沪科版-数学-九年级上册- 反比例函数 分层练习
沪科版九上数学初三数学二次函数和反比例函数专项训练

沪科版九上数学二次函数和反比例函数专项训练1.二次函数2(1)2y x=-+的最小值是()A.2-B.2C.1-D.12.如图,抛物线)0(2>++=acbxaxy的对称轴是直线1=x,且经过点P(3,0),则cba+-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x=-+的图象的顶点坐标是()A.(13),B.(13)-,C.(13)-,D.(13)--,4.函数2y ax b y ax bx c=+=++和在同一直角坐标系内的图象大致是()5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 46.下列命题:①若0a b c++=,则240b ac-≥;②若b a c>+,则一元二次方程20ax bx c++=有两个不相等的实数根;③若23b a c=+,则一元二次方程20ax bx c++=有两个不相等的实数根;④若240b ac->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是().A.只有①②③B.只有①③④C.只有①④D.只有②③④.7.如图所示是二次函数2122y x=-+的图象在x轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为与其最.接近的值是()A.4 B.163C.2πD.88.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 29.如图,正方形ABOC的边长为2,反比例函数kyx=过点A,则k的值是()Oxyy–1 33O xP1A .2B .2-C .4D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③ C .②③ D .①②③11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时, x … 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=.15.如图,在平面直角坐标系中,函数ky x =(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .16.已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.yOxC A (1,2) B (m ,n )(第10ox1317.已知二次函数y=x 2-2x-1。
初中数学沪科版九年级上册第二十一章21.5反比例函数练习题(解析版)

初中数学沪科版九年级上册第二十一章21.5反比例函数练习题一、选择题1.如图,一次函数y1=ax+b和反比例函数y2=k的图x象相交于A,B两点,则使y1>y2成立的x取值范围是()A. −2<x<0或0<x<4B. x<−2或0<x<4C. x<−2或x>4D. −2<x<0或x>42.反比例函数y=k−3的图象中,当x>0时,y随x的增大而增大,则k的取值范围是x()A. k<3B. k≤3C. k>3D. k≥33.如图,点A(a,1),B(b,3)都在双曲线y=−3上,点xP,Q分别是x轴,y轴上的动点,则四边形ABQP周长的最小值为()A. 4√2B. 6√2C. 2√10+2√2D. 8√24.已知点M(−1,6)在双曲线y=k上,则下列各点一定在该双曲线上的是()xA. (3,−2)B. (−2,−3)C. (2,3)D. (3,2)5.如图所示,矩形ABOC的面积为3,反比例函数y=k的图象过点A,则k=()xA. 3B. −1.5C. −3D. −66.已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=c的图象如图所xx−b的图象可能是()示,则一次函数y=caA. B.C. D.7.对于反比例函数y=k2+1,下列说法正确的个数是()x①函数图象位于第一、三象限;②函数值y随x的增大而减小③若A(−1,y1),B(2,y2),C(1,y3)是图象上三个点,则y1<y3<y2;④P为图象上任一点,过P作PQ⊥y轴于点Q,则△OPQ的面积是定值.A. 1个B. 2个C. 3个D. 4个8.在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使y2−y1x2−x1<0成立的是()A. y=3x−1(x<0)B. y=−x2+2x−1(x>0)C. y=−√3x(x>0) D. y=x2−4x−1(x<0)9.已知(1,a),(2,b),(−3,c)是反比例函数y=kx(k<0)上三点,则()A. c<b<aB. c<a<bC. a<b<cD. a<c<b10.若反比例函数的图象经过点(−1,4),则它的函数表达式是()A. y=−4x B. y=−14xC. y=4xD. y=14x二、填空题11.如图,已知点A、B分别在反比例函数y=−3x(x<0)与y=6x(x>0)图象上,且OA⊥OB,若AB=6,则△AOB 的面积为______.12.如图,在反比例函数的图象y=4x(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+⋯+S n=______.13.直线y=12x与双曲线y=kx在第一象限的交点为(a,1),则k=______.14.若一个反比例函数的图象经过点A(a,a)和B(3a,−2),则这个反比例函数的表达式为______.15.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=______.16.下列y关于x的函数中,y随x的增大而增大的有______.(填序号)①y=−2x+1,②y=1x,③y=(x+2)2+1(x>0),④y=−2(x−3)2−1(x< 0)三、解答题17.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx (k≠0)的图象与AD边交于E(−4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.18.设△ABC中BC边的长为x(cm),BC上的高线AD为y(cm),现一探究小组测得两个变量x(x>0),y(y>0)的一组对应值如表:x123456y6 2.9 2.1 1.5 1.21(1)在如图的坐标系中,用描点法画出相应函数的图线;(2)求y关于x的函数解析式;(3)如果三角形BC边的长不小于8cm,求高线AD范围.19.已知两点A(−4,2),B(n,−4)是一次函数y=kx+b和反比图象的两个交点.例函数y=mx(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx−b>m的解集.x答案和解析1.【答案】B【解析】解:观察函数图象可发现:当x<−2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<−2或0<x<4.故选:B.根据两函数图象的上下位置关系结合交点横坐标即可找出不等式的解集,此题得解.本题考查了反比例函数与一次函数的交点问题,根据两函数图象的上下位置关系结合交点的横坐标找出不等式的解集是解题的关键.2.【答案】A【解析】【分析】本题考查了反比例函数的性质解题.(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一根据对于反比例函数y=kx个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大,进行解答.【解答】解:∵当x>0时,y随x的增大而增大,∴函数图象位于第二、四象限,∴k−3<0,∴k<3.故选A.3.【答案】B上,【解析】解:∵点A(a,1),B(b,3)都在双曲线y=−3x∴a×1=3b=−3,∴a=−3,b=−1,∴A(−3,1),B(−1,3),如图,作A点关于x轴的对称点D(−3,−1),B点关于y轴的对称点C(1,3),连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABQP周长=AB+BQ+PQ+PA=AB+CD,∴AB=√(−3+1)2+(1−3)2=2√2,CD=√(1+3)2+(3+1)2=4√2,∴四边形ABQP周长最小值为2√2+4√2=6√2,故选:B.先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于x轴的对称点D,B点关于y轴的对称点C,根据对称的性质得到C点坐标为(1,3),D点坐标为(−3,−1),CD分别交x轴、y轴于P点、Q点,根据两点之间线段最短得此时四边形ABQP的周长最小,然后利用两点间的距离公式求解可得.本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.4.【答案】A【解析】【解答】上,解:∵点M(−1,6)在双曲线y=kx∴6=k,解得k=−6.−1A.∵3×(−2)=−6,∴此点一定在双曲线上,故本选项符合题意;B.∵(−2)×(−3)=6≠−6,∴此点不在双曲线上,故本选项不符合题意;C.∵2×3=6≠−6,∴此点不在双曲线上,故本选项不符合题意;D.∵3×2=6≠−6,∴此点不在双曲线上,故本选项不符合题意.【分析】将M(−1,6)代入求出k的值,再将各项代入函数解析式看是否满足,满足则在,不满足则不在.本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.5.【答案】C【解析】【分析】此题考查了反比例函数比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据反比例函数中比例系数k的几何意义,得出等量关系|k|=3,再根据图象所在的象限即可求出k的值.【解答】解:依题意,有|k|=3,∴k=±3,又∵图象位于第二象限,∴k<0,∴k=−3.故选C6.【答案】B【解析】解:观察函数图象可知:a<0,b>0,c>0,∴ca<0,−b<0,∴一次函数y=cax−b的图象经过二三四象限.故选:B.根据反比例函数图象和二次函数图象经过的象限,即可得出a<0、b>0、c>0,由此即可得出ca <0,−b<0,即可得出一次函数y=cax−b的图象经过二三四象限,再对照四个选项中的图象即可得出结论.本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,根据反比例函数图象和二次函数图象经过的象限,找出a<0、b>0、c>0是解题的关键.7.【答案】B【解析】解:反比例函数y=k2+1x,因为k2+1>0,根据反比例函数的性质它的图象分布在第一、三象限,在每个象限内,y随x的增大而减小,故①说法正确,②的说法错误.若A(−1,y 1),B(2,y 2),C(1,y 3)是图象上三个点,则y 1<0<y 2<y 3;故说法③错误; P 为图象上任一点,过P 作PQ ⊥y 轴于点Q ,则△OPQ 的面积为12(k 2+1),故④说法正确; 故选:B .利用反比例函数的性质用排除法解答.本题考查了反比例函数的性质:①、当k >0时,图象分别位于第一、三象限;当k <0时,图象分别位于第二、四象限.②、当k >0时,在同一个象限内,y 随x 的增大而减小;当k <0时,在同一个象限,y 随x 的增大而增大.8.【答案】D【解析】解:A 、∵k =3>0∴y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 ∴当x <0时,y 2−y 1x 2−x 1>0, 故A 选项不符合; B 、∵对称轴为直线x =1,∴当0<x <1时y 随x 的增大而增大,当x >1时y 随x 的增大而减小, ∴当0<x <1时:当x 1>x 2时,必有y 1>y 2 此时y 2−y 1x 2−x 1>0, 故B 选项不符合;C 、当x >0时,y 随x 的增大而增大, 即当x 1>x 2时,必有y 1>y 2 此时y 2−y 1x 2−x 1>0, 故C 选项不符合;D 、∵对称轴为直线x =2, ∴当x <0时y 随x 的增大而减小, 即当x 1>x 2时,必有y 1<y 2 此时y 2−y 1x 2−x 1<0, 故D 选项符合; 故选:D .根据各函数的增减性依次进行判断即可.本题主要考查了一次函数、反比例函数和二次函数的图象和性质,需要结合图象去一一分析,有点难度.9.【答案】C【解析】解:反比例函数y=kx(k<0)图象在二、四象限,(1,a)(2,b)在第四象限,在第四象限y随x的增大而增大,因此a<b<0,(−3,c)在第二象限,因此c>0,故a<b<0<c,即:a<b<c,故选:C.根据反比例函数图象所在的象限,再根据点所在象限图象上,依据反比例函数的增减性进行判断.考查反比例函数的图象和性质以及反比例函数图象上点的坐标的特点,用图象法是比较直观的方法.10.【答案】A【解析】解:∵反比例函数的图象经过点(−1,4),∴k=(−1)×4=−4,∴反比例函数的关系式是y=−4x.故选:A.先根据反比例函数中k=xy的特点求出k的值,故可得出结论.本题考查的是待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.11.【答案】6√2【解析】解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵∠AOC+∠BOD=90°,∠AOC+∠CAO=90°,∴∠BOD=∠CAO,∵∠ACO=∠BDO=90°,∴△ACO∽△ODB,∵点A,B分别分别在反比例函数y=−3x (x<0)与y=6x(x>0)图象上,∴S△AOC=12×|−3|=32,S△BOD=12×6=3,即S△AOC:S△BOD=1:2,∴OA:OB=1:√2,在Rt△AOB中,设OA=x,则OB=√2x,AB=6,根据勾股定理得:AB2=OA2+OB2,即36=x2+2x2,解得:x=2√3,∴OA=2√3,OB=2√6,则S△AOB=12OA⋅OB=6√2.故答案为:6√2.过A作AC⊥x轴,过B作BD⊥x轴,利用同角的余角相等得到一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似得到三角形ACO与三角形ODB相似,由A、B分别在反比例函数y=−3x (x<0)与y=6x(x>0)图象上,利用反比例函数k的几何意义求出三角形AOC与三角形BOD面积,进而得到面积之比,利用面积比等于相似比的平方确定出相似比,即为OA与OB之比,设出OA=x,OB=√2x,在直角三角形AOB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出OA 与OB的长,即可求出三角形AOB的面积.此题属于反比例函数综合题,涉及的知识有:相似三角形的判定与性质,反比例函数k 的几何意义,勾股定理,利用了方程的思想,熟练掌握反比例函数k的几何意义是解本题的关键.12.【答案】4−4n+1【解析】解:如图,过点P1、点P n作y轴的垂线段,垂足分别是点B、点C,过点P1作x轴的垂线段,垂足是点E,P1E交CP n于点A,则点A的纵坐标等于点P n的纵坐标等于42n ,AC=2,AE=42n,故S1+S2+S3+⋯+S n=S矩形P1EOB−S矩形AEOC=2×42−2×42(n+1)=4−4n+1.故答案为4−4n+1.易求得P1的坐标得到矩形P1AOB的面积;而把所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ACB的面积,即可得到答案.本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,也考查了图形的平移以及矩形的性质,难度适中.13.【答案】2【解析】解:把(a,1)代入y=12x得12a=1,解得a=2,把(2,1)代入y=kx得a=2×1=2.故答案为2.先把(a,1)代入y=12x中求出a得到交点坐标,然后把交点坐标代入y=kx中可求出k的值.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.14.【答案】y=6x【解析】解:设反比例函数的表达式为y=kx,∵反比例函数的图象经过点A(a,a)和B(3a,−2),∴k=a2=−6a,解得m1=6,m2=0(舍去),∴k=6,∴反比例函数的表达式为y=6x.故答案为:y=6x.设反比例函数的表达式为y=kx,依据反比例函数的图象经过点A(a,a)和B(3a,−2),即可得到k的值,进而得出反比例函数的表达式.本题主要考查了待定系数法求反比例函数解析式,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15.【答案】4【解析】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1, 解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.首先设反比例函数解析式为y =kx+1(k ≠0),再把当x =1时,y =2代入反比例函数解析式即可算出k 的值,进而得到函数解析式,然后再把x =0代入函数解析式即可算出答案.此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.16.【答案】③④【解析】解:y 随x 的增大而增大的函数有③④, 故答案为③④.根据一次函数、二次函数、反比例函数的性质即可一一判断;本题考查一次函数、二次函数、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,注意自变量的取值范围.17.【答案】解:(1)∵点E(−4,12)在y =kx 上,∴k =−2,∴反比例函数的解析式为y =−2x , ∵F(m,2)在y =−2x上,∴m =−1.(2)∵菱形ABCD 和反比例函数y =−2x的图象是中心对称图形,E(−4,12),F(−1,2),),点N的坐标为(1,−2),∴点M的坐标为(4,−12图象在菱形ABCD内x的取值范围为:−4<x<−1或1<x<4.函数y=kx【解析】本题考查反比例函数图象上点的特征、菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)利用待定系数法即可解决问题;),F(−1,2),再得出点M及N的坐标,便可得出反比例函数的图象在(2)先得出E(−4,12菱形内部的自变量的取值范围.18.【答案】解:(1)利用描点法画出图形即可.(2)由图象可知,y是x的反比例函数,设y=k,x得到,k=6,把(1,6)代入y=kx∴y关于x的函数解析式为y=6.x(3)∵x≥8,y=6,x∴0<y ≤34.【解析】(1)利用描点法即可解决问题.(2)由图象可知,y 是x 的反比例函数,设y =kx ,利用待定系数法即可解决问题. (3)问题转化为已知x ≥8,求出y 的取值范围即可.本题考查描点法画函数图象、反比例函数的性质、待定系数法等知识,解题的关键掌握描点法作图,学会利用图象得出函数的性质解决问题,属于中考常考题型. 19.【答案】解:(1)∵A(−4,2),在反比例函数y =mx 图象上, ∴k =−4×2=−8,故反比例函数解析式为:y =−8x , 把B(n,−4)代入y =−8x 得:n =2, 故B (2,−4),把A ,B 代入y =kx +b 得: {2k +b =−4−4k +b =2, 解得:{k =−1b =−2,故一次函数解析式为:y =−x −2;(2)y =−x −2中,令y =0,则x =−2, 即直线y =−x −2与x 轴交于点C(−2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6;(3)由图可得,不等式kx +b −m x >0的解集为:x <−4或0<x <2.【解析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m =−8,再把点B 的坐标代入反比例函数解析式,即可求出n =2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y =−x −2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <−4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.。
(精练)沪科版九年级上册数学第21章 二次函数与反比例函数含答案

沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、,函数与在同一直角坐标系中的大致图象可能是()A. B. C. D.2、已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣2,1) D.(2,﹣1)3、两个反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.1个B.2个C.3个D.4个4、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④5、二次函数的图象如图所示,则函数值时,自变量x的取值范围是().A. B. C. D.6、已知α是锐角,且点A(,a)、B(sin2α+cos2α,b)、C(-m+2m -2,c)都在二次函数y=-x2+x+3的图象上,那么a、b、c的大小关系是()A.a<b<cB.a<c<bC.b<c<aD.c<b<a7、如图,函数y=ax2+bx+c(a≠0)的图象与x轴相交于A、B两点,頂点为点M.則下列说法不正确的是()A.a<0B.当x=﹣1时,函数y有最小值4C.对称轴是直线=﹣1 D.点B的坐标为(﹣3,0)8、下列函数中,是关于的反比例函数的是( ).A. B. C. D.9、小颖用计算器探索方程ax2+bx+c=0的根,作出如图所示的图象,并求得一个近似根x=﹣3.4,则方程的另一个近似根(精确到0.1)为()A.4.4B.3.4C.2.4D.1.410、如图,反比例函数y= (x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA 的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C. D.11、如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B. C. D.12、如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.213、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=-1对称;③当x=-2时,函数y的值等于0;④当x=-3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.1B.2C.3D.414、二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A. B. C.2 D.15、设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.﹣1B.1C.D.二、填空题(共10题,共计30分)16、如图是二次函数的图象的一部分且图象过点,对称轴为,给出四个结论:① ;②图像可能过;③ ;④ .其中正确的是________(填序号)17、已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是________。
沪科版九年级数学上《21.5.1反比例函数》课时练习含答案

∴m=3, [w*ww.~z#zs%tep.co@m]
故答案为:3.
m 1
12.若函数 y=
是反比例函数,则 m 的取值范围是_______;当 m=______时,y 是 x 的反比
x
例函数,且比例系数为 3. [中~国教#育出&%版网@]
m 1
解答:∵函数 y=
是反比例函数,
[来源#^:中教网~@*]
关于行驶速度 v(单位:千米/小时)的函数关系式是( )
A.t=20v
20
B.t=
v
20
解答:由题意,得:vt=20,则 t= ,
v
v
C.t=
20
10
D.t=
v
故选:B.
8﹒如果等腰三角形的底边长为 x,底边上的高为 y,它的面积为 10 时,则 y 与 x 的函数关系式为 ()
10
A.y=
x
5
B.y=
[来源:@#中国^教育出版&网~]
B.根据题意,得 C=4a,所以正方形的周长 C 与边长 a 是正比例函数关系,故 B 错误;
C.根据题意,得 S=20a,所以矩形的面积 S 与 a 是正比例函数关系,故 C 错误;
40
D.根据题意,得 a= ,所以矩形的长 a 与宽 b 之间是反比例函数关系,故 D 正确,
21.如图,某饲养厂计划在靠围墙一面围建一个面积为 18 平方米的矩形 ABCD 的生物园,用来饲养 小兔,其中矩形 ABCD 的一边 AB 靠墙,墙长为 8 米,设 AD 的长为 y 米,CD 的长为 x 米.
(1)求 y 与 x 之间的函数表达式; [来源:中*&国^教育出#版网@]
(2)若围成矩形 ABCD 的生物园的三边材料总长不超过 18 米,材料 AD 和 DC 的长都是整米 数,求满足条件的所有围建方案.
沪科版数学九年级(上) 第1章 二次函数与反比例函数 单元综合测试卷 (含答案)

第1章《二次函数与反比例函数》单元综合测试卷题号一二三总分得分第Ⅰ卷(选择题)一。
选择题(共12小题)1、关于反比例函数y=﹣,下列说法不正确的是( )A、点(3,﹣1)在它的图象上ﻩB、它的图象在第二、四象限C、当x〉3时,﹣1<y<0 D、当x〉0时,y随x的增大而减小2、若点A(﹣5,y1)、B(﹣3,y2)在反比例函数y=的图象上,则y1,y2的大小关系是( )A、y1>y2B、y1<y2C、y1=y2D、无法确定3、某品牌的笔记本成本是7元/本,经销商对其销量与售价的关系进行了调查、整理出如下表所示的4组对应值售价(元/本) 12 13 1415销量(本) 110 100 80 60 为获得最大利润,经销商应将该品牌笔记本售价定为( )(单位:元/本)A、13ﻩB、12C。
14 D、154、下列函数关系中,能够看做二次函数y=ax2+bx+c(a≠0)模型的是( )A、在一定距离内,汽车行驶的速度与行驶的时间的关系ﻩB、正方形周长与边长之间的关系C、正方形面积和正方形边长之间的关系D。
圆的周长与半径之间的关系5、如图,一次函数y=x+分别与x轴、y轴交于A、B两点,点P为反比例函数y=(k≠0,x〈0)图象上一点,过点P作y轴的垂线交直线AB交于C,作PD⊥PC交直线AB于D,若AC•BD=7,则k的值为( )A、﹣2ﻩB、﹣3C、﹣ﻩD、﹣ﻩ6、如图,反比例函数y1=和正比例函数y2═k2x的图象交于A(﹣2,﹣3),B(2,3)两点、若x,则x的取值范围是( )A、﹣2〈x<0ﻩB、﹣2〈x<2ﻩC、x<﹣2或0〈x<2D。
﹣2〈x<0或x>2ﻩ7、如图,将等腰直角三角形OAB放置于平面直角坐标系中,OA=AB=10,∠A=90°,D是AB边上的动点(不与端点A,B重合),作∠ACD=60°,交OA于点C,若点C,D都在双曲线y=(k>0,x>0)上,则k的值为( )A、B。
新沪科版九年级数学上册同步练习: 反比例函数

21.5反比例函数第1课时反比例函数知识要点基础练知识点1反比例函数的概念1.下面四个表达式中,y是x的反比例函数的是( B)A.y=1x2B.yx=-√3C.y=5x+6D.√x=1y2.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x 是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数.其中正确的是③④.知识点2确定反比例函数关系式3.下列函数中,图象经过点( 1,-2 )的反比例函数关系式是( D)A.y=-1x B.y=1xC.y=2xD.y=-2x【变式拓展】若y与x-2成反比例,且当x=-1时,y=3,则y与x之间的关系是( D ) A.正比例函数B.反比例函数C.一次函数D.其他函数4.已知函数y=kx ( k≠0 ),当x=-12时,y=8,则此函数的表达式为( A)A.y=-4x B.y=4xC.y=-2x D.y=2x5.已知反比例函数y=kx的图象过点A( 3,4 ),求反比例函数的表达式,并判断点B( 6,2 )是否在该反比例函数的图象上.解:反比例函数的表达式为y=12x.当x=6时,y=2,所以点B( 6,2 )在该反比例函数的图象上.知识点3根据实际问题列反比例函数关系式6.某司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v( 千米/时)与时间t( 小时)的函数关系为( A)A.v=480tB.v+t=480C.v=80t D.v=t-6t7.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为( C)A.y=10x B.y=5xC.y=20x D.y=x208.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,则y与x之间的函数关系式是y=6000x.综合能力提升练9.若函数y=( 2m-1 )x m2-2是反比例函数,则m的值是( A)A.-1或1B.小于12的任意实数C.-1D.110.在平面直角坐标系中,我们把横坐标与纵坐标相等的点称为“梦之点”,例如点( -1,-1 ),( 0,0 ),( √2,√2),…都是“梦之点”,显然,这样的“梦之点”有无数个.若点P( 2,m)是反比例函数y=nx( n为常数,n≠0 )的图象上的“梦之点”,则这个反比例函数的表达式是( D)A.y=2x B.y=mxC.y=1x D.y=4x11.( 东营中考)如图,B( 3,-3 ),C( 5,0 ),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的表达式为y=6x.12.列出下列问题中的函数关系式,并判断它们是否为反比例函数.( 1 )某农场的粮食总产量为1500 t,则该农场人数y ( 人 )与平均每人占有粮食量x ( t )的函数关系式;( 2 )在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y ( 元 )与加油量x ( L )的函数关系式;( 3 )小明完成100 m 赛跑时,时间t ( s )与他跑步的平均速度v ( m/s )之间的函数关系式.解:( 1 )由平均数概念可知x=1500y ,即y=1500x,是反比例函数. ( 2 )由单价乘油量等于总价,得y=4.75x ,是正比例函数,不是反比例函数.( 3 )由路程与时间的关系,得t=100v ,是反比例函数.13.已知函数y=( 5m-3 )x 2-n +( n+m ).( 1 )当m ,n 为何值时,是一次函数?( 2 )当m ,n 为何值时,为正比例函数?( 3 )当m ,n 为何值时,为反比例函数?解:( 1 )易知2-n=1,且5m-3≠0,解得n=1且m ≠35.( 2 )易知{2-n =1,m +n =0,5m -3≠0,解得n=1,m=-1.( 3 )易知{2-n =-1,m +n =0,5m -3≠0,解得n=3,m=-3.14.( 泉州中考 )已知反比例函数的图象经过点P ( 2,-3 ).( 1 )求该函数的表达式;( 2 )若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n ( n>0)个单位得到点P',使点P'恰好在该函数的图象上,求n 的值和点P 沿y 轴平移的方向.解:( 1 )反比例函数的表达式为y=-6x .( 2 )∵点P 沿x 轴负方向平移3个单位,∴点P'的横坐标为2-3=-1,∴当x=-1时,y=-6-1=6,∴n=6-( -3 )=9,∴沿着y 轴平移的方向为正方向.拓展探究突破练15.已知y=y 1+y 2,y 1与x 成正比例,y 2与x-2成反比例.当x=3时,y=9;当x=0时,y=-32. ( 1 )求y 与x 的函数关系式. ( 2 )当x=12时,求y 的值. 解:( 1 )∵y 1与x 成正比例,∴设y 1=k 1x , ∵y 2与x-2成反比例,∴设y 2=k2x -2, ∴y=k 1x+k 2x -2. 把x=3时,y=9;x=0时,y=-32代入上式, 得{3k 1+k 2=9,k 2-2=-32,解得{k 1=2,k 2=3, ∴y 与x 的函数关系式为y=2x+3x -2. ( 2 )当x=12时,y=2×12+312-2=1-2=-1.。
沪科版-数学-九年级上册- 反比例函数 综合练习1

21.5 反比例函数学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数;当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、 ⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为_________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题6.已知函数x k y =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3= (B)x y 3-= (C)x y 31= (D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4(B)-4 (C)3 (D)-3三、解答题 8.已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=k x k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x (B)x y 100= (C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系;(2)如果S =3cm 2时,h =16cm ,求:①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.参考答案1.xk y =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)x wy =,反比例.3.②、③和⑧. 4.2,x y 1=.5.)0(100>⋅=x x y 6.B . 7.A . 8.(1)x y 6=; (2)x =-4.9.-2,⋅-=x y 410.反比例.11.B . 12.D . 13.(1)反比例; (2)①S h 48=;②h =12(cm), S =12(cm 2).14.⋅-=325x y15. .23x x y -=。
沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.5 反比例函数
【知识要点】
1.反比例函数(0)k y k x
=≠的函数是由两个分支组成的曲线. 2.当k>0时图像在一、三象限;当k<0时图像在二、四象限. 3.反比例函数(0)k y k x =
≠的图象关于直角坐标系的原点成中心对称. 课内同步精练
●A 组 基础练习
1.反比例函数43y x
=-的图象在( ) A.第一、三象限 B.第一、二象限
C.第二、四象限
D.第三、四象限
2.若函数k y x
=的图象在第一、三象限,则函数y=kx-3的图象经过( ) A.第二、三、四象限 B.第一、二、三象限
C.第一、二、四象限
D.第一、三、四象限
3.若反比例函数21m y x -=
的图象在第二、四象限,则 m 的取值范围是 . 4.反比例函数k y x
=的图象的两个分支关于 _______ 对称. 5.某反比例函数的图象如图所示,根据图象提供的信息,求反比例函数的解析式.
●B 组 提高训练
6. 画出反比例函数8y x -=
的图象.
7.如图是反比例函数()0k y k x
=≠的图象在第一象限的部分曲线,P 为曲线上任意一点,PM 垂直x 轴于点M ,求△OPM 的面积(用k 的代数式表示).
课外拓展练习
●A 组 基础练习
1.反比例函数,321,,4y y y x x x
==-=的共同点是( ) A.图象位于同样的象限 B.自变量取值范围是全体实数
C.图象关于直角坐标系的原点成中心对称.
D.y 随x 的增大而增大
2.以下各图表示正比例函数y=kx 与反比例函数()0k y k x
-=
<的大致图象,其中正确的是( )
3.反比例函数k y x
=
经过(-3, 2),则图象在 象限. 4.若反比例函数3k y x +=图像位于第一、三象限,则k . 5若反比例函数图象过点(-1, 2 ),点(4,-2)是否在这个函数的图象上?为什么?
●B 组 提高训练
6.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x 的图象,请同学们观察,并说出来.同学甲:与直线y=-x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.
参考答案。