北师大版初中数学圆与圆的位置关系

合集下载

2-2-3直线与圆、圆与圆的位置关系(二)课件(北师大版必修二)

2-2-3直线与圆、圆与圆的位置关系(二)课件(北师大版必修二)

自学导引 1.判断圆与圆的位置关系 (1)几何法: O1: 圆 (x-x1)2+(y-y1)2=r2(r1>0), O2: 圆 (x-x2)2 1 + (y - y2)2 = r 2 (r2 > 0) , 两 圆 的 圆 心 距 d = |O1O2| = 2 x1-x22+y1-y22, d>r1+r2⇔圆 O1 与圆 O2 相离,如图①所示; d=r1+r2⇔圆 O1 与圆 O2外切 ,如图②所示; |r1-r2|<d<r1+r2⇔圆 O1 与圆 O2相交,如图③所示; d=|r1-r2|⇔圆 O1 与圆 O2内切,如图④所示; d<|r1-r2|⇔圆 O1 与圆 O2 内含,如图⑤所示.
2.圆系方程 具有某些共同性质的圆的集合称为圆系. (1)与直线系方程一样,了解一些常见的圆系方程可以帮助我们 简化解题思路. ①同心圆系: 与圆 x2+y2+Dx+Ey+F=0 同心的圆系方程为 x2 +y2+Dx+Ey+λ=0.
②相交圆系:过两圆 x2+y2+D1x+E1y+F1=0 与 x2+y2+D2x +E2y+F2 =0 的交点的圆系方程为(x2 +y2 +D1x+E1y+F1)+ λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).λ=-1 时为两圆公共弦 所在直线方程(D1-D2)x+(E1-E2)y+(F1-F2)=0,特别地,两 圆相切时,此方程表示两圆的公切线方程. ③过直线 l:Ax+By+C=0 与圆 x2+y2+Dx+Ey+F=0(D2+ E2-4F>0)的交点的圆系方程为 x2+y2+Dx+Ey+F+λ(Ax+ By+(1,-5),过 C1,C2 的直线方程为 = ,即 -5+1 1+1 2x+y+3=0.
2x+y+3=0, 由 y=-x,
得所求圆的圆心为(-3,3),
|-3-6+4| 它到 AB 的距离为 d= = 5, 5 ∴所求圆的半径为 5+5= 10, ∴所求圆的方程为(x+3)2+(y-3)2=10.

圆和圆的位置关系教学设计

圆和圆的位置关系教学设计

《圆和圆的位置关系》教学设计这是北师大版九年级(下)第三章第六节的内容。

一、教材分析1、教材的地位和作用圆是初中平面几何最重要的图形之一,在实际生活中有着广泛的应用。

在整个初中教学过程中,它处于提高阶段,学好本章内容,能提高解决实际问题的综合能力。

“圆和圆的位置关系”是《圆》这章的重点内容之一。

从知识体系上看,它是“点和圆的位置关系”、“直线和圆的位置关系”的延续与提高。

从数学思想方法的层面上看,它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的数学思维品质。

因此,圆和圆的位置关系在圆一章中起着温故和知新两个方面的作用。

因此通过这节课的教学不仅要激发学生学习数学的热情,同时还要培养学生综合运用知识的能力。

根据教材的地位和作用,我制定了如下的教学目标。

2、教学目标(1)知识目标:①从具体的事例中认识和理解圆与圆的五种位置关系并能概括其定义;②会用定义来判断圆与圆的位置关系;③探究圆与圆的位置关系的数量表示,并运用其关系。

(2)能力目标:经历探索两个圆之间位置关系的过程,培养学生运用类比的方法进行观察、分析、归纳总结的能力。

(3)情感目标:①体会事物间的相互渗透,初步掌握转化的思想;②感受数学思维的严谨性,并在合作学习中获得成功的体验。

3、教学重点、难点(1)重点:探索圆和圆的五种位置关系以及两圆相切的性质和判定。

(2)难点:根据两圆的半径和圆心距的数量关系来反映两圆的位置关系。

二、学情分析初三学生个性活泼,好奇心强,对亲身体验的事物易激发求知的渴望,同时思维活动常常依赖于直观形象;学生已经熟练掌握点和圆、直线和圆的位置关系以及分类的相应知识,具备了初步探究问题的能力;学生程度参差不齐,两极分化已经形成,个体差异比较明显。

根据这样的学情,布置学生课前准备:让学生收集生活中两圆位置关系的图片,准备两个大小不等的硬币。

三、教法、学法分析1、教法分析针对初三年级学生的认知结构和心理特征,我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,降低学生发现规律和解决问题的难度,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案

北师大版初中数学九下第三章圆教案圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合,是初中九年级的数学学习重点内容,下面店铺为你整理了北师大版初中数学九下第三章圆教案,希望对你有帮助。

北师大版数学九下圆教案:圆的有关性质教学过程:一、复习旧知:1、角平分线及中垂线的定义(用集合的观点解释)2、在一张透明纸上画半径分别1cm,2cm,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。

并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?二、讲授新课:1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O2、进一步观察,体会圆的形成,结合园的定义,分析得出:① 圆上各点到定点(圆心)的距离等于定长(半径)② 到定点的距离等于定长的点都在以定点为圆心,定长为半径的圆上。

由此得出圆的定义:圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

3、在画圆的过程中,还体会到圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内。

圆的内部是到圆心的距离小于半径的点的集合。

同样有:圆的外部是到圆心的距离大于半径的点的集合。

4、初步掌握圆与一个集合之间的关系:⑴已知图形,找点的集合例如,如图,以O为圆心,半径为2cm的圆,则是以点O为圆心,2cm长为半径的点的集合;以O为圆心,半径为2cm的圆的内部是到圆心O的距离小于2cm的所有点的集合;以O为圆心,半径为2cm的圆的外部是到圆心O的距离大于2cm的点的集合。

⑵已知点的集合,找图形例如,和已知点O的距离为3cm的点的集合是以点O为圆心,3cm长为半径的圆。

2. 2.3 第二课时 圆与圆的位置关系课件(北师大版必修二)

2. 2.3   第二课时   圆与圆的位置关系课件(北师大版必修二)

由题意知,圆心(3,4)到已知直线l1的距离等于半径 |3k-4-k| 3 2,即 =2,解之得k=4. 2 k +1 所求直线l1的方程为x=1或3x-4y-3=0.
(2)依题意设D(a,2-a),又已知圆C的圆心(3,4), r=2,由两圆外切,可知|CD|=5, ∴可知 a-32+2-a-42=5,
当| 50-k-1|=5,即 50-k=6, k=14时,两圆内切. 当14<k<34时,则4< 50-k<6, 即r2-r1<|C1C2|<r1+r2,时,两圆相交. 当34<k<50时,则 50-k<4, 即 50-k+1<|C1C2|时,两圆相离.
[例2]
已知两圆x2+y2-2x+10y-24=0和x2
因为点(1, 3)和(1,- 3)都在直线 x=1 上, 故过这两个点的圆的圆心在 x 轴上, 又圆心在直线 x- 3y-6=0 上, ∴圆心为(6,0),半径 r= 6-12+ 32= 28. ∴圆的方程为(x-6)2+y2=28.
法二:设所求圆的方程为: x2+y2-4+λ(x2+y2-4x)=0(λ≠-1). 4λ 4 整理得:x +y - x- =0, 1+λ 1+λ
圆心(6,6)到直线x+y-2=0的距离为 |6+6-2| d= =5 2, 2 ∴所求圆的圆心在过点(6,6)且与直线x+y-2=0垂 直的直线上,并且直径为2r=5 2-3 2=2 2,
∴所求圆的圆心在直线y=x上,且圆心到直线x+y-2 =0的距离为 2. |a+a-2| 设圆心为(a,a),则 = 2 ⇒a=2或a=0,但 2 圆心应在直线x+y-2=0上方, ∴a=2. ∴所求圆的方程为(x-2)2+(y-2)2=2.
[一点通]

九年级数学圆和圆的位置关系1

九年级数学圆和圆的位置关系1

……
…..
…..
…… …… ……
….. ….. …..
….. ….. …..
……
…..
…..
连心线 ……….. 圆心距 ………..
学生展区
…………
电脑屏幕
……
…..
…..
………… ………… ………… …………
; / 赢方国际 ;
都不敢置信/尽管叶静云知道马开此刻壹定相信动用秘法才能爆发如此实力/可秘法难道就不相信实力の展现吗?叶静云不由想到纪蝶/心想三年前马开要相信存在如此の实力/纪蝶当年逃の过壹劫吗?纪蝶之前在将军墓外对马开都不愿意多上壹眼/或许在纪蝶の心里马开只不过相信 壹佫过客而已/根本不值得她侧目/但要相信纪蝶知道马开存在着可战大修行者の手段/她还会如此吗?叶静云脑海里突然闪过壹佫念头:要相信存在壹天马开能赶超纪蝶/那纪蝶又将如何面对马开?这佫念头壹冒出来/叶静云都觉得本人心跳加速咯起来/她想要见到那样の画面/但马 上她又觉得好笑/纪蝶相信什么人?相信哪里の传人/又存在至尊金修炼/马开想要赶超相信做梦/它和纪蝶の距离只会越来越远/纪蝶相信真正の人杰/大陆将来注定存在着她浓墨重彩の壹笔/马开自然不知道叶静云想什么/它手里の大刀不断の斩咯出去/和黑玉城主交锋在壹起/黑玉 城主相信强悍の/尽管存在着煞气の涌动/可对方借着意境の优势/都生生の挡下来/并且占据咯优势/|恁终究还不相信咱の对手/或许成长几年可以/但恁没存在机会咯/|黑玉城主盯着马开/杀意十足/马开笑咯笑/并不做回答/它不想过多浪费煞气/要不然完全可以爆发和对方力量相 当の煞气/|收拾恁足够咯/|马开舞动之间/横斩而出/月震斩横扫而出/大修行者の手段配合煞气/存在着心悸之势/黑玉城主没存在想到马开居然还存在大修行者の手段/尽管心里疑惑/可手里の攻势却丝毫不满/它以自身の意境配合力量/

2-2-3直线与圆、圆与圆的位置关系(二)课件(北师大版必修二)

2-2-3直线与圆、圆与圆的位置关系(二)课件(北师大版必修二)

自学导引 1.判断圆与圆的位置关系 (1)几何法: O1: 圆 (x-x1)2+(y-y1)2=r2(r1>0), O2: 圆 (x-x2)2 1 + (y - y2)2 = r 2 (r2 > 0) , 两 圆 的 圆 心 距 d = |O1O2| = 2 x1-x22+y1-y22, d>r1+r2⇔圆 O1 与圆 O2 相离,如图①所示; d=r1+r2⇔圆 O1 与圆 O2外切 ,如图②所示; |r1-r2|<d<r1+r2⇔圆 O1 与圆 O2相交,如图③所示; d=|r1-r2|⇔圆 O1 与圆 O2内切,如图④所示; d<|r1-r2|⇔圆 O1 与圆 O2 内含,如图⑤所示.
规律方法
判断两圆的位置关系有两种方法:一是解由两圆方
程组成的方程组,若方程组无实数解,则两圆相离;若方程组 有两组相同的实数解,则两圆相切;若方程组有两组不同的实 数解, 则两圆相交; 二是通过讨论两圆半径与圆心距的关系. 第 一种方法在计算上比较繁琐,因此一般采用第二种方法.
【变式 1】 当实数 k 为何值时,两圆 C1:x2+y2+4x-6y+12 =0,C2:x2+y2-2x-14y+k=0 相交、相切、相离? 解 将两圆的一般方程化为标准方程, C1:(x+2)2+(y-3)2=1, C2:(x-1)2+(y-7)2=50-k, 圆 C1 的圆心为 C1(-2,3),半径 r1=1; 圆 C2 的圆心为 C2(1,7),半径 r2= 50-k(k<50). 从而|C1C2|= -2-12+3-72=5.
3.两圆相交时公共弦长的求法. (1)若两圆相交时, 把两圆的方程作差消去 x2 和 y2 就得到两圆的 公共弦所在的直线方程. (2)求弦长时,常利用圆心到弦所在的直线的距离求弦心距,再 结合勾股定理求弦长.

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。

本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。

但是,对于圆的概念和性质,部分学生可能还比较模糊。

因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。

同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。

三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:圆的定义、性质和方程。

2.难点:圆的性质的理解和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。

2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。

六. 教学准备1.教具:圆的模型、图片、PPT等。

2.学具:学生分组准备,每组一份圆的模型、图纸等。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。

然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。

2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。

北师大版第2课时 圆与圆的位置关系

北师大版第2课时  圆与圆的位置关系

于是
C 1C 2 = (2+1) 2 +(-1-3) 2 =5 又 r1 -r2 =5,
即 C1C 2 = r1 -r2 ,所以两圆内切,如图所示.
(2)判断圆x2+y2-2y=0和圆x2+y2-2 3 x-6=0的位 置关系.
解:两圆的方程分别变形为 x2+(y-1)2=12,(x- 3)2+y2=32. 所以两个圆心的坐标分别为(0,1)和( 3 ,0), 两圆的圆心距d=|C1C2|=2, 由|r1-r2|=2,
思考 圆与圆有几种位置关系?
提示:相离、外切、相交、内切、内含
圆与圆的位置关系有以下几种:
相离
外切
相交
内切
内含
同心圆 (一种特殊的内含)
没有公共点 ,并且每个圆上的点都在 两个圆____________ 另一个圆的外部时,叫作这两个圆相离.
唯一的公共点 ,并且除了这个公共点 两个圆有______________
第2课时 圆与圆的位置关系
我们为你 骄傲!
—北京•奥运
你能举出生活中表示两个圆不同位置关系的实例吗?
你能找出上图中圆与圆的位置关系吗?
1. 理解圆与圆的位置关系的种类. (重点)
2. 会利用几何法判断圆与圆的位置关系. (难点)
3. 掌握用圆与圆的方程来判断圆与圆的位置关系的 方法.
探究点1 圆与圆的位置关系种类
相 离 圆 和 圆 的 位 置 关 系 内 含 外 切 内 切
没 有 公 共 点
一 个 公 共 点 两 个 公 共 点
相 交
【提升总结】
两圆位置关系的判断:
几何方法 代数方法
两圆心坐标及半 径(配方法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相 切
相 交
精彩源于发现
o1 R d
r o2
d>R+r
o1
T
R d r
o2
d=R+r
o 2 o1
T
r
R
d
d=R-r (R>r)
o1
R
r
d
o2
R-r<d<R+r (R>r)
O1 O2
O
d r
R
d<R-r (R>r)
两圆位置关系的性质与判定:
位置关系
0
两圆外离 两圆外切
性质
内 判定 切
R ―r


与 圆 的

置 位
2 0 0 8 新 北 京 新 奥 运
认真观察
观察结果
外离:两圆无公共点,并且每个圆上的点都在另一个
圆的外部时,叫两圆外离.
切点
外切:两圆有一个公共点,并且除了公共点外,每个
圆上的点都在另一个圆的外部时,叫两圆外切.
相交:两圆有两个公共点时,叫两圆相交.
切点
内切:两圆有一个公共点,并且除了公共点外,一
判断


例1 求证:如果两圆相切,那么其中任一个 圆的过两圆切点的切线,也必是另一个圆的 切线.
分析:分两种情况讨论, A
一、当两圆外切时, 二、当两圆内切时。
R O1
r O2
R
O1 O r 2
A
依据:两圆相切,连心线必过切点。
例2 如图,⊙O的半径为5cm,点P是⊙O外一点,OP
=8cm,求(1)以P为圆心作⊙P与⊙O内切,大圆⊙P 的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆 ⊙P的半径是多少?
解: (1)设⊙O与⊙P外切于点A,则
PA=OP-OA PA=3cm. (2)设⊙O 与⊙P内切于点B,则 PB=OP+OB PB=13cm.
OA P B
练习 1、举出一些能表示两个圆不同位置关系的实例

2、 ⊙O1和⊙O2的半径分别为3厘米和4厘米,设 (1) O1O2=8厘米; (2) O1O2=7厘米; (3) O1O2=5厘米; (4) O1O2=1厘米; (5) O1O2=0.5厘米; (6) O1和O2重合。 ⊙O1和⊙O2的位置关系怎样? 3、定圆O的半径是4厘米,动圆P的半径是1厘米。 (1)设⊙P和⊙O相外切,那么点P与点O的距离 是多少?点P可以在什么样的线上移动? (2)设⊙P和⊙O相内切,情况怎样?
个圆上的点都在另一个圆的内部时,叫两圆内切.
特例
内含:两圆无公共点,并且一个圆上的点都在
另一个圆的内部时,叫两圆内含.
圆心距:两圆心之间的距离
外离
外切
相交
内切
内含(同心圆)
圆 圆 与 和 圆 圆 的 的 位 位 置 置 关 关 系 系
外离 内含 外切 内切 相交
没 有 公 共 点
相 离
一 个 公 共 点 两 个 公 共 点
已知:⊙O1和⊙O2的半径分别2cm和 4cm,当圆心距O1O2分别为下列数值时, 判断两圆位置关系. (1)2cm (2)4 cm (3) 6 cm
(4)0cm (5)8 cm
判断: 1. 当两圆圆心距大于半径之差 时,两圆相交( )
2. 已知两圆相切R=7, r=2则圆心距等于9 (
3. 两圆无公共点,两圆一定外离. (
圆和圆的五种位置关系
R O1 r O2 R O1 r O2 R O1 r O2
外离
外切
相交
O1O2>R+r
R
O1O2=R+r
R
R-r<O1O2<R+r
R
O1 O r 2
O1 O
r
2
O 1O 2r
内切
内含
同心圆OΒιβλιοθήκη O2=R-r0≤O1O2<R-r
O1O2=0
(一种特殊的内含)
实验与操作: • 分别以1厘米、2厘米、4厘米为半径, 用圆规画圆,使他们两两外切。
d 和R、 r关系 交 点 R+r d >R+ r 0 d =R+ r R− r <d <R+ r 1 2 1
d
同 心 两圆内切 内 圆 两圆内含 含
两圆相交
外 R− r =d 切 相 R− r >d 交
外 离0
位 置 关 系 数 字 化
例2 已知⊙A、 ⊙B相切,圆 心距为10cm,其中⊙A的半径 为4cm,求⊙B的半径.

相关文档
最新文档