实心钢球承受静水压力,压强为14MPa。

设钢球的E=210GPa,=0.3。

试问其体积减小多少?
解:体积应变
=
返回
7-11(7-23) 已知图示单元体材料的弹性常数。

试求该单元体的形状改变能密度。

解:主应力:
形状改变能密度:
=
=
返回
7-12(7-25) 一简支钢板梁承受荷载如图a所示,其截面尺寸见图b。

已知钢材的许用应力为。

试校核梁内的最大正应力和最大切应力,并按第四强度理论校核危险截面上的点a的强度。

注:通常在计算点a处的应力时近似地按点的位置计算。

解:
=
(1)梁内最大正应力发生在跨中截面的上、下边缘
超过的5.3%尚可。

(2)梁内最大剪应力发生在支承截面的中性轴处
(3)在集中力作用处偏外横截面上校核点a的强度
超过的3.53%,在工程上是允许的。

返回
7-13(7-27) 受内压力作用的容器,其圆筒部分任意一点A(图a)处的应力状态如图b所示。

当容器承受最大的内压力时,用应变计测得。

已知钢材的弹性模量E=210GPa,泊松比=0.3,许用应力。

试按第三强度理论校核A点的强度。

解:
,,
根据第三强度理论:
超过的7.64%,不能满足强度要求。

相关文档
最新文档