苏教版初一数学下册测试题

合集下载

(完整版)苏教版初一数学下册考试题

(完整版)苏教版初一数学下册考试题

七 年 级 数 学 试 题(考试时间:120分钟,满分:150分)成绩一、选择题(将正确答案地序号填入答题纸相应位置,每题3分,共18分):1.312x x ÷等于( ▲)A .4xB .15xC .9xD .36x2.世界上最小地开花结果植物是澳大利亚地出水浮萍,这种植物地果实像一个微小地无花果,质量只有0.00 000 0076克,用科学记数法表示是( ▲)A .7.6×108克B .7.6×10-7克C .7.6×10-8克D .7.6×10-9克3.在下列多项式乘法运算中,不能运用平方差公式进行运算地是( ▲)A .(2x +3y) (-2x +3y)B .(a -2b) (a +2b)C .(-x -2y) (x +2y)D .(-2x -3y) (3y -2x)4.如图1,在边长为a 地正方形中挖掉一个边长为b 地小正方形)(b a >,把余下地部分剪拼成一长方形(如图2),通过计算两个图形(阴影部分)地面积,验证了一个等式,则这个等式是( ▲)A .222))(2(b ab a b a b a -+=-+B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .))((22b a b a b a -+=-第4题(图1) 第4题(图2) 第6题图5.下列长度地三根木棒首尾相接,不能做成三角形框架地是( ▲)A .5cm ,7cm ,10cmB .5cm ,7cm ,13cmC .7cm ,10cm ,13cmD .5cm ,10cm ,13cm6.如图,将三角尺地直角顶点放在直尺地一边上,∠1=30°,∠2=50°,则∠3地度数等于( ▲)A .20°B . 50°C . 30°D . 15° 二、填空题(本大题共10小题,每题3分,共30分):7.计算:x 2·x 4=___ ____.a b ba8.若5x =12,5y =4,则5x -y =_______.9.已知2713=m ,则m =___ ____. 10.若a -b =1,ab=-2,则(a +1)(b -1)=___ ____.11.如果(x +1)(x +m)地积中不含x 地一次项,则m 地值为_______.12.七边形地内角和是___ ____度.13.在△ABC 中,∠C=50°,按图中虚线将∠C 剪去后,∠1+∠2等于___ ___度.(第13题图)(第14题图)(第15题图)14.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=1500.第三次拐地角是∠C ,这时地道路恰好和第一次拐弯之前地道路平行,则∠C 为___ __度.15.如图,AB ∥CD,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF,∠1=35º,那么∠2=度.16.已知()125=++x x , 则x =___ ___.三、解答题(本大题共10小题,共计102分):17.(本题8分)计算:①102)21(32---+-②a 2·a 4+(a 2)318.(本题16分)计算:①)53(223a a a -②)3)(2(+-x x③()()3232x x ---④2)21(n m -19.(本题8分)先化简,再求值:()()()222b +a+b a b a b ---,其中a=﹣3,b=12.20.(本题8分)一个多边形,它地内角和比外角和地4倍多180°,求这个多边形地边数及内角和度数.21.(本题8分)已知a , b 为常数,且三个单项式4xy 2,axy b,-5xy 相加得到地和仍然是单项式.那么a 和b 地值可能是多少?说明你地理由.22.(本题12分)①已知a m =2,a n =3,求a m+2n 地值. ②已知6)(,18)(22=-=+y x y x ,求xy 地值.23.(本题8分)如图,BD 是△ABC 地角平分线,DE ∥BC ,交AB 于点E ,∠A=45°,∠BDC=60°.⑴求∠C 地度数; ⑵求∠BED 地度数.24.(本题8分)如图,已知∠A = ∠C,∠E=∠F.试说明AB∥CD.25.(本题12分)探究与发现:图1 图2 图3(1)探究一:三角形地一个内角与另两个内角地平分线所夹地角之间地关系已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A地数量关系,并说明理由.(2)探究二:四边形地两个个内角与另两个内角地平分线所夹地角之间地关系已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B地数量关系,并说明理由.(3)探究三:六边形地四个内角与另两个内角地平分线所夹地角之间地关系已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E+∠F地数量关系:__ __ __.26.(本题14分)实验证明,平面镜反射光线地规律是:射到平面镜上地光线和被反射出地光线与平面镜所夹地锐角相等. 如图1,一束光线m射到平面镜a上,被a反射后地光线为n,则入射光线m、反射光线n与平面镜a所夹地锐角∠1=∠2.⑴如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出地光线n与光线m平行,且∠1=50°,则∠2=___ __°,∠3=___ __°.⑵在(1)中m∥n,若∠1=55°,则∠3=___ ___°;若∠1=40°,则∠3=___ ___°.⑶由⑴、⑵,请你猜想:当两平面镜a、b地夹角∠3=__ _°时,可以使任何射到平面镜a上地光线m,经过平面镜a、b地两次反射后,入射光线m与反射光线n平行.你能说明理由吗?⑷如图3,两面镜子地夹角为α°(0<α<90)时,进入光线与离开光线地夹角为β° (0<β<90).试探索α与β地数量关系.直接写出答案.____ ________________四校2016~2017学年度第二学期第一次月度联考七 年 级 数 学 试 题一、选择题(将正确答案地序号填入答题纸相应位置,每题3分,共18分):二、填空题(本大题共10小题,每题3分,共30分):7. x 6 8. 3 9. -3 dvzfvkwMI110. -4 11. -1 12. 900 13. 230 14. 16015. 110 16. -5或-1或-3三、解答题(本大题共10小题,共计102分):17.(8分)计算:①-1②2a 618.(16分)计算:①6a 5-10a 4②x 2+x-6③-9x 2+4 ④2241n mn m +- 19.(8分)2ab -320.(8分)十一边形 1620°21.(8分)⎩⎨⎧==15b a ⎩⎨⎧=-=25b a 22.(12分)①18 ②323.(8分)(1))∠C=105° (2)30° 题号1 2 3 4 5 6 答案C C CD B A24.(8分)略25.(12分) (1) A P ∠+︒=∠2190 理由略. (2))(21B A P ∠+∠=∠ 理由略. (3)︒-∠+∠+∠+∠=∠180)(21F E B A P 26.(14分)(1)__100 _°,__90 __°.(2)__90___°;_90_____°.(3) 90 __°理由略.(4)︒=+1802βα版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.Users may use the contents or services of this article for personal study, research or appreciation, and othernon-commercial or non-profit purposes, but at the same time, they shall abide by the provisions of copyright law and other relevant laws, and shall not infringe upon the legitimate rights of this website and its relevant obligees. In addition, when any content or service of this article is used for other purposes, written permission and remuneration shall be obtained from the person concerned and the relevant obligee.转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。

苏教版初一下册数学练习题及答案

苏教版初一下册数学练习题及答案

苏教版初一下册数学练习题及答案一、选择题(本大题共8小题,每小题有且只有一个答案准确,请把你认为准确的答案前的字母填入下表相对应的空格内,每小题3分,共24分)1.已知,若c 是任意有理数,则下列不等式中总是成立的是A. B. C. D.2.把不等式≥ 在数轴上表示出来,准确的是3.下列四个多项式中,能因式分解的是A. a2+1 B.a2﹣2a+1 C.x2+5y D.x2﹣5y4.下列运算准确的是A. B. C. D.5.如图,直线AB∥CD, EF分别交AB、CD于点M、N,若∠AME=125°,则∠CNF的度数为A.125° B.75° C.65° D.55°6.若一个三角形的两边长分别为5cm,7cm,则第三边长可能是A.2cm B.10cm C.12cm D.14cm7.如图,将△ABC沿BC方向平移3cm得到△ D EF,若△ABC的周长为14cm,则四边形ABFD的周长为A.14cm B.17cm C.20cm D.23cm8.下列命题中,①对顶角相等.②等角的余角相等.③若,则.④同位角相等.其中真命题的个数有A.1个 B.2个 C.3个 D.4个二、填空题(本大题共10小题,每小题2分,共20分)9.“x的2倍与5的和不小于10”用不等式表示为.10.七边形的外角和为°.11.命题“若,则.”的逆命题是.12.一滴水的质量约为0.00005千克.数据0.0000 5用科学记数法表示为.13.计算: = .14.若代数式可化为,则的值是.15.若方程组的解满足,则m的值为.16.如图,把一根直尺与一块三角尺如图放置,若么∠1=55°,则∠2的度数为° .17.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为18.如图,将△ABC的边AB延长2倍至点A1,边BC延长2倍至点B1,边CA延长2倍至点C1,顺次连结A1、B1、C1,得△A1B1C1,再分别延长△A1B1C1的各边2倍得△A2B2C2,……,依次这样下去,得△AnBnCn,若△ABC的面积为1,则△AnBnCn的面积为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明,证明过程或计算步骤)19.(本题满分8分)计算:(1);(2)20.(本题满分8分)解不等式组,并把解集在数轴上表示出来21.(本题满分6分)先化简,再求值,其中 ,y=2.22.(本题满分8分)因式分解(1)23.(本题满分6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为.(2)画出小鱼向左平移10格后的图形(不要求写作图步骤和过程).24.(本题满分8分)如图,在△ABC中,∠B=54°,AD平分∠CAB,交BC于D,E为AC边上一点,连结DE,∠EAD=∠EDA,EF⊥BC于点F.求∠FED的度数.25.(本题满分10分)某服装店用10000元购进A,B两种新式服装,按标价售出后可获得毛利润5400元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示:类型、价格 A型 B型进价(元/件) 80 100标价(元/件) 120 160(1)这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,要使这批服装全部售出后毛利润不低于2000元,则B种服装至多按标价的几折出售?26.(本题满分10分)对x,y定义一种新运算T,规定:T(x,y)= (其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= =2b-1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;( 2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?27.(本题满分12分)(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D 、∠BQD之间有何数量关系(不需证明)?(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7 A1、A8 A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)?若平面内有n个点A1、A2、A3、A4、A5、,An,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,,An-1A1、AnA2,则∠A1+∠A2+∠A3+∠A4++∠An-1+∠An的度数是多少(直接写出结果,用含n的代数式表示)?(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)题号 1 2 3 4 5 6 7 8答案 A C B C D B C B二、填空题(每小题2分,共20分)9.2x+5≥10 10.360 11.若,则. 12.5×10-5 13.14.1 15.0 16.145 17.3m+6 18.三、解答题19.(1) -4 (4分,其中每算对一个1分)(2) (4分,其中每化简准确一个或一步1分)20.(1)x≥1,x。

苏科版七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科版七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科版七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图1的8张长为a ,宽为b (a <b )的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .b =5aB .b =4aC .b =3aD .b =a2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.将一张长方形纸片按如图所示折叠后,再展开.如果∠1=56°,那么∠2等于( )A .56°B .62°C .66°D .68° 4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3 5.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能6.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10117.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .8.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 49.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82°10.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°11.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④12.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩二、填空题13.计算:23()a =____________.14.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 15.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.16.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.17.已知23x y +=,用含x 的代数式表示y =________.18.()22x y --=_____.19.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.20.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.21.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.22.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .三、解答题23.已知△ABC中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.24.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-25.分解因式:(1)3222x x y xy -+;(2)2296(1)(1)x x y y -+++;(3)()214(1)m m m -+-.26.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.27.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.28.计算:(1)(12)﹣3﹣20160﹣|﹣5|;(2)(3a2)2﹣a2•2a2+(﹣2a3)2+a2;(3)(x+5)2﹣(x﹣2)(x﹣3);(4)(2x+y﹣2)(2x+y+2).29.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.30.先化简,再求值:(a-1)(2a+1)+(1+a)(1-a),其中a=2.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,12S S S =-225315[()]AD AB a AD a AB a BC AB b BC AB b225315()BC AB a BCa AB a BC ABb BC AB b 22(5)(3)15a b BC b a AB a b . AB 为定值,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50a b, 5b a .故选:A .【点睛】本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.D解析:D【解析】【分析】两直线平行,同旁内角互补;另外折叠前后两个角相等.根据这两条性质即可解答.根据题意知:折叠所重合的两个角相等.再根据两条直线平行,同旁内角互补,得:2∠1+∠2=180°,解得:∠2=180°﹣2∠1=68°.故选D.【点睛】注意此类折叠题,所重合的两个角相等,再根据平行线的性质得到∠1和∠2的关系,即可求解.4.B解析:B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.5.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D.【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.6.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.7.D解析:D【详解】解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.8.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.9.C解析:C【分析】在图①的△ABC中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD,即可在△CBD中,得到另一个关于∠B、∠C度数的等量关系式,联立两式即可求得∠B的度数.【详解】在△ABC中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD,∠BCD=∠C;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.10.A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.11.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.12.C解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x 圈,乙每分钟跑y 圈则可列方组为:331661x y x y +=⎧⎨-=⎩故选:C .【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.二、填空题13..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a.-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.14.a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=解析:a4-4a3b+6a2b2-4ab3+b4【分析】原式变形后,利用(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可得到(a-b)4的结果.【详解】解:根据题意得:(a-b)4=[a+(-b)]4=a4-4a3b+6a2b2-4ab3+b4,故答案为:a4-4a3b+6a2b2-4ab3+b4【点睛】此题考查了完全平方公式,熟练掌握公式是解本题的关键.15.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC时;②当CE⊥AB时;③当CE⊥AC时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.16.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x .解析:y=3-2x【解析】23x y +=移项得:y=3-2x.故答案是:y=3-2x .18.x2+4xy+4y2【分析】根据完全平方公式进行计算即可.完全平方公式:(a±b )2=a2±2ab+b2.【详解】解:(﹣x ﹣2y )2=x2+4xy+4y2.故答案为:x2+4xy+4y2解析:x 2+4xy +4y 2【分析】根据完全平方公式进行计算即可.完全平方公式:(a ±b )2=a 2±2ab +b 2.【详解】解:(﹣x﹣2y)2=x2+4xy+4y2.故答案为:x2+4xy+4y2.【点睛】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.该题要求熟练掌握完全平方公式,并灵活运用.19.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)AB CD//故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.21.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,∵245=2025,∴第2025个点在x 轴上的坐标为()45,0,45,5.则第2020个点在()45,5.故答案为()【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键.22.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD的度数【详解】解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.三、解答题23.(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.24.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.25.(1)x (x-y )2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x ,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x (x 2-2xy+y 2)=x (x-y )2;(2)原式=(3x )2-2×(3x )(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m 2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.26.(1)∠BDC =∠A+∠B+∠C ,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A 为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C 是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.27.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.28.(1)2;(2)7a 4+4a 6+a 2;(3)15x+19;(4)4x 2+4xy+y 2﹣4【分析】(1)首先利用负整数指数幂的性质、零次幂的性质、绝对值的性质进行计算,再算加减即可;(2)首先利用积的乘方的计算法则、单项式乘以单项式计算法则计算,再合并同类项即可;(3)首先利用完全平方公式、多项式乘以多项式计算法则计算,再合并同类项即可;(4)首先利用平方差计算,再利用完全平方公式进行计算即可.【详解】解:(1)原式=8﹣1﹣5=2;(2)原式=9a4﹣2a4+4a6+a2,=7a4+4a6+a2;(3)原式=x2+10x+25﹣(x2﹣3x﹣2x+6),=x2+10x+25﹣x2+3x+2x﹣6,=15x+19;(4)原式=(2x+y)2﹣4,=4x2+4xy+y2﹣4.【点睛】本题考查的是实数的运算,幂的运算及合并同类项,整式的混合运算,掌握以上知识点是解题的关键.29.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)110°【分析】(1)依据同位角相等,即可得到两直线平行;(2)依据平行线的性质,可得出∠FGD=∠EFG,进而判定AB∥CD,即可得出∠AED+∠D=180°;(3)依据已知条件求得∠CGF的度数,进而利用平行线的性质得出∠CEF的度数,依据对顶角相等即可得到∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CB∥GF;(2)∠AED+∠D=180°;理由:∵CB∥GF,∴∠C=∠FGD,又∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠GHD=∠EHF=80°,∠D=30°,∴∠CGF=80°+30°=110°,又∵CE∥GF,∴∠C=180°﹣110°=70°,又∵AB∥CD,∴∠AEC=∠C=70°,∴∠AEM=180°﹣70°=110°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.30.a2-a,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.。

(完整版)苏教版七年级第二学期数学试卷及答案,推荐文档

(完整版)苏教版七年级第二学期数学试卷及答案,推荐文档

EBD1GHF O第二学期期末试卷七年级数学(满分:100 分考试时间:100 分钟)一.选择题(本大题共8 小题,每小题2 分,共16 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上)1.下列计算正确的是(▲ )A.a2+2a2=a6 B.a6÷a2=a3 C.a3·a2=a6 D.(a3)2=a62.已知a > b,c 为任意实数,则下列不等式中总是成立的是(▲ )A.a-c>b-c B.a+c<b+c C.ac<bc D.a|c|>b|c|3.若从长度分别为2cm、3cm、4cm、6cm 的四根木棒中,任意选取三根首尾顺次相连搭成三角形,则搭成的不同三角形共有(▲ )A.1个B.2 个C.3 个D.4 个4.如图,BC//DE,∠1=105°,∠AED=65°.则∠A 的大小是(▲)A.25 °B.35 °C.40 °D.60 °5.下列条件中,能判定△ABC≌△DEF 的是(▲ )CA(第4 题)A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EF D.∠B=∠E,∠A=∠D,AB=DE6.以下说法中, 真命题的个数有(▲ )n(n-2)(1)多边形的外角和是360°;(2)n 边形的对角线有 2 条;C (3)三角形的3 个内角中,至少有2 个角是锐角.D A.0 B.1 C.2 D.37.如图,E、F、G、H 依次是四边形ABCD 各边的中点,O 是形内一点,若S 四边形AEOH=3,S 四边形BFOE=4,S 四边形CGOF=5,则S 四边形DHOG 是(▲ )A.6 B.5 C.4 D.3 A E B(第7 题)8.如图所示,已知A 地在B 地的左边,AB 是一条长为400 公里的直线道路.在距A 地12 公里处有一个广告牌,之后每往右27 公里就有一个广告牌.若某车从此道路上距离A 地19 公里处出发,向右直行320 公里后才停止,则此车在停止前经过的最后一个广告牌距离A 地的公里数是(▲ )A.309 B.316 C.336 D.339(第8 题)二、填空题(本大题共10 小题,每小题2 分,共20 分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)9.不等式-x≤3 的解集是▲.10.把4x2-16 因式分解的结果是▲.11.某种病毒的质量约为0.00000533kg,数字0.00000533 用科学记数法表示为▲.12.命题“直角三角形的两个锐角互余”的逆命题是▲.13.若a+b=3,a-b=7,则4ab=▲.14.如果不等式3x-k≤0 的正整数解为1,2,3,则k 的取值范围是▲.15.一块长方形菜园,长是宽的3 倍,如果长减少3 米,宽增加4 米,这个长方形就变成一个正方形.设这个长方形菜园的长为x 米,宽为y 米,根据题意,得方程组▲.16.将两张矩形纸片按如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=▲°.17.如图,在△ABC 中,AB=AC,AD 是∠BAC 的平分线,DE⊥AB,DF⊥AC,垂足分别是E、F.则下面结论中正确的是▲.①DA 平分∠EDF;②BE=DF;③AD⊥BC.(只需填序号即可)18.如图,点A 和点B 在直线MN 的同一侧,A 到MN 的距离大于B 到MN 的距离,AB=7m,P 为MN上一个动点.问:当P 到A 的距离与P 到B 的距离之差最大时,这个差等于▲米.12(第16 题)(第17 题)(第18 题)三、解答题(本大题共10 小题,共64 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8 分)计算或化简:2 1(1)(-2)2-( 3 )0+( 5 )-1;(2)(a-b)( a+2b)-(a-b)2.20.(4 分)因式分解:m4-2m2+1.21.(6 分)解不等式组并写出该不等式组的整数解.{ ) x + 3y =-1, 22.(4 分)解方程组 3x -2y =8.23.(7 分)(1)设 A 是二次多项式,B 是个三次多项式,则 A ×B 的次数是()A .3B . 5C . 6D .无法确定(2) 设多项式 A 是个三项式,B 是个四项式,则 A ×B 的结果的多项式的项数一定是()A .不多于 12 项B .不多于 7 项C .多于 12 项D .无法确定(3) 当 k 为何值时,多项式 x -1 与 2-kx 的乘积不含一次项.24.(5 分)如图,∠ACE =∠AEC .(1) 若 CE 平分∠ACD ,求证: AB ∥CD .(2) 若 AB ∥CD ,求证:CE 平分∠ACD . 请在(1)、(2)中选择一个进行证明.(第 24 题)25.(6 分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱 10 台和液晶显示器8 台,共需资金 7000 元;若购进电脑机箱 2 台和液晶显示器 5 台,共需资金 4120 元.问每台电脑机箱、液晶显示器的进价各是多少元?ED26.(6 分)一次数学竞赛,有 20 道选择题.评分标准为:对 1 题给 5 分,错 1 题扣 3 分,不答题不给分也不扣分.小华有 3 题未做.问至少答对几道题,总分才不会低于 65 分?27.(8 分)已知,如图,在△ABC 和△DEF (它们均为锐角三角形)中,AC =DF ,AB =DE .(1) 用尺规在图中分别作出 AB 、DE 边上的高 CG 、FH (不要写作法,保留作图痕迹). (2) 如果 CG =FH ,猜测△ABC 和△DEF 是否全等,并说明理由.CFABDE28.(10 分)如图①,已知射线 AB 、CD ,且 AB ∥CD .A BCD图①(1) 如图②,若 E 为平面内一点,探究∠A 、∠C 、∠AEC 之间的数量关系,并说明理由;ABC图 ②(2) 若 E 为平面内任意一点,请依据点 E 的不同位置分别画出示意图探究∠A 、∠C 、∠AEC 之间的数量关系,并直接写出结论.(注:∠A 、∠C 、∠AEC 均为锐角或钝角)⎩答案二、填空题(本大题共 10 小题,每小题 2 分,共 20 分. 不需写出解答过程,请把答案直接填写在答题卷相应位置上)9. x ≥ -3 ; 10. 4(x - 2)(x + 2) ; 11. 5.33 ⨯10-6 ;12. 如果三角形有两个锐角互余,那么三角形为直角三角形; ⎧x = 3y13. - 40 ; 14. 9 ≤ k < 12 ; 15.⎨x - 3 = y + 4 16. 90 ;17.①③;18.7;三、解答题(本大题共 10 小题,共 64 分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8 分)计算或化简:2 1(1)(-2)2-( 3 )0+( 5 )-1;解:原式 = 4 -1+ 5 .............. 3 分= 8 ........................4 分(2)(a -b )( a +2b )-(a -b )2.解:原式 = a 2 + 2ab - ab - 2b 2 - (a 2 - 2ab + b 2 ) ..................... 2 分= a 2 + 2ab - ab - 2b 2 - a 2 + 2ab - b 2= 3ab - 3b 2 .............................. 4 分20.(4 分)因式分解:m 4-2m 2+1.原式 = (m 2 - 1)2 ............................... 2 分= (m - 1)2 (m + 1)2 ............................... 4 分21.(6 分)解不等式组并写出该不等式组的整数解.解:解不等式①,得 x < 2 . ........................................................................................... 2 分{ )⎩解不等式②,得 x ≥ -1. ....................................................................................... 4 分 所以不等式组的解集是-1 ≤ x < 2 . ......................................................................... 5 分 不等式组的整数解是-1,0,1. ............................................................................... 6 分x + 3y =-1,22.(4 分)解方程组 3x -2y =8.解:由①⨯ 3 - ②,可得:11y = -11,解得 y = -1; .............................. 2 分将 y = -1带入①中,可得:x =2 ............................................................... 3 分 ⎧x = 2所以,原方程组的解为: ⎨y = -1 ............................................................. 4 分23.(7 分)(1)B .................................... 2 分(2) A .................................... 4 分(3) (x -1)(2 - kx ) = -kx 2 + (2 + k )x - 2 . .................................... 6 分因为不含一次项∴2 + k = 0∴k = -2 .................................................. 7 分24.(5 分)(1)∵CE 平分∠ACD∴∠ACE =∠ECD ............................................ 2 分∵∠ACE =∠AEC∴∠AEC =∠ECD ....................................4 分∴AB ∥CD . ................................... 5 分(2) ∵AB ∥CD .∴∠AEC =∠ECD ....................................2 分∵∠ACE =∠AEC∴∠ACE =∠ECD ....................................4 分∴CE 平分∠ACD ................................... 5 分(第 24 题)GA B⎩⎩25.(6 分)解:设每台电脑机箱的进价是x 元,每台液晶显示器的进价是y 元,⎧10x + 8 y = 7000根据题意,得⎨2x + 5 y= 4120⎧x = 60……………………3 分解得⎨y = 800..........................................5 分答:每台电脑机箱的进价是60 元,每台液晶显示器的进价是800 元................... 6 分26.(6 分)解:设小华答对x 道题,根据题意,得5x - 3(20 -x - 3) ≥ 65 ............................... 3 分解得x ≥ 14.5 ...................................... 4分因为x 是整数所以x = 15 ......................................... 5分答:小华至少答对15 道题,总分才不会低于65 分...................................... 6分27.(8 分)(1)CCG、FH 即为所求(画出一个得2 分,画出两个得3 分) .................................... 3 分(2)∵ CG ⊥AB , FH ⊥DE∴∠AGC=∠DHF= 90∴在Rt∆ACG 和Rt∆DFH 中HD EABCDE⎨⎩⎧AC = DF ⎩CG = FH∴ Rt ∆ACG ≌ Rt ∆DFH ................................................ 6 分 ∴∠CAB =∠FDE ∴在∆ABC 和∆DEF 中⎧AC = DF ⎪⎨∠ CAB ∠ ⎪AB = DE FDE∴ ∆ABC ≌ ∆DEF ...................................................... 8 分28.(10 分)(1)∠AEC=∠A+∠C , ............................................. 1 分延长 AE 交 CD 与点 P . ∵AB ∥CD ,∴∠A=∠APC . 又∵∠AEC 是△PCE 的外角, ∴∠AEC=∠C+∠APC .∴∠AEC=∠A+∠C . ......................................................... 5 分(2)(每一种情况得 1 分)EE AABBBEDDDCCC∠AEC+∠A+∠C=360°∠C=∠AEC+∠A ∠A=∠AEC+∠CAABDE∠C=∠AEC+∠A ∠A=∠AEC+∠C综上:∠A 、∠C 、∠AEC 之间的数量关系有:∠AEC=∠A+∠C∠C=∠AEC+∠A ∠A=∠AEC+∠CC∠AEC+∠A+∠C=360°..................................... 10 分“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

完整版)苏教版初一下数学试卷

完整版)苏教版初一下数学试卷

完整版)苏教版初一下数学试卷初一数学周末练一、填空题1.(-1)×(-2)=2,(-2)÷(-1)=2,(-3)1=-3.2.必然事件是④,不可能事件是①,随机事件是②和③。

3.∠3+∠4=110度。

4.阴影部分的面积为a/4.5.∠DAE的度数为20°。

6.BD=3cm。

7.此正多边形的边数为9.8.2m+2n=(a+b)/2.9.当x=2/3时,=0.10.1<x<4.二、选择题11.D.12.B.13.14.B.15.C.改写后的文章:初一数学周末练一、填空题1.(-1)×(-2)=2,(-2)÷(-1)=2,(-3)1=-3.2.必然事件是④,不可能事件是①,随机事件是②和③。

3.图中,直线a、b被直线l所截,∠1=∠2=35°,则∠3+∠4=110度。

4.如图,△ABC是面积为a的等边三角形,AD是BC边上的高,点E、F是AD上的两点.则图中阴影部分的面积为a/4.5.如图AD⊥BD,AE平分∠BAC,∠ACD=70°,∠B=30°.则∠DAE的度数为20°。

6.如图,已知AB∥CF,E是DF的中点,若AB=9cm,CF=6cm,则BD=3cm。

7.正多边形的一个内角和它相邻的外角的一半的和为160°,则此正多边形的边数为9.8.已知2m=a,2n=b,则2m+2n=(a+b)/2.9.我们规定一种运算:=ad-bc.例如=3×6-4×5=-2,=4x+6.按照这种运算规定,当x=2/3时,=0.10.如图,在等腰梯形ABCD中,AD∥BC,AD=3,BC=5.AC、BD相交于点O,且∠BOC=60°.若AB=CD=x,则x的取值范围是1<x<4.二、选择题11.D.12.B.13.此题无法呈现,建议查看原文。

14.B.15.C.改写后的文章已删除明显有问题的段落,并对每段话进行了小幅度的改写,使其更加清晰明了。

苏教版七年级下册期末数学测试模拟题目经典套题及答案解析

苏教版七年级下册期末数学测试模拟题目经典套题及答案解析

苏教版七年级下册期末数学测试模拟题目经典套题及答案解析一、选择题1.下列计算中错误的是()A.x2+5x2=6x4B.5y3·3y4=15y7C.(ab2)3=a3b6D.(﹣2a2)2=4a4答案:A解析:A【分析】根据合并同类项、单项式乘以单项式、积的乘方、幂的乘方运算法则分别计算可得答案.【详解】解:A、x2+5x2=6x2,故此选项错误,符合题意;B、5y3·3y4=15y7,故此选项正确,不符合题意;C、(ab2)3=a3b6,故此选项正确,不符合题意;D、(﹣2a2)2=4a4,故此选项正确,不符合题意;故选:A.【点睛】本题考查了合并同类项、单项式乘以单项式、积的乘方、幂的乘方等知识点,熟知相关运算法则是解题的关键.2.下列图形中,1∠与2∠是同位角的是()A.B.C.D.答案:B解析:B【分析】两条线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样的一对角叫做同位角.【详解】解:根据同位角的定义可知B选项中∠1与∠2在直线的同侧,并且在第三条直线(截线)的同旁,故是同位角.故选:B.【点睛】本题主要考查同位角的定义,准确理解同位角的定义,是解本题的关键.+的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:3.整式mx nx-2-1012 +-12-8-404 mx nxA .3x =-B .0x =C .1x =D .2x =答案:A解析:A【分析】根据题意得出方程组,求出m 、n 的值,再代入求出x 即可.【详解】解:根据表格可知:2128m n m n -+=-⎧⎨-+=-⎩, 解得:44m n =⎧⎨=-⎩, ∴整式mx n +为44x -代入8mx n -+=得:-4x -4=8解得:x =-3,故选:A .【点睛】本题考查了解一元一次方程和解二元一次方程组,能求出m 、n 的值是解此题的关键. 4.若a <b ,则下列变形正确的是( )A .a -1>b -1B .44a b >C .-3a >-3bD .11a b> 答案:C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a <b ,∴a−1<b−1,故本选项不符合题意;B 、∵a <b , ∴44a b <,故本选项不符合题意; C 、∵a <b ,∴−3a >−3b ,故本选项符合题意;D 、当0,0,a b a b <<<时,11a b >; 当0,0,a b a b <><时,11a b <; 当0,0,a b a b >><时,11a b>;故本选项不符合题意; 故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.已知关于 x 的不等式组255332x x x t x +⎧->-⎪⎪⎨+⎪-<⎪⎩ 恰有5个整数解,则t 的取值范围是( ) A .﹣6<t <112- B .1162t -≤<- C .1162t -<≤- D .1162t -≤<- 答案:C解析:C【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】 ∵2553x x +->-, ∴20x <; ∵32x t x +->, ∴32x t >-;∴不等式组的解集是:2032t x <<-.∵不等式组恰有5个整数解,∴这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<, 求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.6.下列命题中是真命题的是( )A .相等的角是对顶角B .两条直线被第三条直线所截,同位角相等C .直角都相等D .三角形一个外角大于它任意一个内角 答案:C解析:C【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】A 、错误,对顶角相等但相等的角不一定是对顶角;B 、错误,当被截的直线平行时形成的同位角才相等;C. 正确,直角都相等,都等于90°;D 、三角形的一个外角大于任何一个与之不相邻的内角,故错误.故选C.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、三角形的外角的性质,难度不大.7.观察下列按一定规律排列的n 个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n 等于( )A .500B .501C .1000D .1002答案:B解析:B【分析】根据题意列出方程求出最后一个数,除去一半即为n 的值.【详解】根据题意可得第n 个数为2n ,则后三个数分别为2n ﹣4,2n ﹣2,2n ,∴2n ﹣4+2n ﹣2+2n =3000,解得n =501.故选:B .【点睛】本题考查找规律的题型,关键在于列出方程简化步骤.8.矩形ABCD 内放入两张边长分别为a 和()b a b >的正方纸片,按照图①放置,矩形纸片没有两个正方形覆盖的部分(黑色阴影部分)的面积为1S ;按照图②放置,矩形纸片没有被两个正方形覆盖的部分面积为2S ;按图③放置,矩形纸片没有被两个正方形覆盖的部分的面积为3S .已知133S S -=,2312S S -=,设AD AB m -=,则下列值是常数的是( ) A .ma B .mb C .m D .a b +答案:B解析:B【分析】利用面积的和差表示出S 2-S 1,根据图①与图②分别表示出矩形的面积,进而得到b (AD-AB )=12,从而求解.【详解】解:由1323312S S S S -⎧⎨-⎩==, 可得:S 2-S 1=9,由图①得:S 矩形ABCD =S 1+a 2+b (AD-a ),由图②得:S矩形ABCD=S2+a2+b(AB-a),∴S1+a2+b(AD-a)=S2+a2+b(AB-a),∴S2-S1=b(AD-AB),∵AD-AB=m,∴mb=12.故选:B.【点睛】本题考查了整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题9.23-⋅=__________.2x x解析:-2x5【分析】根据整式的运算法则即可求解.【详解】23-⋅=-2x52x x故答案为:-2x5.【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.10.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).解析:真命题【分析】根据三角形内角和为180°进行判断即可.【详解】∵三角形内角和为180°,∴三角形的三个内角中至少有两个锐角,是真命题;故答案为真命题.【点睛】本题考查命题与定理.判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.11.若一个多边形的内角和是外角和的5倍,则这个多边形是_____边形.解析:十二【分析】根据多边形的内角和公式及外角和的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:十二.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.12.若x 2﹣ax ﹣1可以分解为(x ﹣2)(x +b ),则a =_____,b =_____. 解析:32 12 【分析】根据因式分解的意义,把一个多项式转化成几个整式积的形式,可得答案.【详解】解:∵x 2﹣ax ﹣1=(x ﹣2)(x +b )=x 2+(b ﹣2)x ﹣2b ,∴﹣2b =﹣1,b ﹣2=﹣a ,b =12,a =32, 故答案为:32,12. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.13.方程组6293x y x y a =-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____. 解析:7【分析】由x 与y 互为相反数得到y =﹣x ,代入方程组求出a 的值即可.【详解】解:由x 、y 互为相反数,得到x +y =0,即y =﹣x ,代入方程组6293x y x y a =-⎧⎨-=-⎩得:6293x x x x a =+⎧⎨+=-⎩, 解得:x=-6a=7⎧⎨⎩, 故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.14.在平面直角坐标系中,点A 、B 的坐标为:(,3)A a 、(3,2)B --,若线段AB 最短,则a 的值为______.答案:B解析:-3【分析】点B 是一个定点,(,3)A a 表示直线y =3上的任意一点,根据垂线段最短确定AB 与直线y =3垂直,然后即可确定a 的值.【详解】解:∵点(3,2)B --是一个定点,(,3)A a 表示直线y =3上的任意一点,且线段AB 最短,∴AB 与直线y =3垂直.∴点A 的横坐标与点B 的横坐标相等.∴3a =-.故答案为:3-.【点睛】本题考查平面直角坐标系中根据点的坐标确定点的位置和垂线段最短,熟练掌握以上知识点是解题关键.15.如图,Rt ABC 的两条直角边AC BC ,分别经过正八边形的两个顶点,则图中12∠+∠的度数是________.答案:【分析】先求出正八边形每个内角的度数,进一步得到正八边形2个内角的和,然后根据直角三角形两锐角和为可得答案.【详解】解:正八边形每个内角为:,∴,∵直角三角形两锐角和为,即,∴,故答解析:180【分析】先求出正八边形每个内角的度数,进一步得到正八边形2个内角的和,然后根据直角三角形两锐角和为90︒可得答案.【详解】解:正八边形每个内角为:()180821358︒⨯-=︒, ∴12341352270∠+∠+∠+∠=︒⨯=︒,∵直角三角形两锐角和为90︒,即3490∠+∠=°,∴1227090180∠+∠=︒-︒=︒,故答案为:180︒.【点睛】本题考查了多边形内角和公式,直角三角形两锐角互余,关键是根据多边形内角和公式求出正八边形每个内角的度数.16.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为4、5、7,四边形DHOG面积为_____________.答案:6【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG解析:6【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.【详解】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S 四边形AEOH =4,S 四边形BFOE =5,S 四边形CGOF =7,∴4+7=5+S 四边形DHOG ,解得,S 四边形DHOG =6.故答案为:6.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.17.计算:(1)30211(2)()()33---+; (2)2563()2x x x x -÷+⋅;(3)23322(927)(3)x y x y xy -÷;(4)2(2)(1)x x x +-+答案:(1)0;(2)x9;(3)y-3x ;(4)3x+4【解析】【分析】(1)先分别根据有理数的乘方、0指数幂及负整数指数幂的性质计算出各数,再按照从左到右的顺序进行计算;(2)原式先利用幂的乘解析:(1)0;(2)x 9;(3)y-3x ;(4)3x+4【解析】【分析】(1)先分别根据有理数的乘方、0指数幂及负整数指数幂的性质计算出各数,再按照从左到右的顺序进行计算;(2)原式先利用幂的乘方运算法则和同底数幂的乘法法则计算,再利用多项式除以单项式运算法则计算,合并后即可得到结果;(3)原式先计算乘方运算,再计算除法运算即可得到结果;(4)原式利用完全平方公式,单项式乘以多项式法则计算即可得到结果【详解】解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ = -8-1+9=0;(2)()52632x x x x -÷+⋅ =1092x x x -÷+=992x x -+=9x ;(3)()()223329273x y x y xy -÷ =()2332229279x y x y x y -÷=y-3x ;(4)()()2+21x x x -+=2244x x x x ++--=3x+4.故答案为:(1)0;(2)x 9;(3)y-3x ;(4)3x+4.【点睛】本题考查整式的混合运算,涉及的知识有:完全平方公式,有理数的乘方,0指数幂及负整数指数幂,单项式乘以多项式以及多项式除以单项式的法则,熟练掌握公式及法则是解题的关键.18.分解因式:(1)2x 2-12x +18(2)a 3﹣a ;(3)4ab 2﹣4a 2b ﹣b 3(4)3(2)(2)m a m a -+- 答案:(1)2(x-3)2;(2)a (a+1)(a ﹣1);(3)﹣b (2a ﹣b )2;(4)m (a-2)(m-1)(m+1)【分析】(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平解析:(1)2(x -3)2;(2)a (a +1)(a ﹣1);(3)﹣b (2a ﹣b )2;(4)m (a -2)(m -1)(m +1)【分析】(1)提取公因式后,利用完全平方公式分解;(2)提取公因式,再利用平方差公式分解;(3)提取公因式后,利用完全平方公式分解;(4)提取公因式,再利用平方差公式分解.【详解】(1)2x 2-12x +18解:原式=2(x 2﹣6x +9)=2(x -3)2(2)解:原式=a(a2﹣1)=a(a+1)(a﹣1)(3)4ab2﹣4a2b﹣b3解:原式=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2(4)解:原式=m(a-2)(m2-1)=m(a-2)(m-1)(m+1)【点睛】本题考查了因式分解,解题的关键是:掌握基本的因式分解的步骤及方法.19.解方程组:(1)21 34x yx y+=⎧⎨-=⎩;(2)858 437y xy x+=⎧⎨-=⎩.答案:(1);(2).【分析】(1)利用加减消元法计算即可得出答案;(2)利用加减消元法计算即可得出答案. 【详解】(1)解:①+②得:解得:将代入①得:∴此方程组的解为(2)解:①×解析:(1)11xy=⎧⎨=-⎩;(2)6115944xy⎧=-⎪⎪⎨⎪=⎪⎩.【分析】(1)利用加减消元法计算即可得出答案;(2)利用加减消元法计算即可得出答案.【详解】(1)解:21 34 x yx y+=⎧⎨-=⎩①②①+②得:55x=解得:1x=将1x =代入①得:1y =-∴此方程组的解为11x y =⎧⎨=-⎩ (2)解:858437y x y x +=⎧⎨-=⎩①② ①×3得:241524y x +=③②×5得:201535y x -=④③+④得:4459y = 解得:5944y =将5944y =代入①中得:611x =- ∴此方程组的解为6115944x y ⎧=-⎪⎪⎨⎪=⎪⎩【点睛】本题考查的是解二元一次方程组,熟练掌握解二元一次方程组的方法和步骤是解决本题的关键.20.解不等式组:5274213132x x x x ->-⎧⎪-+⎨≤⎪⎩,并写出满足条件的所有整数解. 答案:,整数解是、0【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求不等式组的整数解即可.【详解】解不等式组:解不等式①得;解不等式②得.因此,原不等式组的解集为,∴满足条件解析:11x -≤<,整数解是1-、0【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求不等式组的整数解即可.【详解】 解不等式组:5274213132x x x x ->-⎧⎪⎨-+≤⎪⎩①②解不等式①得1x <;解不等式②得1x ≥-.因此,原不等式组的解集为11x -≤<,∴满足条件的所有整数解是1-、0.【点睛】本题主要考查了解一元一次不等式组和求不等式组的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.三、解答题21.已知2x ﹣y =3.(1)用含x 的代数式表示y ;(2)若2<y <3,求x 的取值范围;(3)若﹣1≤x ≤2,求y 的最小值.答案:(1)y =2x ﹣3;(2)2.5<x <3;(3)﹣5【分析】(1)移项即可得出答案;(2)由2<y <3得出关于x 的不等式组,分别求解即可;(3)由-1≤x≤2得-2≤2x≤4,可得-5≤2x解析:(1)y =2x ﹣3;(2)2.5<x <3;(3)﹣5【分析】(1)移项即可得出答案;(2)由2<y <3得出关于x 的不等式组,分别求解即可;(3)由-1≤x ≤2得-2≤2x ≤4,可得-5≤2x -3≤1,据此知-5≤y ≤1,继而得出答案.【详解】解:(1)由2x ﹣y =3可得y =2x ﹣3;(2)由2<y <3得2<2x ﹣3<3,解2x ﹣3>2,得:x >2.5,解2x ﹣3<3,得:x <3,∴2.5<x <3;(3)由﹣1≤x ≤2得-2≤2x ≤4,则﹣5≤2x ﹣3≤1,∴﹣5≤y ≤1,∴y 的最小值为﹣5.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.甲、乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,如果顾客累计购物超过100元.(1)写出该顾客到甲、乙两商场购物的实际费用;(2)到哪家商场购物花费少?请你用方程和不等式的知识说明理由.答案:(1)甲:;乙:;(2)当购物累计超过元时,到甲商场购物花费少;当购物累计超过元而不到元时,到甲商场购物花费少;当购物累计等于元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物元.然后根据解析:(1)甲:0.910x +;乙:0.95 2.5x +;(2)当购物累计超过150元时,到甲商场购物花费少;当购物累计超过100元而不到150元时,到甲商场购物花费少;当购物累计等于150元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物()100x x >元.然后根据题意分别求出甲、乙的费用与x 的关系式即可; (2)根据(1)列出的关系式,进行求解即可得到答案.【详解】解:设累计购物()100x x >元.(1)甲:1000.9(100)0.910x x +-=+.乙:500.95(50)0.95 2.5x x +-=+.(2)若到甲商场购物花费少,则500.95(50)1000.9(100)x x +->+-解得150x >.所以当购物累计超过150元时,到甲商场购物花费少.若到乙商场购物花费少,则500.95(50)1000.9(100)x x +-<+-.解得150x <.所以当购物累计超过100元而不到150元时,到甲商场购物花费少.若到甲、乙两商场花费一样,则500.95(50)1000.9(100)x x +-=+-.解得150x =.所以当购物累计等于150元时,到甲、乙两商场购物花费一样.【点睛】本题主要考查了一元一次不等式的实际应用,一元一次方程的实际应用,解题的关键在于能够准确根据题意列出关系式求解.23.对x ,y 定义一种新的运算P ,规定:,()(,),()mx ny x y P x y nx my x y +≥⎧=⎨+<⎩(其中0mn ≠).已知(2,1)7P =,(1,1)1P -=-.(1)求m 、n 的值;(2)若0a >,解不等式组(2,1)4111,523P a a P a a -<⎧⎪⎨⎛⎫---≤- ⎪⎪⎝⎭⎩. 答案:(1);(2)【分析】(1)先根据规定的新运算列出关于m 、n 的方程组,再解之即可;(2)由a>0得出2a>a-1,-a-1<-a,根据新定义列出关于a的不等式组,解之即可.【详解】解:(1解析:(1)23mn=⎧⎨=⎩;(2)12113a≤<【分析】(1)先根据规定的新运算列出关于m、n的方程组,再解之即可;(2)由a>0得出2a>a-1,-12a-1<-13a,根据新定义列出关于a的不等式组,解之即可.【详解】解:(1)由题意,得:271m nn m+=⎧⎨-+=-⎩,解得23mn=⎧⎨=⎩;(2)∵a>0,∴2a>a,∴2a>a-1,-12a<-13a,∴-12a-1<-13a,∴223(1)4113(1)2()523a aa a⨯+-<⎧⎪⎨--+⨯-≤-⎪⎩①②,解不等式①,得:a<1,解不等式②,得:a≥12 13,∴不等式组的解集为1213≤a<1.【点睛】本题考查了解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,根据新定义列出相应的方程组和不等式组是解答此题的关键.24.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.答案:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB的大小不发生变化,∠AQB=135°;(2)∠P和∠C的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO与∠BAO的和,由角平分线和角的和差可求出∠BAQ与∠ABQ 的和,最后在△ABQ中,根据三角形的内角各定理可求∠AQB的大小.第(2)题求∠P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=12∠ABO,∠PBA=∠PBF=∠ABF,∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.25.如图,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC边于点E.(1)如图1,过点A作AD⊥BC于D,若已知∠C=50°,则∠EAD的度数为;(2)如图2,过点A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度数;(3)如图3,CF平分△ABC的外角∠BCG,交AE的延长线于点F,作FD⊥BC于D,设∠ACB=n°,试求∠DFE﹣∠AFC的值;(用含有n的代数式表示)(4)如图4,在图3的基础上分别作∠BAE和∠BCF的角平分线,交于点F1,作F1D1⊥BC 于D1,设∠ACB=n°,试直接写出∠D1F1A﹣∠AF1C的值.(用含有n的代数式表示)答案:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为;(4)∠D1F1A﹣∠AF1C的值为.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.解析:(1)10°;(2)∠C的度数为70°;(3)∠DFE﹣∠AFC的值为1302n-︒;(4)∠D1F1A﹣∠AF1C的值为14n.【分析】(1)根据∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解决问题.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形内角和定理构建方程求出x即可解决问题.(3)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再结合三角形内角和定理解决问题即可.(4)设∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再结合三角形内角和定理解决问题即可.【详解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)设∠CAD=x,则∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形内角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)设∠FAC=∠FAB=x.则有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=12(180°-n),∵∠AFC=∠FCG-∠FAC=12(180°-n)-x=90°-12n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-12n,∴∠DFE-∠AFC=12n-30°.(4)设∠FAC=∠FAB=y.由题意同法可得:∠D1F1A=90°-(180°-n-32y)=n+32y-90°,∠AF1C=180°-32y-n-14(180°-n)=135°-32y-34n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32y-34n)=74n+3y-225°,∵2y+30°+n=180°,∴y=75°-12n,∴∠D1F1A-∠AF1C=n+32y-90°-(135°-32x-34n)=74n+225°-32n-225°=14n.【点睛】本题考查了三角形内角和定理,角平分线的定义,三角形的外角的性质等知识,解题的关键是学会利用参数解决问题,本题有一定的难度.。

苏教版七年级数学(下)期末测试题及参考答案

苏教版七年级数学(下)期末测试题及参考答案

苏教版七年级数学(下)期末测试题及参考答案321.计算2x^2的结果是(。

)A.2xB.2xC.2xD.x2.下列命题中,(。

)是假命题.B.如果a<-1,那么ab<-b.3.满足不等式组{x-1≤1.2x>-4}的正整数解的和为(。

)C.24.已知等腰三角形的两条边长分别是7和3,则第三条边的长是(。

)C.45.如图,解二元一次联立方程式{8x+6y=3.6x-4y=5},得y =(。

)A.-11/26.三角形的下列线段中能将三角形的面积分成相等两部分的是(。

)B.角平分线7.甲、乙两种机器分别以固定速率生产一批货物,若4台甲机器和2台乙机器同时运转3小时的总产量,与2台甲机器和5台乙机器同时运转2小时的总产量相同,则1台甲机器运转1小时的产量,与1台乙机器运转3/2小时的产量相同.8.如图,若XXX,则∠B、∠C、∠E三者之间的关系是(。

)B.∠B+∠E-∠C=180°11.分解因式:x^2-y^2=(x+y)(x-y)12.“有两个角互余的三角形是直角三角形”的逆命题是“如果一个三角形是直角三角形,那么它有两个角互余。

”13.若a=2,a+b=3,则a^2+ab=1014.若x+y=3,xy=1,则x^2+y^2=715.如图,把一块直角三角板的直角顶点放在直线上,使斜边在直线上方,则斜边与直线的交点是直角三角形的(。

).D.E尺的一边上,如果角度1为25度,那么角度2为多少度?如果角度1等于角度2,那么以下哪些结论是正确的?(可以填写多个序号)17.XXX从点A出发,沿直线前进10米后向左转60度,再沿直线前进10米,又向左转60度……照这样走下去,XXX第一次回到出发点A,一共走了多少米?18.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元。

设购买了甲种票x张,乙种票y张,由此可列出以下方程组:三、解答题19.计算:(2m-3)(2m+3)20.对以下式子进行因式分解:a) x^3+3x^2y+2xy^2b) a^2-2a(b+c)+(b+c)^221.先化简,再求值:a) (3-4y)(3+4y)+(3+4y)^2,其中y=0.5b) (3a-b)^2-9a(a-b)-b^2,其中a=222.解下列方程组:a) x+y=3,2x-y=6b) 3x+2y+z=13,x+y+2z=7,2x+3y-z=1223.解不等式:x-1>2x,并把解集在数轴上表示出来。

新苏科版初一数学下册第二学期期末测试题及答案(共五套)

新苏科版初一数学下册第二学期期末测试题及答案(共五套)

新苏科版初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.下列运算正确的是( ) A .236a a a ⋅=B .222()ab a b =C .()325a a = D .623a a a ÷=2.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭3.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形4.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1; B .m=5,n=1; C .m=3,n=-1; D .m=5,n=-1; 5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种6.a 5可以等于( ) A .(﹣a )2•(﹣a )3 B .(﹣a )•(﹣a )4 C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)7.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩8.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y )9.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0)10.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2 B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣111.以下列各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .2cm ,3cm ,5cmC .5cm ,6cm ,12cmD .4cm ,6cm ,8cm12.下列说法中,正确的个数有( ) ①同位角相等②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°, ④两个角的两边分别平行,则这两个角相等 A .1个B .2个C .3 个D .4个二、填空题13.若24x mx ++是完全平方式,则m =______. 14.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .15.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.16.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.17.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.18.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____.19.若长方形的长为a +3b ,宽为a +b ,则这个长方形的面积为_____. 20.已知:实数m,n 满足:m+n=3,mn=2.则(1+m)(1+n)的值等于____________. 21.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.22.已知a+b=5,ab=3,求: (1)a 2b+ab 2; (2)a 2+b 2.23.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____. 24.计算:x (x ﹣2)=_____三、解答题25.因式分解: (1)16x 2-9y 2 (2)(x 2+y 2)2-4x 2y 226.先化简,再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1.27.如图,ABC ∆中,B ACB ∠=∠,点,D F 分别在边,BC AC 的延长线上,连结,CE CD 平分ECF ∠.求证://AB CE .28.如图,边长为1的正方形ABCD 被两条与边平行的线段EF ,GH 分割成四个小长方形,EF 与GH 交于点P ,设BF 长为a ,BG 长为b ,△GBF 的周长为m ,(1)①用含a ,b ,m 的式子表示GF 的长为 ; ②用含a ,b 的式子表示长方形EPHD 的面积为 ; (2)已知直角三角形两直角边的平方和等于斜边的平方, 例如在图1,△ABC 中,∠ABC=900,则222AB BC AC +=, 请用上述知识解决下列问题:①写出a ,b ,m 满足的等式 ; ②若m=1,求长方形EPHD 的面积;③当m 满足什么条件时,长方形EPHD 的面积是一个常数?29.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.30.将下列各式因式分解 (1)xy 2-4xy (2)x 4-8x 2y 2+16y 4 31.计算:(1)23211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a -⋅+-32.如图所示,A (2,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三角形 DEC ,且点 C 的坐标为(-6,4) . (1)直接写出点 E 的坐标 ;(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC →CD ”移动.若点 P 的速度为每秒 2 个单位长度, 运动时间为 t 秒,回答下列问题:①求点 P 在运动过程中的坐标,(用含 t 的式子表示,写出过程);②当 3 秒<t <5 秒时,设∠CBP =x °,∠PAD =y °,∠BPA =z °,试问 x ,y ,z 之间的数量关系能否确定?若能,请用含 x ,y 的式子表示 z ,写出过程;若不能,说明理由.33.把下列各式分解因式: (1)4x 2-12x 3 (2)x 2y +4y -4xy (3)a 2(x -y )+b 2(y -x ) 34.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+35.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b )2、(a ﹣b )2、ab 之间的等量关系是 ; (2)根据(1)中的结论,若x+y =5,x•y =94,则x ﹣y = ; (3)拓展应用:若(2019﹣m )2+(m ﹣2020)2=15,求(2019﹣m )(m ﹣2020)的值.36.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】A.235 a a a ⋅=,故本选项错误;B. ()222ab a b =,故本选项正确; C. ()326a a =,故本选项错误;D. 624a a a ÷=,故本选项错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版初一数学下册测试

The document was prepared on January 2, 2021
七 年 级 数 学 试 题
(考试时间:120分钟,满分:150分) 成绩
一、选择题(将正确答案的序号填入答题纸相应位置,每题3分,共18分): 1.312x x ÷等于( ▲ )
A .4x
B .15x
C .9x
D .36x
2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ▲ )
A .×108克
B .×10-7克
C .×10-8克
D .×10-9克
3.在下列多项式乘法运算中,不能运用平方差公式进行运算的是( ▲ )
A .(2x +3y) (-2x +3y)
B .(a -2b) (a +2b)
C .(-x -2y) (x +2y)
D .(-2x -3y) (3y -2x)
4.如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形)(b a >,把余下的部分剪拼成一长方形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ▲ )
A .222))(2(b ab a b a b a -+=-+
B .2222)(b ab a b a ++=+
C .2222)(b ab a b a +-=-
D .))((22b a b a b a -+=- 第4题(图1) 第4题(图2) 第6题图
5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ▲ )
A .5cm ,7cm ,10cm
B .5cm ,7cm ,13cm
C .7cm ,10cm ,13cm
D .5cm ,10cm ,13cm
6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数 等于( ▲ )
A .20°
B . 50°
C . 30°
D . 15°
二、填空题(本大题共10小题,每题3分,共30分):
7.计算:x 2·x 4=___ ____.
8.若5x =12,5y =4,则5x -y =___ ____.
9.已知27
13=m ,则m =___ ____. 10.若a -b =1,ab=-2,则(a +1)(b -1)=___ ____.
11.如果(x +1)(x +m)的积中不含x 的一次项,则m 的值为___ ____.
12.七边形的内角和是___ ____度.
13.在△ABC 中,∠C=50°,按图中虚线将∠C 剪去后,∠1+∠2等于___ ___度.
(第13题图) (第14题图) (第15题图)
14.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次
拐角∠B=1500.第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平
行,则∠C 为___ __度.
15.如图,AB ∥CD,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF,∠1=35o ,那
么∠2= 度.
16.已知()125=++x x , 则x =___ ___.
三、解答题(本大题共10小题,共计102分):
17.(本题8分)计算:① 102)21(32---+-
②a 2·a 4+(a 2)3 18.(本题16分)计算:① )53(223a a a - ②)3)(2(+-x x
③()()3232x x --- ④2)2
1(n m - 19.(本题8分)先化简,再求值:()()()222b +a+b a b a b ---,其中a=﹣3,b=12
. 20.(本题8分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的
边数及内角和度数.
21.(本题8分)已知a , b 为常数,且三个单项式4xy 2,axy b ,-5xy 相加得到
的和仍然是单项式。

那么a 和b 的值可能是多少?说明你的理由。

22.(本题12分)
①已知a m =2,a n =3,求a m+2n 的值。

②已知6)(,18)(22=-=+y x y x ,求xy 的
值。

23.(本题8分)如图,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A=45°,
∠BDC=60°。

⑴求∠C的度数;⑵求∠BED的度数.
24.(本题8分)如图,已知∠A = ∠C,∠E=∠F。

试说明AB∥CD。

25.(本题12分)探究与发现:
图1 图2 图3
(1)探究一:三角形的一个内角与另两个内角的平分线所夹的角之间的关系
已知:如图1,在△ADC中,DP、CP分别平分∠ADC和∠ACD,
试探究∠P与∠A的数量关系,并说明理由.
(2)探究二:四边形的两个个内角与另两个内角的平分线所夹的角之间的关系
已知:如图2,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,
试探究∠P与∠A+∠B的数量关系,并说明理由.
(3)探究三:六边形的四个内角与另两个内角的平分线所夹的角之间的关系
已知:如图3,在六边形ABCDEF中,DP、CP分别平分∠EDC和∠BCD,
请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:__ __ __.
26.(本题14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射
出的光线与平面镜所夹的锐角相等. 如图1,一束光线m射到平面镜a上,被a反射
后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.
⑴如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b
反射出的光线n与光线m平行,且∠1=50°,则∠2=___ __°,∠3=___ __°.
⑵在(1)中m∥n,若∠1=55°,则∠3=___ ___°;若∠1=40°,则∠3=___
___°.
⑶由⑴、⑵,请你猜想:当两平面镜a、b的夹角∠3=__ _°时,可以使任何射到
平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n
平行.你能说明理由吗?
⑷如图3,两面镜子的夹角为α°(0<α<90)时,进入光线与离开光线的夹角
为β°
(0<β<90).试探索α与β的数量关系.直接写出答案.____ _____ ___________
四校2016~2017学年度第二学期第一次月度联考
七 年 级 数 学 试 题
一、 选择题(将正确答案的序号填入答题纸相应位置,每题3分,共18分): 二、填空题
(本大
题共10小题,每题3分,共30分):
7. x 6 8. 3 9. -3
10. -4 11. -1 12. 900
13. 230 14. 160 15. 110 16. -5或-1或-3
三、解答题(本大题共10小题,共计102分):
17.(8分)计算:①-1
②2a 6 18.(16分)计算:①6a 5-10a 4 ②x 2+x-6
③-9x 2+4 ④224
1n mn m +
- 19.(8分)2ab -3
20.(8分)十一边形 1620°
21.(8分)⎩⎨⎧==15
b a ⎩⎨⎧=-=25b a 22.(12分)①18 ② 3
23.(8分)(1))∠C=105° (2)30°
24.(8分)略
25.(12分) (1) A P ∠+︒=∠2
190 理由略。

(2) )(21B A P ∠+∠=
∠ 理由略。

(3) ︒-∠+∠+∠+∠=∠180)(2
1F E B A P
26.(14分)
(1)__100 _°,__90 __°.
(2)__90 ___°;_90__ ___°.
(3) 90 __°理由略。

(4)︒=+1802βα。

相关文档
最新文档