九年级数学圆综合测试题
2022学年北师大版九年级数学下册第3章《圆》综合测试题附答案解析

2022-2023学年九年级数学下册第3章《圆》综合测试题(满分120分)一、选择题(每题3分,共30分)1.下列命题为真命题的是()A .两点确定一个圆B .度数相等的弧相等C .垂直于弦的直径平分弦D .相等的圆周角所对的弧相等,所对的弦也相等2.已知⊙O 的半径为5,点P 到圆心O 的距离为6,那么点P 与⊙O 的位置关系是()A .点P 在⊙O 外B .点P 在⊙O 内C .点P 在⊙O 上D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是()A .70°B .60°C .50°D .30°4.如图,AB ,AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD =OB ,连接AD .如果∠DAC =78°,那么∠ADO 等于()A .70°B .64°C .62°D .51°5.如图,AB ︵=BC ︵=CD ︵,OB ,OC 分别交AC ,BD 于点E ,F ,则下列结论不一定正确的是()A .AC =BD B .OE ⊥AC ,OF ⊥BD C .△OEF 为等腰三角形D .△OEF 为等边三角形6.如图,在直角坐标系中,一个圆经过坐标原点O ,交坐标轴于点E ,F ,OE =8,OF =6,则圆的直径长为()A .12B .10C .14D .157.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR ,则∠AOQ 等于()A .60°B .65°C .72°D .75°8.秋千拉绳长3m ,静止时踩板离地面0.5m ,某小朋友荡秋千时,秋千在最高处踩板离地面2m(左右对称),如图所示,则该秋千所荡过的圆弧AB ︵的长为()A .πmB .2πm C.43πm D.32πm9.如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于点C 和点D .若△PCD 的周长为⊙O 半径的3倍,则t a n ∠APB 等于()A.125 B.3513 C.2313 D.51210.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是()A .4B .3+2C .32D .3+3二、填空题(每题3分,共24分)11.如图,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为________.12.如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A =________.13.如图,DB 切⊙O 于点A ,∠AOM =66°,则∠DAM =________.14.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径,若AC =3,则DE =________.15.如图,水平放置的圆柱形油槽的截面直径是52c m ,装入油后,油深CD 为16c m ,那么油面宽度AB=________.16.如图,在扇形OAB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB ︵于点E ,以点O 为圆心,OC为半径作CD ︵交OB 于点D .若OA =2,则阴影部分的面积为________.17.如图,在△ABC 中,∠C =90°,AC =3,AB =5,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB ,BC 均相切,则⊙O 的半径为________.18.如图,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N 在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB .其中正确的结论有_____(填序号).三、解答题(19题8分,20,21每题10分,22,23每题12分,24题14分,共66分)19.如图,AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连接BC ,若∠P =30°,求∠B 的度数.20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E .(1)求证:AB =AC .(2)若⊙O 的半径为4,∠BAC =60°,求DE 的长.21.如图,点P 在y 轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于点C ,过点C 的直线y =2x+b 交x 轴于点D ,且⊙P 的半径为5,AB =4.(1)求点B ,P ,C 的坐标.(2)求证:CD 是⊙P 的切线.22.如图,CB和CD切⊙O于B,D两点,A为圆周上一点,且∠1:∠2:∠3=1:2:3,BC=3,求∠AOD所对扇形的面积S.23.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80m,桥拱到水面的最大高度为20m.(1)求桥拱所在圆的半径.(2)现有一艘宽60m,顶部截面为长方形且高出水面9m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.24.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线.(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG·AB=12,求AC的长.(3)在满足(2)的条件下,若AF∶FD=1∶2,GF=1,求⊙O的半径及sin∠ACE的值.参考答案一、1.C 2.A3.B4.B5.D6.B 7.D 8.B 9.A 10.B二、11.3【点拨】如图,连接OC ,设AB ⊥CD 于E .∵AB 为⊙O 的直径,AB =10,∴OC =5.∵CD ⊥AB ,CD =8,∴CE =4,∴OE =OC 2-CE 2=52-42=3.12.99°【点拨】易知EB =EC .又∠E =46°,所以∠ECB =67°.从而∠BCD =180°-67°-32°=81°.在⊙O 中,∠BCD 与∠A 互补,所以∠A =180°-81°=99°.13.147°【点拨】因为DB 是⊙O 的切线,所以OA ⊥DB .由∠AOM =66°,得∠OAM =12×(180°-66°)=57°.所以∠DAM =90°+57°=147°.14.3【点拨】∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠BDC +∠CDE =90°.又∵AB ⊥CD ,∴∠ACD +∠CAB =90°.∵∠CAB =∠BDC ,∴∠ACD =∠CDE .∴AD ︵=CE ︵.∴AD ︵-AE ︵=CE ︵-AE ︵.∴DE ︵=AC ︵.∴DE =AC =3.15.48cm16.32+π12【点拨】连接OE .∵点C 是OA 的中点,∴OC =12OA =1.∵OE =OA =2,∴OC =12OE .∵CE ⊥OA ,∴∠OEC =30°.∴∠COE =60°.在Rt △OCE 中,CE =OE 2-OC 2=3,∴S △OCE =12OC ·CE =32.∵∠AOB =90°,∴∠BOE =∠AOB -∠COE =30°.∴S 扇形BOE =30π×22360=π3.又S 扇形COD =90π×12360=π4.因此S 阴影=S 扇形BOE +S △OCE -S 扇形COD =π3+32-π4=32+π12.17.6718.①②④【点拨】连接OM ,ON ,易证Rt △OMC ≌Rt △OND ,可得MC =ND ,故①正确.在Rt △MOC中,CO =12MO ,可得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以AM ︵=MN ︵=NB ︵,故②正确.易得CD =12AB =OA =OM ,∵MC <OM ,∴MC <CD .∴四边形MCDN 不是正方形,故③错误.易得MN =CD =12AB ,故④正确.三、19.解:∵PA 切⊙O 于A ,AB 是⊙O 的直径,∠P =30°,∴∠AOP =60°.∴∠B =12∠AOP =30°.20.(1)证明:如图,连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵DC =BD ,∴AB =AC .(2)解:由(1)知AB =AC ,∵∠BAC =60°,∠ADB =90°,∴△ABC 是等边三角形,∠BAD =30°.在Rt △BAD 中,∠BAD =30°,AB =8,∴BD =4,即DC =4.又∵DE ⊥AC ,∴DE =DC ·sin C =4·sin 60°=4×32=2 3.21.(1)解:如图,连接CA .∵OP ⊥AB ,∴OB =OA =2.∵OP 2+OB 2=BP 2,∴OP 2=5-4=1,即OP =1.∵BC 是⊙P 的直径,∴∠CAB =90°.∵CP =BP ,OB =OA ,∴AC =2OP =2.∴B (2,0),P (0,1),C (-2,2).(2)证明:∵直线y =2x +b 过C 点,∴b =6.∴y =2x +6.∵当y =0时,x =-3,∴D (-3,0).∴AD =1.∵OB =AC =2,AD =OP =1,∠CAD =∠POB =90°,∴△DAC ≌△POB .∴∠DCA =∠ABC .∵∠ACB +∠ABC =90°,∴∠DCA +∠ACB =90°,即CD ⊥BC .∴CD 是⊙P 的切线.22.解:∵CD 为⊙O 的切线,∴∠ODC =90°,即OD ⊥CD .∵∠1:∠2:∠3=1:2:3,∴∠1=15°,∠2=30°,∠3=45°.连接OB .∵CB 为⊙O 的切线,∴OB ⊥BC ,BC =CD .∴∠CBD =∠3=45°,∴∠OBD =45°.又∠1+∠2=45°,∴∠BOD =90°,即OD ⊥OB .∴OD ∥BC ,CD ∥OB .∴四边形OBCD 为正方形.∵BC =3,∴OB =OD =3.∵∠1=15°,∴∠AOB =30°,∴∠AOD =120°.∴S =120360×π×32=3π.23.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点C ,连接AE ,则CF =20m .由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40m.设半径是r m ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE -CF )2,即r 2=402+(r -20)2.解得r =50.∴桥拱所在圆的半径为50m.(2)这艘轮船能顺利通过.理由:当宽60m 的轮船刚好可通过拱桥时,如图,MN 为轮船顶部的位置.连接EM ,设EC 与MN 的交点为D ,则DE ⊥MN ,∴DM =30m ,∴DE =EM 2-DM 2=502-302=40(m ).∵EF =EC -CF =50-20=30(m),∴DF =DE -EF =40-30=10(m).∵10m>9m ,∴这艘轮船能顺利通过.24.(1)证明:如图,连接CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∴∠CAD +∠ADC =90°.又∵∠PAC =∠PBA ,∠ADC =∠PBA ,∴∠PAC =∠ADC .∴∠CAD +∠PAC =90°.∴PA ⊥DA .而AD 是⊙O 的直径,∴PA 是⊙O 的切线.(2)解:由(1)知,PA ⊥AD ,又∵CF ⊥AD ,∴CF ∥PA .∴∠GCA =∠PAC .又∵∠PAC =∠PBA ,∴∠GCA =∠PBA .而∠CAG =∠BAC ,∴△CAG ∽△BAC .∴AGAC =ACAB ,即AC 2=AG ·AB .∵AG ·AB =12,∴AC 2=12.∴AC =2 3.(3)解:设AF =x ,∵AF ∶FD =1∶2,∴FD =2x .∴AD =AF +FD =3x .易知△ACF ∽△ADC ,∴ACAD =AFAC ,即AC 2=AF ·AD .∴3x 2=12,解得x =2或x =-2(舍去).∴AF =2,AD =6.∴⊙O 的半径为3.在Rt △AFG 中,AF =2,GF =1,根据勾股定理得AG =AF 2+GF 2=22+12=5,由(2)知AG ·AB =12,∴AB =12AG =1255.连接BD ,如图所示.∵AD 是⊙O 的直径,∴∠ABD =90°.在Rt △ABD 中,∵sin ∠ADB =ABAD ,AD =6,AB =1255,∴sin ∠ADB =255.∵∠ACE =∠ADB ,∴sin ∠ACE =255.。
数学九年级上册《圆》单元综合检测卷含答案

4.如图,在矩形 中, , , 是以 为直径的圆,则直线 与 的位置关系是()
A.相交B.相切C.相离D.无法确定
5.如图, 是 的直径,弦 , ,连接 、 ,则 的度数为()
A. B. C. D.
6.一个圆锥的侧面展开图是半径为 的半圆,则该圆锥的高是()
A. B. C. D.
故选D.
【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
6.一个圆锥的侧面展开图是半径为 的半圆,则该圆锥的高是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长,然后表示出圆锥的高即可.
【详解】连接DO,
∵CO=DO,
∴∠OCD=∠ODC=30°,
∴∠COD=120°,
∵AB是⊙O的直径,弦CD⊥AB,
∴∠BOC=60°,
∵CD=2 ,
∴CN= ,
∴CO=2,
∴扇形BOC的面积为: ,
故选A.
【点睛】此题主要考查了圆周角定理、垂径定理和扇形面积公式,关键是掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧.
∴∠.
【点睛】本题考查了垂径定理,解直角三角形,圆周角定理的应用,能求出∠BOC的度数是解此题的关键.
12.如图, 是 的直径,点 、 在 上, , ,则 的度数()
A. B. C. D.
【答案】D
【解析】
【分析】
连接BC,由圆周角定理可知∠ACB=90°,由∠BOD=110°可得出∠AOD的度数,根据AC∥OD可知∠CAB=∠AOD,由直角三角形的性质可求出∠ABC的度数,再根据圆周角定理即可得出结论.
2022年九年级中考数学一轮复习:圆综合练习题

∴
解得: ,
半径 的长为 .
21.
(1) 平分
(2)
即
四边形ABCD的面积 四边形ABDF的面积
四边形ABDF的面积为
22.
解:(1)连接OA、OD
在 与 中,
CD⊥OP;
(2) AB∥CD,
弦BE⊥OD于F,
由垂径定理得,
BE=2OH;
(3)连接EN,
CN⊥CE
EN为直径,
,
在 中, ,
,
在 中,
在 中,
在 中,
在 中,
.
,
,
CD=8,
PH=AM,
OH=OM=BF
BE=2OH.
23.
(1)如图,连接 ,
即
(2)如图,延长 交 于点M,连接 、
为 的直径,
,
,
,
,
四边形 是平行四边形
(3)如图,连接 并延长交 于点 ,连接 , ,
,
,
,
,
即
又
设 ,由(2)可得 ,
,
由(1)可得 ,
在 和 中,
,
是等边三角形,
在 与 中
(1)求证: .
(2)若 , , 为线段 上一点,请写出一个 的值,使得直线 与 相切,并说明理由.
20.如图, ABC是⊙O的内接三角形,且AB=AC.
(1)求证:AO平分∠BAC;
(2)若AB=2 ,BC=4,求半径OA的长.
21.在 的外接圆 中, 的外角平分线CD交 于点D,F为 上一点,且 ,连接DF,并延长DF交BA的延长线于点E.
(1)判断DB与DA的数量关系,并说明理由;
沪科版九年级数学《圆》——综合检测试卷

沪科版九年级数学《圆》——综合检测试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2003•北京)如图,CA为⊙O的切线,切点为A,点B在⊙O上.如果∠CAB=55°,那么∠AOB等于(等于( )A.55°B.90°C.110°D.120°2.(3分)(2011•达州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么的长为( )线段OE的长为(A.5B.4C.3D.23.(3分)(2003•天津)若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于()A.45°B.135°C.90°和270 D.45°和135°4.(3分)(2003•江西)如图所示,AB是所对的弦,AB的垂直平分线CD分别交,AC于C,D,AD的垂直平分线EF分别交AB,AB于E,F,DB的垂直平分线GH分别交,AB于G,H,则下面结论不正确的是( )结论不正确的是(A.B.C.E F=GH D.5.(3分)(2003•山东)用一个半径为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面圆的半径为()A.2cm B.3cm C.4cm D.6cm 6.(3分)(2003•辽宁)已知两圆的半径分别是1和5,圆心距为3,则两圆位置关系为(,则两圆位置关系为( )A.相交B.外切C.内切D.内含7.(3分)若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是( )立的是(A.S1=S2=S3B.S1>S2>S3C.S1<S2<S3D.S2>S3>S18.(3分)如图,点C 在线段AB 上,以AB 、AC 为直径的半圆相切于点A ,大圆的弦AE 交小圆于点D ,∠EAB=α,如DE=2,那么BC 等于(等于( )A .2cos α B .2sin α C .D .二、填空题(共8小题,每小题3分,满分24分) 9.(3分)分)圆外一点到圆的最大距离是圆外一点到圆的最大距离是18cm ,到圆的最小距离是5cm ,则圆的半径是则圆的半径是 _________ cm .10.(3分)直角三角形的斜边长为4,内切圆的半径等于,则这个三角形的周长为则这个三角形的周长为 _________ .11.(3分)(1999•哈尔滨)在△ABC 中,∠C=90°,AC=4,BC=3,以直线AC 为轴旋转一周所得到的几何体的表面积是几何体的表面积是 _________ . 12.(3分)顶角为120°的等腰三角形腰长为4cm ,则它的外接圆的直径,则它的外接圆的直径 _________ cm . 13.(3分)(2003•天津)若圆的一个弦长为12cm ,其弦心距等于8cm ,则该圆的半径等于则该圆的半径等于 ______ cm . 14.(3分)一条弧所对的圆心角是90°,半径是R ,则这条弧长为,则这条弧长为 _________ . 15.(3分)有一长、宽分别为4cm ,3cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,则⊙O 的半径r 的取值范围是的取值范围是 _________ . 16.(3分)(2007•株洲)已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为积为 ________ _ cm 2.(结果用含π的代数式表示)的代数式表示)三、解答题(共9小题,满分72分) 17.(7分)如图,两个同心圆的圆心为O ,大圆的半径OC 、OD 交小圆于A 、B ,试探究AB 与CD 有怎样的位置关系?怎样的位置关系?18.(7分)如图,已知∠C=90°,点O 在AC 上,CD 为⊙O 的直径,⊙O 切AB 于点E ,若BC=5,AC=12,求⊙O 的半径.的半径.19.(7分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是多少?,最后结果保留三个有效数字)(π=3.14159…,最后结果保留三个有效数字)20.(7分)如图,以等腰三角形ABC的腰AB为直径作⊙O,交底边BC于P,PE⊥AC于E,试问:PE是⊙O的切线吗?说明理由.的切线吗?说明理由.21.(7分)如图,把直角三角形△ABC的斜边AB放在直线l上,按顺时针方向转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到A′′的位置时:′′的位置时:经过的路线有多长?(1)点A经过的路线有多长?所围成的面积是多少?(2)点A经过的路线与直线l所围成的面积是多少?22.(7分)如图,P是⊙O外一点,P A切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,∠B=30°,求出图中阴影部分的面积.,求出图中阴影部分的面积.23.(10分)如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,求地面上阴影部分的面积.(精确到0.01平米,π取3.14)24.(10分)工人师傅要在如图所示的一边长为40cm的正方形铁皮上裁剪下一块完整的圆形和一块完整的扇形铁皮,使之恰好做成一个圆锥形模型.(画出示意图)(1)请你帮助工人师傅设计三种不同的裁剪方案;(画出示意图)(2)何种设计方案使得正方形铁皮的利用率最高?求出此时圆锥模型底面圆的半径.25.(10分)(2004•万州区)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E 是BC边上的中点,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,说明理由;(2)如果AD,AB的长是方程x2﹣10x+24=0的两个根,试求直角边BC的长;的长;(3)试在(1)(2)的基础上,提出一个有价值的问题(不必解答).A.55°B.90°C.110°D.120°解答:解:∵∠OAC=90°,∴∠OAB=90°﹣55°=35°,∴∠AOB=180°﹣35°×2=110°.故选C.A.5B.4C.3D.2解答:解:连接OC ∵AB是⊙O的直径,弦CD⊥AB,∴CE=CD,∵CD=8,∴CE=4,∵AB=10,∴由勾股定理得,OE===3.故选C.3.(3分)(2003•天津)若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于A.45°B.135°C.90°和270 D.45°和135°两条弧.解答:解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;点时,①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=∠AOB=45°;点时,②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故选D.4.(3分)(2003•江西)如图所示,AB是所对的弦,AB的垂直平分线CD分别交,AC于C,D,AD的垂直平分线EF分别交AB,AB于E,F,DB的垂直平分线GH分别交,AB于G,H,则下面结论不正确的是( )结论不正确的是(A.B.C.E F=GH D.的二等分点,解答:解:A、正确,CD是AB的中垂线,点C也是弧AB的二等分点,B、正确,在同圆中,两直线平行,则直线所夹的弧相等,C、正确,在同圆中,弦心距相等,则弦相等,弦的一半也相等D、错误.点F是AD的中点,但点E不一定是弧AC的二等分点.的二等分点.故选D.5.(3分)(2003•山东)用一个半径为6cm的半圆围成一个圆锥的侧面,则此圆锥的底面圆的半径为()A.2cm B.3cm C.4cm D.6cm 解答:解:=2πR,解得R=3cm.故选B.6.(3分)(2003•辽宁)已知两圆的半径分别是1和5,圆心距为3,则两圆位置关系为(,则两圆位置关系为( )A.相交B.外切C.内切D.内含解答:解:因为圆心距=3,两圆半径差=5﹣1=4>3,根据圆心距与半径之间的数量关系可知,两圆的位置关系是内含.故选D.7.(3分)若正三角形、正方形、正六边形的周长相等,它们的面积分别为S1,S2,S3,则下列关系成立的是( )立的是(A.S1=S2=S3B.S1>S2>S3C.S1<S2<S3D.S2>S3>S1解答:解:设正三角形的边长为a,则正方形的边长为,正六边形的边长为;∵正三角形的边长为a,∴其高为,∴S1=a×=;S2=()2=;∵正六边形的边长为,∴把正六边形分成六个三角形,其高为,∴S3=6×××=.∵S1==,S3==,<<,∴S1<S2<S3.故选C.8.(3分)如图,点C在线段AB上,以AB、AC为直径的半圆相切于点A,大圆的弦AE交小圆于点D,∠EAB=α,如DE=2,那么BC等于(等于( )A.2cosαB.2sinαC.D.解答:解:连接CD、BE,过C点作CF∥AE交BE于点F,为直径,点C在线段AB上,AB、AC为直径,所以有DC⊥AE,BE⊥AE,为正方形,即得CD∥BE,且四边形DCFE为正方形,即FC=DE=2,∠FCB=∠EAB=α,在Rt△BCF中,BC=故选C.二、填空题(共8小题,每小题3分,满分24分)9.(3分)圆外一点到圆的最大距离是18cm,到圆的最小距离是5cm,则圆的半径是,则圆的半径是 6.5cm.解:根据题意,解答:解:根据题意,圆的半径为cm.10.(3分)直角三角形的斜边长为4,内切圆的半径等于,则这个三角形的周长为,则这个三角形的周长为 .解答:解:设直角边分别为a,b.根据题意有,﹣1=,所以a+b=2+2,因此三角形的周长=2+2+4=2+6.故填6+2.几何体的表面积是几何体的表面积是 24π . 解答: 解:根据题意得:圆锥的底面周长=6π,所以圆锥的侧面积==15π,圆锥的底面积=π×32=9π,所以以直线AC 为轴旋转一周所得到的几何体的表面积=15π+9π=24π.12.(3分)顶角为120°的等腰三角形腰长为4cm ,则它的外接圆的直径,则它的外接圆的直径 8 cm . 解答: 解:如图;△ABC 中,∠ACB=120°,AC=BC=4cm ;易知∠OCA=∠ACB=60°; 又∵OA=OC ,∴△OAC 是等边三角形;是等边三角形; ∴OA=OC=AC=4cm ;故等腰三角形的外接圆直径是8cm .13.(3分)(2003•天津)若圆的一个弦长为12cm ,其弦心距等于8cm ,则该圆的半径等于,则该圆的半径等于 10 cm . 解答: 解:根据垂径定理可知,弦的一半为6,然后根据勾股定理可知半径为10cm . ,则这条弧长为 .解答: 解:l===.一点在圆内,且至少有一点在圆外,则⊙O 的半径r 的取值范围是的取值范围是 3<r <5 . 解答: 解:∵矩形ABCD 的长、宽分别为4cm ,3cm ,∴矩形的对角线为5cm ,∵B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外, ∴⊙O 的半径r 的取值范围是3<r <5.△积为积为 25π cm .(结果用含π的代数式表示)的代数式表示) 解答: 解:根据勾股定理的逆定理可知三角形是直角三角形,那么直角三角形的外心是斜边的中点,所以半径=5, 面积=25π.三、解答题(共9小题,满分72分)解答: 解:∵OA=OB ,OC=OD ,∴.又∵∠AOB=∠COD,∴△OAB∽△OCD.∴∠OAB=∠OCD.∴AB∥CD.故AB与CD平行.平行.18.(7分)如图,已知∠C=90°,点O在AC上,CD为⊙O的直径,⊙O切AB于点E,若BC=5,AC=12,的半径.求⊙O的半径.解答:解:连接OE,因为AB为切线,故OE⊥AB,在Rt△ABC中,BC=5,AC=12,故AB=13,由BE=BC=5,所以AE=8;易证△AEO∽△ACB,所以,得.19.(7分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是多少?(π=3.14159…,最后结果保留三个有效数字),最后结果保留三个有效数字)解答:解:∵△ABC中,∠C是直角,AB=12cm,∠ABC=60°∴AC=6cm,BC=6cm ∵将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处∴△ABC≌△EBD 由题给图象可知:由题给图象可知:S阴影=S扇形ABE+S△BDE﹣S△ABC﹣S扇形BCD==答:AC边扫过的图形(阴影部分)的面积约是113cm2.20.(7分)如图,以等腰三角形ABC的腰AB为直径作⊙O,交底边BC于P,PE⊥AC于E,试问:PE是⊙O的切线吗?说明理由.的切线吗?说明理由.解答:解:连接OP,则OP=OB;∴∠OPB=∠B=∠C,∴OP∥AC,∴PE⊥AC,∴PE⊥OP,∴PE是⊙O的切线.的切线.21.(7分)如图,把直角三角形△ABC的斜边AB放在直线l上,按顺时针方向转动两次,使它转到△A″B″C″的位置,设BC=1,AC=,则顶点A运动到A′′的位置时:′′的位置时:经过的路线有多长?(1)点A经过的路线有多长?所围成的面积是多少?(2)点A经过的路线与直线l所围成的面积是多少?解答:解:(1)Rt△ABC中,BC=1,AC=,则可得AB=2,∠CAB=30°,″所经过的路线为:则点A到A″所经过的路线为:l弧AA′+l弧A′A″=+=+.围成的面积为:(2)点A经过的路线与直线l围成的面积为:+×1×+=+.22.(7分)如图,P是⊙O外一点,P A切⊙O于A,AB是⊙O的直径,PB交⊙O于C,若PA=2cm,,求出图中阴影部分的面积.∠B=30°,求出图中阴影部分的面积.解答:解:连接CO,过O作OD⊥PB于点D,∵∠B=30°,PA=2cm,∴PB=4,AB=cm,∴OB=OC=OA=cm,(3分)分)∵∠B=30°,∴∠BOC=120°,∠AOC=60°,∴OD=cm,BD=cm,BC=3cm,(3分)分)∴S△BOC=3××=cm2,S扇形AOC==cm2,(4分)分)∴S阴影部分=×2×2﹣﹣=﹣(cm2).(2分)分)23.(10分)如图是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,求地面上阴影部分的面积.(精确到0.01平米,π取3.14)解答:解:构造几何模型如图:解:构造几何模型如图:依题意知DE=1.2米,FG=1米,AG=3米,米,由△DAE∽△BAC得,即,得BC=1.8,∴.24.(10分)工人师傅要在如图所示的一边长为40cm的正方形铁皮上裁剪下一块完整的圆形和一块完整的扇形铁皮,使之恰好做成一个圆锥形模型.(1)请你帮助工人师傅设计三种不同的裁剪方案;(画出示意图)(画出示意图)(2)何种设计方案使得正方形铁皮的利用率最高?求出此时圆锥模型底面圆的半径.解答:解:(1)设计方案示意图如下.)设计方案示意图如下.(2)∵①图扇形面积为:=400π,②图面积为:π×(20)2+π×102=300π,③图扇形面积为:=,)所示.∴使得正方形铁皮的利用率最高的裁剪方案如图(1)所示.,依题意有:设圆的半径为r,扇形的半径为R,依题意有:扇形弧长等于圆锥底面周长,扇形弧长等于圆锥底面周长,∴×2R×π=2πr,则R=4r.∵正方形的边长为40cm,∴BD=40cm.∵⊙O与扇形的切点为E,圆心O在BD上,上,∴R+r+r=40,解得r=cm.25.(10分)(2004•万州区)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E相切.解答:解:(1)DE与半圆O相切.证明:连接OD,BD,∵AB是半圆O的直径,的直径,∴∠BDA=∠BDC=90°.边上的中点,∵在Rt△BDC中,E是BC边上的中点,∴DE=BE=BC,得∠EBD=∠BDE.∵OB=OD,∴∠OBD=∠ODB.又∵∠ABC=∠OBD+∠EBD=90°,∴∠ODB+∠EDB=90°,故DE与半圆O相切.相切.(2)∵BD⊥AC,∴Rt△ABD∽Rt△ACB.∴.即AB2=AD•AC.∴AC=.的两个根, ∵AD,AB的长是方程x2﹣10x+24=0的两个根,∴解方程得x1=4,x2=6.∵AD<AB,∴AD=4,AB=6.∴AC===9.又∵在Rt△ABC中,AB=6,AC=9,∴BC==3.的面积;(3)问题1:求四边形ABED的面积;:求两个弓形的面积;问题2:求两个弓形的面积;问题3:求的值.的值.。
2024年北京初三九年级上学期数学期末考《圆的综合》

2024年1月九上期末——圆的综合1.【东城】24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,BC =CD 的长.2.【西城】24.如图,AB 是O 的直径,AB BC =,AC 交O 于点D ,点F 在OD 的延长线上且12FAD ABC ∠=∠.(1)求证:AF 是O 的切线;(2)若8AF =,4DF =,求AC 的长.3.【海淀】25.如图,AB 为半圆O 的直径,点C ,D 在半圆O 上,直线CM 与半圆O 相切于点C ,//CM AD .(1)若MCD ∠α=,求COA ∠的大小(用含α的式子表示);(2)过点O 作OE CD ⊥交CM 于点E ,交CD 于点F ,若//CD AB ,6AB =,求CE 的长.4.【朝阳】24.如图,AC ,BD 是圆内接四边形ABCD 的对角线,AC ⊥BD 于点E ,BD 平分∠ADC .(1)求∠BAD 的度数;(2)点P 在DB 的延长线上,P A 是该圆的切线.①求证:PC 是该圆的切线;②若PA =AC =3,直接写出PD 的长.5.【石景山】24.如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,交AC 于点E ,点F 在AC 的延长线上,12CBF BAC ∠=∠.(1)求证:BF 是O 的切线;(2)若5AB =,1tan 2CBF ∠=,求CE 的长.6.【丰台】24.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于点D ,作DE ⊥AC 交AC 于点E ,延长ED 与AB 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若△ABC 为等边三角形,AE=3,求⊙O 半径的长.7.【昌平】24.如图,AB 是⊙O 的直径,点C 在⊙O 上,点D 为 AC 的中点,过点D 作⊙O 的切线,交BC 延长线于点P ,连接OD 交AC 于点E .(1)求证:四边形DECP 是矩形;(2)作射线AD 交BC 的延长线于点F ,若tan ∠CAB =43,BC =6,求DF 的长.8.【通州】25.如图,点C 在以AB 为直径的O 上,CD 平分ACB ∠交O 于点D ,交AB 于点E ,过点D 作DF AB ∥交CO 的延长线于点F .(1)求证:直线DF 是O 的切线;(2)若30A ∠=︒,43AC =,求DF 的长.24题图9.【房山】24.如图,AB是⊙O的直径,AC,BC是弦,点D在AB的延长线上,且DCB DAC∠=∠,⊙O的切线AE与DC的延长线交于点E.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,30∠=︒,求AE的长.D10.【大兴】24.如图,AB是⊙O的直径,点C在⊙O上,连接AC,BC,过点O作OD⊥BC于点D,过点C作直线CE交OD的延长线于点E,使得∠E=∠B.(1)求证:CE是⊙O的切线.(2)若DE=6,CE=35,求OD的长.11.【门头沟】25.如图,△ABC内接于⊙O,AB为直径,点D在⊙O上,过点D作⊙O切线与AC的延长线交于点E,ED∥BC,连接AD交BC于点F.(1)求证:∠BAD=∠DAE;(2)若AB=6,AD=5,求DF的长.12.【燕山】24.如图,在△ABC中,∠ACB=90°,点D在AB上,以AD为直径作⊙O与BC相切于点E,连接DE并延长交AC的延长线于点F.(1)求证:AF=AD;(2)若CE=4,CF=2,求⊙O的半径.13.【顺义】25.如图,AB为⊙O的弦,点C为AB的中点,CO的延长线交⊙O于点D,连接AD,BD,过点D作⊙O的切线交AO的延长线于点E.(1)求证:DE∥AB;(2)若⊙O的半径为3,tan∠ADC=,求DE的长.14.【密云】24.如图,⊙O是△ABC的外接圆,∠ABC=45°,连接OC交AB于点E,过点A作OC的平行线交BC延长线于点D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为4,AD=6,求线段CD的长.15.【平谷】24.如图,AB 为⊙O 的直径,弦CD ⊥AB 于H ,连接AC 、AD ,过点A 作⊙O 的切线与∠ADC 的平分线相交于点E ,DE 交AB 于点G ,交AC 于点F ,交⊙O 于点M ,连接AM .(1)求证:AC=AD ;(2)若22tan =∠AMD ,CD=4,求AF 长.。
数学九年级上册《圆》单元综合检测题(含答案)

故(2)(5)正确,
故选B.
【点睛】本题考查圆周角定理、线段的垂直平分线的性质、垂径定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长交⊙O于点D,∠D=30°,则∠BAD的度数是()
6.如图,以半径为2的正六边形ABCDEF的中心O为原点建立平面直角坐标系,顶点A,D在x轴上,则点C的坐标为()
A. B. C. D.
【答案】C
【解析】
试题解析:连接OC.
∵∠COD=60°,OC=OD,
∴△COD是等边三角形,
∴OC=OD=2.
设BC交y轴于G,则∠GOC=30°.
在Rt△GOC中,∵∠GOC=30°,OC=2,
(1)请直接写出旋转角的度数;
(2)若BC=2 ,试求线段BC在上述旋转过程中所扫过部分的面积.
23.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.
(1)求证:ED=EC;
(2)若CD=3,EC=2 ,求AB的长.
24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F,BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB,
(1)求证:DC是⊙O 切线;
(2)若⊙O半径为4,∠OCE=30°,求△OCE的面积.
20.如图,在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P,AC=8,BC=6.
(1)当点O在AC上时,求证:2∠ACP=∠B;
人教版数学九年级上册《圆》单元综合检测(附答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.22.如图,在中,弦、于点,且.求证:.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.参考答案一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分)1.在同圆或等圆中,如果弧AB的长度=弧CD的长度,则下列说法正确的个数是()弧AB的度数等于弧CD的度数;所对的圆心角等于弧CD所对的圆心角;弧AB和弧CD是等弧;弧AB所对的弦的弦心距等于弧CD所对的弦的弦心距.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】由在同圆或等圆中,的长度=的长度,根据弧长公式得到它们所对的圆心角相等,再根据在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等,即可对选项进行判断.【详解】∵在同圆或等圆中,的长度=的长度,∴弧AB和弧CD所对的圆心角相等,∴的度数等于的度数;∴和是等弧;∴所对的弦的弦心距等于所对的弦的弦心距.故选D.【点睛】本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.2.、是直线上的两个不同的点,且,的半径为,下列叙述正确的是()A. 点在外B. 点在外C. 直线与一定相切D. 若,则直线与相交【答案】D【解析】【分析】由P、Q是直线l上的两个不同的点,且OP=5,⊙O的半径为5,可得点P在⊙O上,直线l与⊙O相切或相交;若OQ=5,则直线l与⊙O相交.【详解】∵OP=5,⊙O的半径为5,∴点P在⊙O上,故A错误;∵P是直线l上的点,∴直线l与⊙O相切或相交;∴若相切,则OQ>5,且点Q在⊙O外;若相交,则点Q可能在⊙O上,⊙O外,⊙O内;故B、C错误.∴若OQ=5,则直线l与⊙O相交;故D正确.故选D.【点睛】此题考查了直线与圆的位置关系,注意掌握分类讨论思想的应用是解题关键.3. 如图,已知⊙O的半径为5,点O到弦AB的距离为2,则⊙O上到弦AB所在直线的距离为3的点有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】考点:垂径定理;勾股定理.分析:根据垂径定理计算.解答:解:如图OD=OA=OB=5,OE⊥AB,OE=3,∴DE=OD-OE=5-3=2cm,∴点D是圆上到AB距离为2cm的点,∵OE=3cm>2cm,∴在OD上截取OH=1cm,过点H作GF∥AB,交圆于点G,F两点,则有HE⊥AB,HE=OE-OH=2cm,即GF到AB的距离为2cm,∴点G,F也是圆上到AB距离为2cm的点.故选C.点评:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.4.如图,在中,已知,是圆周上的一点,则为()A. B. C. D.【答案】B【解析】【分析】首先根据题画出图形,然后在优弧上取点D,连接AD,BD,根据圆周角的性质,即可求得∠ADB的度数,又由圆的内接四边形的性质,即可求得∠ACB的度数.【详解】如图:在优弧上取点D,连接AD,BD,∵∠AOB=100°,∴∠ADB=∠AOB=55°,∵四边形ADBC是⊙O的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=125°.故选B.【点睛】此题考查了圆周角定理与圆的内接四边形的性质,根据题意作出图形,掌握数形结合思想的应用及圆周角定理是解题关键.5.如图,正六边形内接于圆,圆的半径为,则这个正六边形的边心距和的长分别为()A. 、B. 、C. 、D. 、【答案】D【解析】试题解析:连接OC,OD,∵正六边形ABCDEF是圆的内接多边形,∴∠COD=60°,∵OC=OD,OM⊥CD,∴∠COM=30°,∵OC=6,∴OM=6cos30°=3,∴=2π故选D.考点:1.正多边形和圆;2.弧长的计算.6.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以为圆心的圆的一部分,路面米,净高米,则此圆的半径A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据垂径定理可知AD的长,设半径为r,利用勾股定理列方程求出r的值即可.【详解】∵CD⊥AB,∴由垂径定理得AD=6米,设圆的半径为r,则OD2+AD2=OA2,即(9-r)2+62=r2,解得r=米.故选B.【点睛】考查了垂径定理、勾股定理.根据题意构造一个由半径、半弦、弦心距组成的直角三角形进行计算是解题关键.7.已知和三点、、,的半径为,,,,经过这三点中的一点任意作直线总是与相交,这个点是()A. B. C. D. 或【答案】A【解析】【分析】根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.【详解】∵的半径为,,,,∴Q点在圆上;R点在圆外;P点在圆内,∴经过P点任意作直线总是与⊙O相交.故选A.【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.准确判断P、Q、R三点与⊙O的位置关系是解决本题的关键.8.如图,,是的直径,的半径为,,以为圆心,以为半径作,则与围成的新月形的面积为()平方单位.A. B. C. D.【答案】B【解析】【分析】新月形ACED的面积是圆O半圆的面积-弓形CED的面积,弓形CED的面积又=扇形BCD面积-三角形BCD 的面积,然后依面积公式计算即可.【详解】∵OC=OB=R,,∴BC=R,)∴新月形ACED的面积=S半圆-(S扇形BCD-S△BCD=-(-)=R2.故选B.【点睛】本题的关键是看出:新月形ACED的面积是圆O半圆的面积-弓形CED的面积,然后逐一求面积即可.9.如图,已知:是的直径,、是上的三等分点,,则是()A. B. C. D.【答案】C【解析】【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴的度数是120°,∵C、D是上的三等分点,∴弧CD与弧ED的度数都是40度,∴∠COE=80°,故选:C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.10.如图,点,,在上,点在圆外,则下列结论正确的是()A. ∠C>∠DB. ∠C<∠DC. ∠C=∠DD. ∠C=2∠D【答案】A【解析】【分析】根据三角形外角的性质得到∠BEC>∠BDC,根据圆周角定理得到∠BAC=∠BEC,得到答案【详解】如图:连接AE,∵∠BEA是△ADE的外角,∴∠BEA>∠D,∵∠C=∠BEA,∴∠C>∠D,故A选项正确,则B、C、错误,∵不确定D点的位置,∴∠C不一定等于2∠D,故D选项错误,故选A.【点睛】本题考查的是圆周角定理和三角形的外角的性质的应用,掌握同弧所对的圆周角相等和三角形的一个外角大于与它不相邻的任何一个内角是解题的关键.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分)11.在,,,,点是的外心,现在以为圆心,分别以、、为半径作,则点与的位置关系分别是________.【答案】圆外,圆上,圆内【解析】【分析】由点是的外心,可知O为△ABC的外接圆的圆心,因为∠C=90°,由圆周角定理可知AB为外接圆的直径,根据勾股定理可求出AB的长,根据直角三角形斜边中线等于斜边一半可知OC的长度,根据半径的长判断点C的位置即可.【详解】∵,点是的外心,∴AB为⊙O的直径,且O为AB中点,∵,,∴AB==5,∴OC=2.5,∵2.5>2;2.5=2.5; 2.5<3,∴以、、为半径作,则点与的位置关系分别是圆外、圆上、圆内.故答案为:圆外、圆上、圆内【点睛】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=R时,点在圆上;当d>R 时,点在圆外;当d<R时,点在圆内.根据圆周角定理确定O点的位置是解题关键.12.如下图,在以为圆心的两个同心圆中,大圆的弦交小圆于和两点,,,则长为________.【答案】【解析】【分析】如图:作OE⊥AB于E,根据垂径定理可知CE=CD,AE=AB,根据AC=AE-CE求出AC的长即可.【详解】如图:作OE⊥AB于E,∴根据垂径定理得:CE=CD=3,AE=AB=5,∴AC=AE-CE=2.故答案为:2【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,熟练掌握垂径定理是解题关键.13.已知:如图,为半的直径,、、为半圆弧上的点,,,则的度数为________度.【答案】【解析】【分析】根据同圆中,等弧所对的圆心角相等可知∠BOC的度数,即可求出∠AOC的度数.【详解】∵,∠BOE=55°,∴∠COD=∠DOE=∠BOE=55°,∴∠BOC=165°,∴∠AOC=180°-165°=15°,故答案为:15【点睛】本题考查圆周角定理,在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.在圆中经常利用此结论把圆心角、弧、弦之间进行转化.14.如图,边长为的正方形的顶点、在一个半径为的圆上,顶点、在圆内,将正方形沿圆的内壁逆时针方向作无滑动的滚动.当点第一次落在圆上时,点运动的路径长为________.【答案】【解析】【分析】设圆心为O,连接AO,BO,AC,AE,易证三角形AOB是等边三角形,确定∠GFE=∠EAC=30°,再利用弧长公式计算即可.【详解】如图所示:设圆心为O,连接AO,BO,AC,AE,∵AB=,AO=BO=,∴AB=AO=BO,∴△AOB是等边三角形,∴∠AOB=∠OAB=60°同理:△FAO是等边三角形,∠FAB=2∠OAB=120°,∠DAF=120°-90°=30°,即旋转角为30°,∴∠EAC=30°,∠GFE=∠FAD=120°-90°=30°,∵AD=AB=,∴AC=2,∴当点C第一次落在圆上时,点C运动的路径长为=()π;故答案为:()π【点睛】本题考查了正方形的性质、旋转的性质、等边三角形的判定和性质、勾股定理的运用以及弧长公式的运用,题目的综合性较强,解题的关键是正确的求出旋转角的度数.15.已知中,,,,直线过点且与平行,若以为轴将旋转一周,则所得的几何体的表面积为________.(不求近似值)【答案】【解析】【分析】根据,,,可求出△ABC的其余边长,表面积为一个圆锥的侧面积+一个圆的底面积+圆柱的侧面积,按照公式计算即可.【详解】∵Rt△ABC中,∠C=90°,∠A=30°,AB=10,∴BC=5,AC=5,∴所得几何体的表面积为:π×5×10+π×52+2π×5×5=75π+50.故答案为75π+50.【点睛】考查圆锥的计算;画出相关图形,判断出表面积的组成是解决本题的关键.16.如图,已知是的直径,为弦,度.过圆心作交于点,连接,则________度.【答案】【解析】【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD即可得答案.【详解】∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°-∠ABC=90°-30°=60°,∴∠DCB=∠BOD=30°.故答案为:30【点睛】本题主要考查圆周角定理,在同圆或等圆中同弧所对的圆周角的度数是圆心角的一半,熟练掌握圆周角定理是解题关键.17.如图,的边位于直线上,,,,若由现在的位置向右无滑动地旋转,当第次落在直线上时,点所经过的路线的长为________(结果用含有的式子表示)【答案】【解析】【分析】根据含30度的直角三角形三边的关系得到BC=1,AB=2BC=2,∠ABC=60°;点A先以B点为旋转中心,顺时针旋转120°到A1,再以点C1为旋转中心,顺时针旋转90°到A2,然后根据弧长公式计算两段弧长,从而得到点A第3次落在直线上时,点A所经过的路线的长.【详解】∵Rt△ABC中,AC=,∠ACB=90°,∠A=30°,∴BC=1,AB=2BC=2,∠ABC=60°;∵Rt△ABC由现在的位置向右无滑动的翻转,且点A第3次落在直线l上时,有3个的长,2个的长, ∴点A经过的路线长=×3+×2=(4+)π.故答案为:(4+)π.【点睛】本题考查了旋转的性质与弧长的计算,解题的关键是熟练的掌握旋转的性质与弧长的计算方法. 18.如图,圆柱底面半径为,高为,点、分别是圆柱两底面圆周上的点,且、在同一母线上,用一棉线从顺着圆柱侧面绕圈到,求棉线最短为________.【答案】【解析】【分析】将圆柱体展开,然后利用两点之间线段最短解答即可.【详解】圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2cm,∴长方形的宽即是圆柱体的底面周长:2π×2=4πcm;又∵圆柱高为9πcm,∴小长方形的一条边长是3πcm;根据勾股定理求得AC=CD=DB=5πcm;∴AC+CD+DB=15πcm;故答案为:15π.【点睛】本题主要考查了圆柱的计算、平面展开--路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.19.以矩形的顶点为圆心作,要使、、三点中至少有一点在内,且至少有一点在外,如果,,则的半径的取值范围为________.【答案】【解析】【分析】先求出矩形对角线的长,然后由B、C、D与⊙A的位置,确定⊙A的半径的取值范围.【详解】根据题意画出图形如下所示:∵AB=CD=5,AD=BC=12,∴AC=BD==13.∵B、C、D中至少有一个点在⊙A内,且至少有一个点在⊙A外,∴点B在⊙A内,点C在⊙A外.∴5<r<13.故答案是:5<r<13.【点睛】本题考查的是点与圆的位置关系,要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.20.如图,在中,是弦,,,那么圆心到的距离是________,弦的长是________.【答案】(1). (2).【解析】【分析】过O作OC⊥AB交AB于C点,根据垂径定理可知OC垂直平分AB,根据OA=OB,∠AOB=120°可求出∠OAB=30°,根据30°角所对直角边等于斜边一半即可求得圆心到的距离;根据勾股定理求出AC的长即可求出AB的长.【详解】过O作OC⊥AB交AB于C点,如图所示:由垂径定理可知,OC垂直平分AB,∵OA=OB,∠AOB=120°∴∠OAB=30°∴OC=OA=cm∴由勾股定理可得:AC= =cm∴AB=2AC=5cm.故答案为:;5;【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分)21.一圆柱形排水管的截面如图所示,已知排水管的半径为,水面宽为.由于天气干燥,水管水面下降,此时排水管水面宽变为,求水面下降的高度.【答案】水面下降了米.【解析】【分析】如图:过点O作ON⊥CD于N,交AB于M,先根据垂径定理求得AM、CN,然后根据勾股定理求出OM、ON的长,即可得出结论【详解】如图,下降后的水面宽CD为6m,连接OA,OC,过点O作ON⊥CD于N,交AB于M.∴∠ONC=90°.∵AB∥CD,∴∠OMA=∠ONC=90°.∵AB=8m,CD=6m,∴AM=AB=4,CN=CD=3,在Rt△OAM中,∵OA=5,∴OM==3.同理可得ON=4,∴MN=ON-OM=1(米).答:水面下降了1米.【点睛】本题考查的是垂径定理的应用以及勾股定理的应用,熟知垂直于弦的直径平分弦,并且平分这条弦所对的两条弧是解答此题的关键.22.如图,在中,弦、于点,且.求证:.【答案】见解析【解析】【分析】根据,可证明,进而证明AC=BD,通过证明即可证明结论.【详解】∵,∴,,∴在与中,∵,∴,∴.【点睛】本题考查的是圆心角、弧、弦的关系及全等三角形的判定与性质,熟练掌握,圆心角、弧、弦的关系是解题关键.23.如图,在中,,,求分别以、、为圆心,以为半径画弧,三条弧与边所围成的阴影部分的面积.【答案】.【解析】【分析】由于三条弧所对的圆心角的和为180°,根据扇形的面积公式可计算出三个扇形的面积和,而三条弧与边AB 所围成的阴影部分的面积=S△ABC-三个扇形的面积和,再利用三角形的面积公式计算出△ABC的面积,然后代入即可得到答案.【详解】∵∠C=90°,CA=CB=2,∴AC=1,S△ABC==2,∵三条弧所对的圆心角的和为180°,三个扇形的面积和==,∴三条弧与边AB所围成的阴影部分的面积=S△ABC-三个扇形的面积和=2-,【点睛】本题考查扇形面积,熟练掌握面积公式并明确三条弧所对的圆心角的和为180°是解题关键.24.已知:如图,的外接圆,弦的长为,,求圆心到的距离.【答案】圆心到的距离为.【解析】【分析】连接,,过点作于点,根据圆周角定理可知∠BOC=60°,进而证明△OBC是等边三角形,根据垂径定理可知CD的长度,利用勾股定理求出OD的长即【详解】连接,,过点作于点,∵,∴.∵,∴是等边三角形,∴,∵OD⊥BC,∴CD=BC=2,∴=,即圆心到的距离为.【点睛】本题考查圆周角定理及垂径定理,在同圆中,同弧所对的圆周角的度数等于圆心角的一半,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握定理是解题关键.25.如图,已知为的直径,是弦,于,于,.求证:;求证:;若,,设,求值及阴影部分的面积.【答案】(1)见解析;(2)见解析;(3)x=5,.【解析】【分析】(1)根据直径所对的圆周角是90°可知∠ACB=∠AFO=90°,由平行线判定定理即可证明OF//BC;(2)由可知∠CBE=∠FOA,利用,,即可证明;(3)在Rt△OCE中,利用勾股定理列方程即可求出x的值,根据OC=2OE可知∠OCE=30°,即可求出∠COD的度数,利用扇形面积及三角形面积公式求出阴影面积即可.【详解】证明:∵为的直径,∴又∵∴证明:∵∴∠CBE=∠FOA∵,,∴解:连接.设,∵∴.在中,,根据勾股定理可得:解得:,即,∵OC=5+5=10,∴OC=2OE,∴∠OCE=30°,∴,∴扇形的面积是:的面积是:∴阴影部分的面积是:.【点睛】本题考查圆周角定理、垂径定理及扇形面积,熟练掌握定理和公式是解题关键.26.如图,内接于,,,.求的度数;将沿折叠为,将沿折叠为,延长和相交于点;求证:四边形是正方形;若,,求的长.【答案】(1);(2)见解析;(3).【解析】【分析】(1)连接和,由OE=BC,可知OE=BE,进而可知∠OBE=45°,同理可证∠OCE=45°,即可证明∠BOC=90°,根据圆周角定理即可求得∠BAC的度数;(2)由折叠性质可知AG=AD=AF,∠AGH=∠AFH=90°,∠DAC=∠CAF,∠BAD=∠BAG,由∠BAD+∠DAC=45°,可证明∠GAF=90°,即可证明四边形AFHG 是正方形;(3)由折叠性质可知,;由(2)可知∠BHC=90°,设AD长为x,利用勾股定理列方程求出x的值即可得解.【详解】(1)连接和;∵,∴;∵,∴,∴;∵,∴;由折叠可知,,,,,∴;∴;∴四边形是正方形;解:由得,,,,;设的长为,则,.在中,,∴;解得,,(不合题意,舍去);∴.【点睛】本题主要考查圆周角定理及折叠性质,在同圆中,同弧所对的圆周角的度数等于圆心角的一半;折叠后的图形与原图形全等,熟练掌握折叠的性质是解题关键.。
2023年九年级数学下册中考综合培优测试卷:圆的综合题【含答案】

2023年九年级数学下册中考综合培优测试卷:圆的综合题一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为( )A .B .C .D .18552245951252.如图,在以AB 为直径的半圆O 中,C 是它的中点,若AC=2,则△ABC 的面积是( )A .1.5B .2C .3D .43.如图, 、 分别是 的直径和弦,且 , ,交 于点AD AC ⊙O ∠CAD =30°OB ⊥AD AC B ,若 ,则 的长为( )OB =3BCA .B .3C .D .3233334.如图,直线AB 与⊙O 相切于点A ,弦CD ∥AB ,若⊙O 的直径为5,CD=4,则弦AC 的长为( )A .4B .C .5D .6255.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=88°,则∠BCD 的度数是( )A .88°B .92°C .106°D .136°6.如图,AB 是⊙O 的直径, ,∠COD =38°,则∠AEO 的度数是( )BC =CD =DEA .52°B .57°C .66°D .78°7.将圆心角为90°,面积为4π的扇形围成一个圆锥的一个侧面,所围成圆锥的底面半径为( )A .1B .2C .3D .48.如图,△ABC 的三个顶点都在⊙O 上,∠BAC 的平分线交BC 于点D ,交⊙O 于点E ,则与△ABD 相似的三角形有( )A .3个B .2个C .1个D .0个9.如图,已知点A ,B 在⊙O 上,⊙O 的半径为3,且△OAB 为正三角形,则 的长为( )ABA .B .π2C .D .3π2x 1=−163(舍去),x 2=010.如图,四边形ABCD 是⊙O 的内接正方形,点P 是劣弧弧AB 上任意一点(与点B 不重合),则∠BPC的度数为( )A.30°B.45°C.60°D.90°AB=AC11.如图所示,在⊙O中,,∠A=30°,则∠B=( )A.150°B.75°C.60°D.15°⊙O ABCDE AE CD∠AOC12.如图,与正五边形的两边,相切于A,C两点,则的度数是( )108°120°144°150°A.B.C.D.二、填空题13.如图,已知∠OCB=20°,则∠A= 度.14.如图①,在边长为8的等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,若将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC,BC相切,则图①中CE的长为 cm.15.如图,△ABC 内接于⊙O ,D 是弧BC 的中点,OD 交BC 于点H ,且OH=DH ,连接AD ,过点B 作BE ⊥AD 于点E ,连接EH ,BF ⊥AC 于M ,若AC=5,EH= ,则AF= .3216.如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在 ⊙O 上运动,则正方形面积最大时,正方形与⊙O 重叠部分的面积是 .17.已知⊙O 是以坐标原点为圆心,半径为1,函数y=x 与⊙O 交与点A 、B ,点P (x ,0)在x 轴上运动,过点P 且与OA 平行的直线与⊙O 有公共点,则x 的范围是 .18.若一个圆锥的侧面展开图是一个半径为10cm ,圆心角为144°的扇形,则该圆锥的底面半径为 cm .三、综合题19.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)20.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长交BC的延长线于点F,且BF=BD.(1)求证:AC为⊙O的切线;(2)若CF=1,tan∠EDB=2,求⊙O的半径.21.如图,已知ʘO是Rt△ABC的外接圆,点D是ʘO上的一个动点,且C,D位于AB的两侧,联结AD,BD,过点C作CE⊥BD,垂足为E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学圆综合测试题
一、选择题(每题3分,满分30分)
1.如图,在Rt ABC △中,C ∠=90°,AB =10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D
,则BC 的长等于( ).A A .5
B
. C .D .6
2.如图,AB 是O ⊙的直径,点C 、D 在O ⊙上, ︒=∠80OAD ,AD OC ∥, 则B ∠的度数为( ).D
A .70°
B .60°
C .50°
D .40°
3.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点, 那么点M 在这条圆弧所在圆的( ).C
A .内部
B .外部
C .圆上
D .不能确定
4. 如图,AB O 是⊙的直径,弦30CD AB E CDB O ⊥∠=于点,°
,⊙,则弦CD 的长为( )
. A .
3
cm 2
B .3cm
C .
D
5.已知圆O 的半径为1,
是圆O 的直径,D 是AB 延长线上一点,DC 是圆O 的切线,
AB C 是切点,连结AC ,若30CAB ∠=°,则BD 的长为( ).C
A .2
B .3
C .1
D .
2
3
4题图
C
A
B
O
E D
5题图
D
3题图
B
2题图
A
B
O
A
C O A C B
9题图
6. ⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以点P 为圆心,且与⊙O 相切的圆的半径为( ).D
A .1或5
B .1
C .5
D .1或4
7.如图,在平面直角坐标系中,点P (3a ,a )是反比例函x
y 12
=与⊙O 的一个交点,则图中阴影部分的面积( ).C
A .6π
B .8π
C .10π
D .12π
8.如图,如果从半径为9cm 的圆形纸片剪去1
3
圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ).B A .6cm
B .35cm
C .8cm
D .53cm
9.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是( ). D
A .弦A
B 的长等于圆内接正六边形的边长 B .弦A
C 的长等于圆内接正十二边形的边长
C .⌒AC =⌒BC
D .∠BAC =30° 10.在平面直角坐标系中,若一个点的横纵坐标均为整数,我们称这样的点为整数点,如图,以点O 为圆心、5为半径画圆.则⊙O 上整数点的个数为( ).C A .8个 B .10个 C .12个 D . 14个
二、填空题(每题3分,满分24分)
11.如图,已知弦DC 、FE 的延长线相交于O ⊙外一点P ,PAB 经过圆心O 分别交
O ⊙于A B 两点,请你添加一个条件 ,使FPB DPB ∠=∠.
12.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65.为了监控整个展厅,最少需在圆形边缘上共安装...
这样的监视器 台.3
13.某
8题图
剪去
y
x
O 12题图
A 65
10题图
F
E
P
11题图O
D
C A
13题图
O D C
A
蔬菜基地的圆弧形蔬菜大棚的剖面(如图),已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m .4
14.已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 . 15.如图,在一个直径为2的圆形铁皮中剪下一个圆心角为︒90的扇形OAB ,用这个扇形围成圆锥的侧面,则此圆锥的底面半径为 .4
1
16.如图,ABC △内接于O ⊙,AB BC =,120ABC ∠=°,AD 为O ⊙的直径,6=AC ,那么BD = .6
17.小刚对科技馆富有创意的科学方舟形象设计很有兴趣,他回家后将一正五边形纸片沿其对称轴对折.旋转放置,做成科学方舟模型.如图所示,该正五边形的边心距OB 长为
2,AC 为科学方舟船头A 到船底的距离,请你计算1
2
AC AB +
= .
(结果保留根号).23
18.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 为 度
三、解答题(满分46分)
19.(8分)如图,是的内接三角形,点是优弧AB 上的一点(不与A,B 重合),设α=∠OAB ,
β=∠C .
(1)当︒=35α时,求β的度数;
(2)猜想α与β之间的关系,并给予证明.
A
O B
B A
C
D
科学方舟 B
A
O
C
16题图
O
D
C
B A
已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,作DE ⊥AC 于点E 。
求证:DE 为⊙O 的切线。
20.(8分)如图,AD 为ABC ∆外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .
(1) 求证:BD CD =;
(2) 小明说:“B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.” 你认为小明的说法正确吗?请说明理由.
四、拓展创新题(满分20分)
24.(10分)机器人“海宝”在某圆形区域表演“按指令行走”,如图所示,“海宝”从圆心O 出发,先沿北偏西︒60方向行走8米至点A 处,再沿正南方向行走10米至点B 处,最后沿正东方向行走至点C 处,点B 、C 都在圆O 上.(1)求圆O 的半径;(2)求弦BC 的长.
A
B
C
E
F
D
S 南
N C
O B
A。