初一数学下册第一章测试题

合集下载

初一数学下册第一章整式的除法习题(含详细解析答案)

初一数学下册第一章整式的除法习题(含详细解析答案)

初一数学下册第一章整式的除法习题(含详细解析答案)------------------------------------------作者xxxx------------------------------------------日期xxxx北师大版数学七年级下册第一章1.7整式的除法课时练习一、选择题1. 15a3b÷(-5a2b)等于()A.-3a B.-3ab C.a3b D.a2b答案:A解析:解答:15a3b÷(-5a2b)=-3a,故A项正确.分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题.2. -40a3b2÷(2a)3等于()A.20b B.-5b2 C.-a3b D.-20a2b答案:B解析:解答:(-40a3b2)÷(2a)3=-5b2,故B项正确.分析:先由积的乘方法则得(2a)3=8a3,再由单项式除以单项式法则可完成此题.3. -20a7b4c÷(2a3b)2等于()A.-ab2c B.-10ab2c C.-5ab2c D.5ab2c答案:C解析:解答:-20a7b4c÷(2a3b)2=-5ab2c,故C项正确.分析:先由积的乘方法则得(2a3b)2=-4a6b2,再由单项式除以单项式法则与同底数幂的除法可完成此题.4. 20x14y4÷(2x3y)2÷(5xy2)等于()A.-x6 B. y4 C.-x7 D.x7答案:D解析:解答:20x14y4÷(2x3y)2÷(5xy2)= x7,故D项正确.分析:先由积的乘方法则得(2x3y)2=-4x6y2,再由单项式除以单项式法则与同底数幂的除法法则可完成此题.5.(2a3b2-10a4c)÷ 2a3等于()A.a6b2c B.a5b2c C.b2-5ac D.b4c-a4c答案:C解析:解答:(2a3b2-10a4c)÷ 2a3=b2-5ac,故C项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.6. ( x4y3+x3yz)÷x3y等于()A.x4y3+xz B.y3+x3y C.x14y4 D.xy2+z答案:D解析:解答:( x4y3+x3yz)÷x3y = xy2+z,故D项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.7.(x17y+x14z)÷(-x7)2 等于()A.x3y+z B.-xy3+z C.-x17y+z D.xy+z答案:A解析:解答:(x17y+x14z)÷(-x7)2= x3y+z,故A项正确.分析:先由幂的乘方法则得(-x7)2=x14,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.8.(612b2-612ac)÷[(-6)3]4等于()A.b2-b2c B.a5-b2c C.b2-ac D.b4c-a4c答案:C解析:解答:(612b2-612ac)÷[(-6)3]4= b2-ac,故C项正确.分析:先由幂的乘方法则得[(-6)3]4=612,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.9.(8x6y+8x3z)÷(2x)3等于()A.x6y+x14z B.-x6y+x3yz C.x3y+z D.x6y+x3yz答案:C解析:解答:(8x6y+8x3z)÷(2x)3= x3y+z,故C项正确.分析:先由积的乘方法则得(2x)3=8x3,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.10.(4x2y4+4x2z)÷(2x)2等于()A.4y4+z B.-y4+z C.y4+x2z D.y4+z答案:D解析:解答:4x2y4+4x2z)÷(2x)2= y4+z,故D项正确.分析:先由积的乘方法则得(2x)2=4x2,再由多项式除以单项式法则与同底数幂的除法法则可完成此题.11.(x7y4+x7z)÷x7等于()A.y4+z B.-4x2y4+xz C.x2y4+x2z D.x2y4+z答案:A解析:解答:(x7y4+x7z)÷x7=y4+z,故A项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.12.( x3y2+x2z)÷ x2等于()A.xy+xz B.-x2y4+x2z C.x y2+z D.xy4+x2z答案:C解析:解答:x3y2+x2z)÷ x2= x y2+z,故C项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.13.( -5a4c-5ab2c) ÷(-5ac)等于()A.-a6b2-c B.a5-b2c C.a3b2-a4c D.a3+b2答案:D解析:解答:( -5a4c-5ab2c) ÷(-5ac)= a3+b2,故D项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.14.( x2y2+y7+y5z)÷y2等于()A.x2+ y5+y3z B.x2y2+y5z C.x2y+y5z D.x2y2+y7+y5z答案:A解析:解答:x2y2+y7+y5z÷y2=x2++ y5+y3z,故A项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.15.(2a4+2b5a2)÷a2等于()A.a2c+b5c B.2a2+2b5 C.a4+b5D.2a4+ba2答案:B解析:解答:(2a4+2b5a2)÷a2=2a2+2b5,故B项正确.分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题.二、填空题16.(5x3y2+5x2z)÷5x2等于;答案:xy2+z解析:解答:(5x3y2+5x2z)÷5x2=5x3y2÷5x2 +5x2z÷5x2 = xy2+z分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题17.(2a3b2+8a2c)÷2a2等于;答案:ab2+4c解析:解答:(2a3b2+8a2c)÷2a2=2a3b2÷2a2 +8a2c÷2a2= ab2+4c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题18.(6a3b2+14a2c)÷a2等于;答案: 6ab2+14c解析:解答:(6a3b2+14a2c)÷a2=6a3b2÷a2+14a2c÷a2= 6ab2+14c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题19.(-6a3-6a2c)÷(-2a2)等于;答案:3a+3c解析:解答:(-6a3-6a2c)÷(-2a2)= (-6a3)÷(-2a2)+(-6a2c)÷(-2a2)=3a+3c分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题20.(-12x3-4x2)÷(-4x2)等于;答案:3x+1解析:解答:(-12x3-4x2)÷(-4x2) = (-12x3)÷(-4x2)+(-4x2) ÷(-4x2)= 3x+1分析:由多项式除以单项式法则与同底数幂的除法法则可完成此题三、计算题21.-20 x3 y5 z÷(-10x2y)答案:2xy4z解析:解答:解:-20 x3 y5 z÷(-10x2y)= 2 x3-1 y5-1 z=2xy4z分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题22.(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)答案:- x y解析:解答:解:(-6 x4 y7)÷(-2 x y2) ÷(-3 x2y4)= - x4-1-2y7-2-4=- x y分析:由单项式除以单项式法则与同底数幂的除法法则可完成此题23.(2a4 -6a2+4a)÷2a答案:a3 -3a+2解析:解答:解:(2a4 -6a2+4a)÷2a=2a4÷2a-6a2÷2a+4a÷2a= a3 -3a+2分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.24.(3a3b2+3 a2b3- 3 a2b2)÷3ab答案:a2b+ ab2-ab解析:解答:解:(3a3b2+3 a2b3- 3 a2b2)÷3ab=3a3b2÷3ab+3 a2b3÷3ab - 3 a2b2÷3ab=a2b+ ab2-ab分析:由多项式除以单项式法则与同底数幂的除法法则计算可完成题.25.( x2 y3-9x y5+8y2)÷y2答案:x2y-9x y3+8解析:解答:解:( x2y3-9x y5+8y2)÷y2= x2y3÷y2-9x y5÷y2+8y2÷y2= x2y3-2-9x y5-2 +8y2-2= x2y-9x y3+8分析:先由多项式除以单项式法则与同底数幂的除法法则计算,再合并同类项可完成此题.。

七年级下第一章测试卷数学

七年级下第一章测试卷数学

一、选择题(每题2分,共20分)1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001…D. 1/32. 在下列各数中,绝对值最小的是()A. -5B. -4C. -3D. -23. 若a,b是相反数,则a+b等于()A. 0B. aC. -bD. 2a4. 下列各数中,无理数是()A. √9B. 0.333…C. √16/25D. √45. 若a,b,c成等差数列,且a=2,b=5,则c等于()A. 8B. 7C. 6D. 46. 下列等式中,正确的是()A. a²+b²=c²B. (a+b)²=a²+b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-b²7. 若x²-5x+6=0,则x的值为()A. 2或3B. 1或4C. 2或-3D. 1或-48. 下列函数中,是二次函数的是()A. y=x²+2x+1B. y=x³+2x²+1C. y=x²+2x+3D. y=x²+x+29. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 等腰梯形D. 等腰三角形10. 下列各数中,能被3整除的是()A. 12B. 15C. 18D. 21二、填空题(每题2分,共20分)11. 0.5的倒数是______。

12. |3-5|的值是______。

13. 若a=5,b=-3,则a-b等于______。

14. 下列各数中,无理数是______。

15. 若a²=9,则a的值为______。

16. 下列函数中,是二次函数的是______。

17. 下列图形中,是矩形的是______。

18. 下列各数中,能被5整除的是______。

三、解答题(共60分)19. (10分)已知a,b,c成等差数列,且a+b+c=15,求b的值。

初一数学下册第一章单元测试卷及答案

初一数学下册第一章单元测试卷及答案

七年级下册第一章复习题一、 选择题1. 下面说法中,正确的是( )(A )x 的系数为0 (B )x 的次数为0 (C )3x 的系数为1 (D ) 3x的次数为12. 下列合并同类项正确的个数是( )①224a a a +=;②22321xy xy -=;③123+=;④33ab ab ab -=;⑤2312424m m -=. (A )①③ (B )②③ (C )③ (D )③④ 3. 下列计算正确的是( )(A )xy y x 32=+ (B )3422=-y y (C )55=-k k (D )-a 2-4a 2=-5a 24. 在下列多项式乘法中,不能用平方差公式计算的是( ). (A )()()m n m n +-+ (B )()()m n m n -+ (C )()()m n m n --- (D )()()m n m n --+5.计算21()2a b -的结果是( ). (A )22124a ab b -+ (B )2214a ab b -+(C )2212a ab b -+ (D )2214a b -6.如图,有长方形面积的四种表示法:①))((b a n m ++ ②)()(b a n b a m +++ ③)()(n m b n m a +++④nb na mb ma +++其中( )(A )只有①正确 (B )只有④正确 (C )有①④正确 (D )四个都正确7. 计算32010· (31)2008的结果是( ) (A ) 2 (B ) 31(C ) 9 (D )91nm8. 某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:)53()32(2222b ab a b ab a ++---+= 25a 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( ) (A )+2ab (B )+3ab (C )+4ab (D )-ab9.如下图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案,那么,第n 个图案中有白色纸片( )张。

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案

七年级数学下册第一章单元测试题及答案第一章:整式的乘除单元测试卷(一)一、精心选择(每小题3分,共21分)1.多项式xy^4+2x^3y^3-9xy+8的次数是A。

3 B。

4 C。

5 D。

62.下列计算正确的是A。

2x^2·6x^4=12x^8 B。

(y^4)m/(y^3)m=ymC。

(x+y)^2=x^2+y^2 D。

4a^2-a^2=33.计算(a+b)(-a+b)的结果是A。

b^2-a^2 B。

a^2-b^2 C。

-a^2-2ab+b^2 D。

-a^2+2ab+b^24.3a^2-5a+1与-2a^2-3a-4的和为A。

5a^2-2a-3 B。

a^2-8a-3 C。

-a^2-3a-5 D。

a^2-8a+55.下列结果正确的是A。

-2/(1/3)=-6 B。

9×5=45 C。

(-5)³=-125 D。

2-3=-1/86.若(am·bn)^2=a^8b^6,那么m^2-2n的值是A。

10 B。

52 C。

20 D。

327.要使式子9x^2+25y^2成为一个完全平方式,则需加上()A。

15xy B。

±15xy C。

30xy D。

±30xy二、耐心填一填(第1~4题1分,第5、6题2分,共28分)1.在代数式3xy^2,m,6a^2-a+3,12,4x^2yz-(1/2)xy^2,3ab中,单项式有5个,多项式有2个。

2.单项式-5x^2y^4z的系数是-5,次数是7.3.多项式3ab^4-ab+1/5有3项,它们分别是3ab^4、-ab、1/5.4.⑴x^2·x^5=x^7.⑵(y^3)^4=y^12.⑶(2a^2b)^3=8a^6b^3.⑷( -x^5y^2)^4=x^20y^8.⑸a^9÷a^3=a^6.⑹10×5-2×4=46.5.⑴(-2)/(1/3)=-6.⑵(x-5)(x+5)=x^2-25.⑶(2a-b)^2=4a^2-4ab+b^2.⑷(-12x^5y^3)/(-3xy^2)=4x^4y。

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

(完整word版)七年级数学下册第一章单元测试题(3套)及答案

北师大版七年级数学下册第一章整式的乘除 单元测试卷(一)班级—姓名 ___________ 学号 _________ 得分 __________、精心选一选(每小题3分,共21分)5•下列结果正确的是41.多项式xy^332x y9xy 8的次数是A. 3B. 42.下列计算正确的是亠 2 亠 48 4 m3 mA. 2x 6x 12xB .y y3.计算a ba b 的结果是22 . 2A. b aB .a bC. i24. 3a 5a1与 22a 3a4的和为D. 6mC.2ab b 2x 2D.D. 4a2ab b 22A. 5a 2a 3B. a 28a 3 C.a 2 3aD. a 28aC. 52aB. 500C. 53.7 0D.m n 26.右a ba8b6,那么m22n的值是A. 10B. 52C. 20D. 327.要使式子9x225y2成为一个完全平方式,则需加上A. 15xyB. 15xyC. 30xyD. 30xy长方形铁片,求剩余部分面积。

(6分)、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)2 2 21 2 2 、 » ,1•在代数式3xy , m , 6a a 3 , 12 , 4x yz xy ,中,单项式有53ab—个,多项式有 ______ 个。

2•单项式 5x 2y 4z 的系数是 ____________ ,次数是 ________ 。

2 32a 2b2006⑷ 320052 243•多项式3abab -有5项,它们分别是4•⑴x 2x 53 4⑵y 3a 9 a 3⑹10401 25.⑴一mn36 3 -mn 56•⑴(2a a m 3 b )25312x y2a a2 842c 23xy三、精心做一做(每题5分,共15分)1・4x y 5xy 7x 5x y 4xy xc 2 c 2 c ‘ ,32・2a 3a 2a 1 4a3. 2x2y 6x3y48xy 2xy四、计算题。

初一数学下册第一章单元测试题答卷及参考答案

初一数学下册第一章单元测试题答卷及参考答案

七年级下册第一章复习题一、 选择题1.下面说法中,正确的是() (A )x 的系数为0(B )x 的次数为0(C )3x 的系数为1(D )3x 的次数为1 2.下列合并同类项正确的个数是()①224a a a +=;②22321xy xy -=;③123+=;④33ab ab ab -=;⑤2312424m m -=. (A )①③(B )②③(C )③(D )③④3.下列计算正确的是()(A )xy y x 32=+(B )3422=-y y (C )55=-k k (D )-a 2-4a 2=-5a 2 4.在下列多项式乘法中,不能用平方差公式计算的是().(A )()()m n m n +-+(B )()()m n m n -+(C )()()m n m n ---(D )()()m n m n --+5.计算21()2a b -的结果是(). (A )22124a ab b -+(B )2214a ab b -+ (C )2212a ab b -+(D )2214a b - 6.如图,有长方形面积的四种表示法:①))((b a n m ++②)()(b a n b a m +++③)()(n m b n m a +++④nb na mb ma +++其中()(A )只有①正确(B )只有④正确(C )有①④正确(D )四个都正确7.计算32010·(31)2008的结果是() (A )2(B )31(C )9(D )918.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:)53()32(2222b ab a b ab a ++---+=25a 26b -,空格的地方被墨水弄脏了,请问空格中的一项是()(A )+2ab (B )+3ab (C )+4ab (D )-ab9.如下图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案,那么,第n 个图案中有白色纸片()张。

七年级下册数学第一章测试题

七年级下册数学第一章测试题

七年级下册数学第⼀章测试题北师⼤版七年级下册数学第⼀章测试题⼀.选择题(共10⼩题)22的结果是()y)1.计算(﹣x42422222 xy yD C.xA.x.﹣yy B.﹣x2.下列计算正确的是()8422524232﹣xx)=x÷==xx B.(﹣3x D)=6x.C.A.(﹣x(﹣)2+x﹣2)的结果,与下列哪⼀个式⼦相同?((x﹣1)﹣(x)3.计算(2x+1)2222﹣x3 3 D.3 Cx.+A.xx﹣2x+1 B.x ﹣﹣2x﹣22﹣6(x+1)(x﹣1)的值为(4x﹣4=0,则3(x﹣2))4.若x+A.﹣6 B.6 C.18 D.30222的值是()=34,则(x﹣2016.已知(x﹣2015)+(x﹣2017))5A.4 B.8 C.12 D.16 22﹣6b的值为(﹣b).已知6a﹣b=3,则代数式aA.3 B.6 C.9 D.122+的值是(=62,则x满⾜7.已知正数xx)+A.31 B.16 C.8 D.48.如图(1),是⼀个长为2a宽为2b(a>b)的矩形,⽤剪⼑沿矩形的两条对⾓轴剪开,把它分成四个全等的⼩矩形,然后按图(2)拼成⼀个新的正⽅形,则中间空⽩部分的⾯积是()2222﹣D.a(C.a﹣b)bA.ab B.(a+b)22+A,则A=((5a﹣3b)).设(95a+3b)=A.30ab B.60ab C.15ab D.12ab222的值为(y),xy=2,则x 10.⼰知(x﹣y)+=49A.53 B.45 C.47 D.51⼆.选择题(共10⼩题)42)=______8ab.5a )?(﹣11.计算:(﹣mm16,则m=______.?8 =212.若2?4xy=______.8,则2 ?13.若x+3y=02+bx+c,则代数式9a﹣3b+c的值为______.x14.已知(x﹣1)(+3)=ax22=4,则ab的值为______a﹣b).b15.已知(a+)=7,(22﹣4m+6的值为______.16.若(m﹣2)=3,则m17.观察下列各式及其展开式:222 b+2ab(a+b)+=a33223﹣b+3ab+(ab)=ab﹣3a4432234 b+4ab﹣b6a+b4a﹣=a)b+a(.554322345…﹣+10a+b5ab ﹣(a+b)10a=ab﹣5abb10的展开式第三项的系数是______.﹣b)请你猜想(a2﹣(k﹣1)a+4a9是⼀个关于a的完全平⽅式,则k=______.18.若xy3x2y﹣=______.,则a.若a=2,a =31920.我国南宋数学家杨辉⽤三⾓形解释⼆项和的乘⽅规律,称之为“杨辉三⾓”.这个三⾓形n(n=1,2,3,4…)的展开式的系数规律(按a的次数由⼤到⼩的顺序)给出了(a+b):20162014项的系数是______xx.﹣)展开式中含请依据上述规律,写出(三.选择题(共8⼩题)2x=.,其中x+1))21.先化简,再求值(x﹣1(x﹣2)﹣(202﹣(m﹣2)()m+2).132×(﹣)+2016 .(2)化简:(m+)计算:22.(1(﹣2)+ 22的值.3)﹣x)﹣(x﹣x2x﹣3x=2,求3(2+)(223.已知﹣,b=2.a=8a﹣2ab),其中2a+24.先化简,再求值:(2ab)(﹣b)﹣a(2222的值.aab)﹣()+.已知(25ab=25,ab=9,求与+b42+的值.和=3,求xx +26.已知x﹣27.如图(1),将⼀个长为4a,宽为2b的长⽅形,沿图中虚线均匀分成4个⼩长⽅形,然后按图(2)形状拼成⼀个正⽅形.(1)图(2)中的空⽩部分的边长是多少?(⽤含a,b的式⼦表⽰)22的数量关系;b),ab和(2a2(2)观察图(),⽤等式表⽰出(2a﹣b)+(3)若2a+b=7,ab=3,求图(2)中的空⽩正⽅形的⾯积.28.已知a+b=5,ab=6.求下列各式的值:22+)ab1(2.)a﹣b(2)(2=x(x+2)7)时.A29.已知关于x的多项式A,当﹣(x﹣(1)求多项式A.2+3x+l=0,求多项式A的值.(2)若2x22222232y的值.x]x()﹣xx,求x)﹣.已知(30xy=9,+y=5[(y﹣xyyx﹣y)÷北师⼤版七年级下册数学第⼀章测试题参考答案与试题解析⼀.选择题(共10⼩题)22的结果是())2016?盐城)计算(﹣x y1.(42422222.﹣xxyyy B.﹣x yD C.Ax.【分析】直接利⽤积的乘⽅运算法则计算得出答案.2242.=xx y)y(﹣【解答】解:故选:A.【点评】此题主要考查了积的乘⽅运算,正确掌握运算法则是解题关键.2.(2016?来宾)下列计算正确的是()8422252243﹣x D.C.(﹣x.A(﹣x))x=x=x B.(﹣3x=)=6x÷【分析】根据积的乘⽅法则:把每⼀个因式分别乘⽅,再把所得的幂相乘;负整数指数幂:p﹣(a≠0,pa为正整数);同底数幂相除,底数不变指数相减,对各选项分析判断后利=⽤排除法求解.326,故A错误;)=x 【解答】解:A、(﹣x224,故B)错误;=9xB、(﹣3x2﹣,故C正确;= C、(﹣x)844,故D错误.=xD、x ÷x故选:C.【点评】本题考查积的乘⽅、负整数指数幂、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2+x﹣2)的结果,与下列哪⼀个式⼦相同?()+1)(x﹣1)﹣(x (3.(2016?台湾)计算2x2222﹣3.x+x﹣x3 ﹣2x﹣3 C.xDA.x+﹣2x1 B.【分析】原式利⽤多项式乘以多项式法则计算,去括号合并得到最简结果,即可作出判断.2+x﹣x2)12x+)(x﹣1)﹣(【解答】解:(22+x﹣2)2x+x﹣1)﹣((=2xx﹣22﹣xx+2 ﹣x﹣1﹣=2x2﹣2x+1,=x故选A【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.22﹣6(x+1)(x﹣1)(x临夏州)若﹣+4x4=0,则3x﹣2)的值为()?(4.2016A.﹣6 B.6 C.18 D.30【分析】原式利⽤完全平⽅公式,平⽅差公式化简,去括号整理后,将已知等式代⼊计算即可求出值.22,4x=4+x,即4=0﹣4x+x解:∵【解答】.222222+4x)x+18=﹣12x+18==3x)﹣﹣12x+12﹣6x3+6=﹣(∴原式=3x3x﹣4x+4)﹣6(x(﹣1﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.222的值是()(则x﹣20162015))+(x﹣2017)=34,(5.(2016?仙居县⼀模)已知x﹣A.4 B.8 C.12 D.16 2222=34,﹣1)+(x)﹣=34变形为(x﹣2016+1)2016【分析】先把(x﹣2015)(+x﹣20172的⽅程,解)x﹣2016把(x ﹣2016)看作⼀个整体,根据完全平⽅公式展开,得到关于(⽅程即可求解.22=34,)+(x﹣【解答】解:∵(x﹣2015)201722=34,)﹣2016﹣1x﹣2016+1)+(x∴(22﹣2(x﹣2016)﹣﹣20161)+1=34,)(x﹣2016 +2(x﹣2016)+1+(x2+2=34,﹣2016)2(x2=32,x﹣2016)2(2=16.﹣2016)(x故选:D.22=34变形为(x2017))﹣+(x﹣【点评】考查了完全平⽅公式,本题关键是把(x﹣201522=34,注意整体思想的应⽤.1)+(x﹣20162016+1)﹣22﹣6b的值为(﹣b)a6.(2016?重庆校级⼆模)已知a﹣b=3,则代数式A.3 B.6 C.9 D.12【分析】由a﹣b=3,得到a=b+3,代⼊原式计算即可得到结果.【解答】解:由a﹣b=3,得到a=b+3,2222﹣6b=9b,6b=b﹣+6b+(则原式=b+3)9﹣b﹣故选C【点评】此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.2+的值是()=62(.2016?长沙模拟)已知正数x满⾜x,则+x74.C16.8D31A.B.=是正数,根据x,即可计算.+【分析】因为x【解答】解:∵x是正数,==8=.∴x += 故选C.=)进⾏计0>x本题考查完全平⽅公式,解题的关键是应⽤公式【点评】x+(算,属于中考常考题型.)的矩形,⽤剪⼑沿矩形a>b),是⼀个长为2a宽为2b(8.(2016?泰⼭区⼀模)如图(1)拼成⼀个新的正⽅形,则的两条对⾓轴剪开,把它分成四个全等的⼩矩形,然后按图(2 )中间空⽩部分的⾯积是(2222﹣D.)a C.(a﹣b)bA.ab B.(a+b正⽅形的⾯积﹣【分析】先求出正⽅形的边长,继⽽得出⾯积,然后根据空⽩部分的⾯积= 矩形的⾯积即可得出答案.),【解答】解:由题意可得,正⽅形的边长为(a+b2,故正⽅形的⾯积为(a+b)4ab,⼜∵原矩形的⾯积为22.a﹣b)=(a+b)4ab=﹣(∴中间空的部分的⾯积C.故选难度此题考查了完全平⽅公式的⼏何背景,求出正⽅形的边长是解答本题的关键,【点评】⼀般.22)A=(5a﹣3b) +A,则9.(2016春?岱岳区期末)设(5a+3b)=(12ab.C.15ab DA.30ab B.60ab.【分析】已知等式两边利⽤完全平⽅公式展开,移项合并即可确定出A22A3b)3b)+=(5a﹣【解答】解:∵(5a+22)=60ab.+3b﹣5a+3b(=5a+3b+5a﹣3b)(5a∴A=(5a+3b)﹣(5a﹣3b)B 故选【点评】此题考查了完全平⽅公式,熟练掌握公式是解本题的关键.222 +y)﹣y)的值为(=49,xy=2,则x春10.(2016?宝应县期末)⼰知(x51D.45 C.47 A.53 B.原式利⽤完全平⽅公式变形,将已知等式代⼊计算即可求出值.【分析】2,=49,xy=12【解答】解:∵(x﹣y)222+2xy=494=53x﹣y).∴x++y(= 故选:A.【点评】此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.⼆.选择题(共10⼩题)2254 b.)?(﹣8ab=)40a5a201611.(?临夏州)计算:(﹣【分析】直接利⽤单项式乘以单项式运算法则求出答案.2542 b?(﹣8ab=40a)5a【解答】解:(﹣.)25.故答案为:40ab 【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.16mm.3m=,则=28?4?2⽩云区校级⼆模)若?2016(.12.162m3m,再利⽤同底数幂的乘法运算法则=2?2?【分析】直接利⽤幂的乘⽅运算法则得出22 即可得出关于m的等式,求出m 的值即可.16mm 8,解:∵【解答】2?4=2?163m2m =2,∴2?2?2 ,1+5m=16∴.解得:m=3 .故答案为:3正确应⽤运算法则是解题此题主要考查了同底数幂的乘法运算以及幂的乘⽅运算,【点评】关键.yx =.?8201613.(?泰州⼀模)若x+3y=0,则213yy3,接下来再依据同2=2的形式,然后再依据幂的乘⽅公式可知8先将【分析】8变形为代⼊计算即可.+3y=0底数幂的乘法计算,最后将x0x+3yx3yxy=1.=2?8 =2=2?2【解答】解:2故答案为1.【点评】本题主要考查的是同底数幂的乘法、幂的乘⽅、零指数幂的性质,熟练掌握相关知识是解题的关键.2+bx+c,则代数式9a﹣3b+c的值为0)2016?河北模拟)已知(x﹣1)(x+3=ax.14.(【分析】已知等式左边利⽤多项式乘以多项式法则计算,利⽤多项式相等的条件求出a,b,c的值,即可求出原式的值.22+bx+c,x+2x﹣3=ax 【解答】解:已知等式整理得:∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.22=4,则ab的值为.b)=7,(a﹣b)(15.2016?富顺县校级模拟)已知(a+ ab【分析】分别展开两个式⼦,然后相减,即可求出的值.222222 =4=a,﹣2ab)+=ab+2ab+)=7,(a﹣bbb解:【解答】(a+22,a﹣b))则(a+b=4ab=3﹣(.ab=.故答案为:本题主要考查完全平⽅公式,熟记公式的⼏个变形公式对解题⼤有帮助.【点评】22.6﹣4m+的值为5m(16.2016?曲靖模拟)若(﹣2)=3,则m 【分析】原式配⽅变形后,将已知等式代⼊计算即可求出值.22)=3,m【解答】解:∵(﹣22,2=52=32m2=44m∴原式=m﹣++(﹣)++5故答案为:此题考查了完全平⽅公式,熟练掌握完全平⽅公式是解本题的关键.【点评】.东明县⼆模)观察下列各式及其展开式:.(201617222 2ab+b)+=ab+(a32332﹣﹣3abb(a+b)+=a3ab4232443﹣4ab(a+b)b=ab﹣4a6ab++545432235﹣5a﹣b+10a5abbb﹣(a+b)=a10a…b+1045.的展开式第三项的系数是请你猜想(a﹣b)根据各式与展开式系数规律,确定出所求展开式第三项系数即可.【分析】,,1,15,620【解答】解:根据题意得:第五个式⼦系数为1,6,15,,,1,21,71,7,21,35,35第六个式⼦系数为1,28,8,28,,56,70,56,第七个式⼦系数。

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册第一章测试题
数 学(整式的运算)
班级____________学号_____________姓名_____________
(时间90分钟,满分100分,不得使用计算器)
一、 选择题(2'×10=20',每题只有一个选项是正确的,将正确选项的字母填入
下表中)
1. 在代数式
211,3.5,41,2,,2,,,2412
b a b x y
x yz x x a mn xy a bc +-+-+-中,下列说法正确的是( )。

(A )有4个单项式和2个多项式, (B )有4个单项式和3个多项式; (C )有5个单项式和2个多项式, (D )有5个单项式和4个多项式。

2. 减去-3x 得632+-x x 的式子是( )。

(A )62+x (B )632++x x (C )x x 62- (D )662+-x x 3. 如果一个多项式的次数是6,则这个多项式的任何一项的次数都 ( ) (A )等于6
(B )不大于6 (C )小于6
(D )不小于6
4. 下列式子可用平方差公式计算的是: (A ) (a -b )(b -a ); (B ) (-x+1)(x -1); (C ) (-a -b )(-a+b ); (D ) (-x -1)(x+1);
5. 下列多项式中是完全平方式的是 ( )
(A )142++x x (B )1222+-y x (C )2222y xy y x ++ (D )41292+-a a 6. 计算=-⨯-
20052005)5
22()125(( )
(A )-1 (B )1 (C )0 (D )1997
7. (5×3-30÷2)0=( ) (A )0 (B )1 (C )无意义 (D )15 8. 若要使4
192++my y 是完全平方式,则m 的值应为( ) (A )3± (B )3- (C )31± (D )3
1- 9. 若x 2-x -m =(x -m )(x +1)且x ≠0,则m =( )
(A )0 (B )-1 (C )1 (D )2 10. 已知 |x|=1, y=4
1, 则 (x 20)3-x 3y 的值等于( )
(A )4
54
3--或 (B )4
54
3或 (C )4
3 (D )4
5-
二、填空题(2'×10=20',请
将正确答案填在相应的表格内) 11. -2232
x y 的系数是_____,次数是_____.
12. 计算:65105104⨯⨯⨯= _; 13. 已知 21
421
842
m
m x y
x y +-++是一个七次多项式,则m= 14. 化简:=---+)4()36(2222xy y x xy y x ________________。

15. 若3x =12,3y =4,则9x -y =_____.
16. [4(x +y )2-x -y ]÷(x +y )=_____. 17. (m-2n )2- = (m+2n)2
18. (x 2-mx+8)(x 2+2x)的展开式中不含x 2项,则m= 19. 2
12345
1234412346________________-⨯=。

20. ()()()()2481621212121++++= . 三、计算题(4分×6=24分)
21. )(5)2
1
(22222ab b a a b ab a -++-
22. 22232)2(21c b a bc a -⋅
23. )
18()3610854(2
2xy xy xy y x ÷--
24. 2
2
(3)
(3)a b a b -+
25. ()()()1122
+--+x x x
26. 22()()()
x y x y x y --+
四. 解方程:
27. 0)2)(2(3)23)(12()3(2=-+--+--x x x x x (6分)
五.用简便方法计算(4分×2=8分)
28. 18
908999

29. 2
2
1.23450.7655
2.4690.7655++⨯
六. 先化简并求值(6分×2=12分)
30. 4(x 2+y )(x 2-y )-(2x 2-y )2 , 其中 x=2, y=-5
31. 已知:a (a -1)-(a 2
-b )= -5 求: 代数式 2
b a 2
2+-ab 的值.
七、求值题(5分×2=10分)
32. 已知x 2+ y 2+2x-8y+17=0 ,求 x 2005
+xy 的值
33. 计算 乘积⎪⎭⎫ ⎝
⎛-⎪⎭⎫ ⎝⎛
⋯⋯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-22
22220001119991-1411311211 的值。

相关文档
最新文档