2020年安徽省中考数学模拟试卷(含答案)

合集下载

(安徽卷) 2020年中考数学第二次模拟考试(参考答案)

(安徽卷) 2020年中考数学第二次模拟考试(参考答案)

2
4
∴3b=5c,∴ b 5 . c3
数学 第 6页(共 6页) 6
2
∴AE=b﹣CE=b﹣ 1 (b+c)= 1 (b﹣c),
2
2
11
1
∴EF=AF﹣AE= b﹣ (b﹣c)= c,
22
2
∴DF=EF;
②过点 A 作 AP⊥BG 于 P,如图 1 所示:
∵DF 是△CAB 的中位线, ∴DF∥AB, ∴∠DFC=∠BAC, ∵∠DFC=∠DEF+∠EDF,EF=DF, ∴∠DEF=∠EDF, ∴∠BAP+∠PAC=2∠DEF, ∵ED⊥BG,AP⊥BG, ∴DE∥AP, ∴∠PAC=∠DEF, ∴∠BAP=∠DEF=∠PAC, ∵AP⊥BG, ∴AB=AG=4, ∴CG=AC﹣AG=6﹣4=2; (2)连接 BE、DG,如图 2 所示:
1
∴S△AOC= 2 ×OC×AD= 2 ×8×3=12;
(2)∵A(3,a),B(1,b)两点在反比例函数 y k (x>0)的图象上, x
∴3a=b.
∵ a2 2ab b2 =4,
∴|a-b|=4.
∵由图象可知 a<b,
∴a-b=-4.
数学 第 3页(共 6页) 3
a b 4
a 2
∴ 3a b ,解得 b 6
∴A(3,2),B(1,6).
把 A 点的坐标代入 y k (x>0)得, 2 k ,
x
3
∴k=6.
∴反比例函数的解析式为 y 6 (x>0); x
设一次函数的解析式为 y=mx+n,
∵一次函数的图象经过点 A,B,
m n 6 ∴ 3m n 2 .
m 2 解得 n 8 .

安徽省2020年数学中考模拟试题(含详细答案)

安徽省2020年数学中考模拟试题(含详细答案)

45°30°1CABD安徽省2020年九年级中考数学模拟试卷一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1. 2a=,则实数a的值是A. -2B. 12-C. ±2 D. 22.如图是由五个相同的小正方块搭成的几何体,其俯视图是3.下列运算正确的是A.235a b ab+= B. 23626()a a-=- C.236a a a⋅= D.21224()aa--=4.一副三角板如图放置,若AB∥CD,则∠1的度数为A. 75°B. 70°C. 65°D. 60°5.一元二次方程2232=+x x的根的情况是A. 无实数根B. 有两个不相等的实数根C. 有唯一实数根D. 有两个相等的实数根6.不等式组⎩⎪⎨⎪⎧2x-1≥1,x-2<0的解集在数轴上表示为()7. 用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为x m,下列方程符合题意的是A.2(107) 3.52x x-=B.1072 3.522xx-⋅=C.1072() 3.522xx x-+=D.222(109) 3.52x x x+-=8. 如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC=3,则CD的长是A. 2B. 2.5C. 2 2D.3229. 二次函数2y ax bx c=++的图象如图所示,则一次函数y bx a=+与反比例函数a b cyx++=在同一坐标系内的图象大致为第4题图第8题图第7题图NMD 10. 已知,平面直角坐标系中,直线13y x =+与抛物线22122y x x =-+的图象如图,点P 是2y 上的一个动点,则点P 到直线1y 的最短距离为A.322 B. 524C. 2D.324二、填空题(本大题共4小题,每小题5分,满分20分) 11.64的立方根是 ;12.若37x =264x x -+的值是 ;13. 如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C CDA =27°,则∠B 的大小是 ;14.如图,点M 是正方形ABCD 内一点,△MBC 是等边三角形,连接AM 、MD ,对角线BD 交CM 于点N ,现有以下结论: ①∠AMD =150° ;②2MA MN MC =⋅;③∆∆-=23ADM BMC S S 3DN BN =其中正确的结论有 (填写序号).三、(本大题共2小题,每小题8分,满分16分)15.计算:13123tan 308sin 602-︒-︒.16.先化简,再求值:21142()111aa a a +-÷-+-,其中22a =-四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长均为1的正方形网格中有一个△ABC ,顶点A 、B 、C 及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC 向上平移4个单位,得到△A 1B 1C 1(不写作法,但要标出字母); (2)将△ABC 绕点O 旋转180°,得到△A 2B 2C 2(不写作法,但要标出字母); (3)求点A 绕着点O 旋转到点A 2所经过的路径长l .xyy 1=x+3y 2=-12x 2+2x–1–2–3–41234–1–2–3–41234OP第13题图第14题图第17题图18.如图(1)是一个晾衣架的实物图,支架的基本图形是菱形,MN 是晾衣架的一个滑槽,点P 在滑槽MN 上、下移动时,晾衣架可以伸缩,其示意图如图(2)所示,已知每个菱形的边长均为20cm ,且AB =CD =CP =DM =20cm ,当点P 向下滑至点N 处时,测得∠DCE =60°时,求滑槽MN 的长度和此时点A 到直线DP 的距离(精确到0.1cm ,参考数值:2 1.414,3 1.732==).五、(本大题共2小题,每小题10分,满分20分)19.图①是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n 层.将图①倒置后与原图①拼成图②的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+…+n =n (n +1)2.如果图③和图④中的圆圈都有13层.(1)我们自上往下,在图③的每个圆圈中填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在图④的每个圆圈中填上一串连续的整数-23,-22,-21,-20,…,则最底层最右边这个圆圈中的数是 ;(3)求图④中所有圆圈中各数之和(写出计算过程).20. 如图,已知⊙O 中,AC 为直径,MA 、MB 分别切⊙O 于点A 、B . (1)如图①,若∠BAC =23º,求∠AMB 的大小; (2)如图②,过点B 作BD ∥MA ,交AC 于点E ,交⊙O 于点D ,若BD =MA ,求∠AMB 的大小.第18题图第20题图六、(本题满分12分)21.张老师为了解本校九年级学生完成数学作业的具体情况,随机选择部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)C类中女生有______名,D类中男生有______名,将下面条形统计图补充完整;(2)若该校九年级共有女生180名,则九年级女生完成数学作业达到很好和较好的共约多少人?(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好性别相同的概率.七、(本题满分12分)22.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.小李从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E 中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x地铁站 A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数关系式;(2)若小李骑单车的时间y2(单位:分钟)与x满足关系式2278=++y ax bx,且此函数图象的对称轴为直线x=11,当小李选择在C站出地铁时,还需骑单车18分钟才能到家.试求y2与x的函数关系式;(3)试求小李应选择在哪一站出地铁,才能使他从文化宫回到家所需的总时间最短?并求出最短时间(其它环节时间忽略不计).八、(本题满分14分)23.如图1,在△ABC中,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB.过E作EF∥BC,且EF=BC,连接AE、AF.(1)求证:AE=BC;(2)如图2,若∠ADB=90°,求∠F AE的度数;(3)在(2)的条件下,若AB=2,AD∶CD=1∶2,S△AEF=3S△CDE,求AF的长.图2第23题图图1安徽省2019年数学中考模拟试卷参考答案和评分标准一、二、 11、4; 12、2; 13、36°;14、①②④(只写出一个正确结论得1分,两个得3分,填了错误的序号不得分)三、15.解:原式=1331+322322⨯-+-……………………………4分=312-……………………………8分16. 解:原式=11(1)(1)()112(2)a a a a a +--⋅-++………………4分 =112(2)2(2)a a a a +--++=212(2)2a a =++ 当x =-2+2时,原式=1-2+2+2=22.…………8分四、17.解:(1)△A 1B 1C 1如图所示. ……3分(2)△A 2B 2C 2如图所示.……6分(3)l =180π×4180=4π. …………8分18.解:当点P 向下滑至点N 处时,如图中,作于H .,,,即,,,.滑槽MN 的长度为.…………5分(说明:未按要求取近似值一律扣1分)..题号 1 2 3 4 5 6 7 8 9 10 答案CDDABCBCDB根据题意,此时点A到直线DP的距离是.…………8分五、19.解:(1)79…………3分(2)67…………6分(3)图④中共有91个数,分别为-23,-22,-21,…,66,67,所以图④中所有圆圈中各数的和为(-23)+(-22)+…+(-1)+0+1+2+…+67=-(1+2+3+…+23)+(1+2+3+…+67)=-23×242+67×682=2002.…………10分说明:方法不唯一,正确即得分.20、解:、MB分别切于A、B,,,.…………4分连接,,四边形BMAD是平行四边形,,切于A,,,,过O,,,、MB分别切于A、B,,,是等边三角形,.…………10分21、解:(1)类中女生有:名,D类中男生有人,条形统计图补充完整如图所示;…………4分(每项1分)(2)根据题意得:618010810⨯=名答:九年级女生完成数学作业达到很好和较好的共约108人;…………7分(3)根据题意画图如下:由树状图可得共有6种可能的结果,其中两名同学性别相同的结果有3种,所以所选两位同学恰好性别相同的概率是3162=…………12分七、22、解:(1)设y1=kx+b,将(8,18),(9,20)代入得⎩⎪⎨⎪⎧8k+b=18,9k+b=20,解得⎩⎪⎨⎪⎧k=2,b=2.故y1关于x的函数解析式为y1=2x+2. …………………………4分(2)由题意得:112100107818baa b⎧-=⎪⎨⎪++=⎩,解得,1211ab⎧=⎪⎨⎪=-⎩,∴22111782y x x=-+…………………………8分(3)设小李从文化宫回到家所需的时间为y分钟,则y=y1+y2=2x+2+12x2-11x+78=12x2-9x+80=12(x-9)2+39.5,∵12a=>0,∴当x=9时,y有最小值,y最小=39.5,故小李应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.…………………………12分八、23、(1)证明:∵∠ADB=∠CDE,∴∠ADB+∠BDE=∠CDE+∠BDE,即∠ADE=∠BDC,∵AD =BD ,CD =DE , ∴△ADE ≌△BDC ,∴AE =BC ;………………4分(2)解:设AE 交BC 于点G ,DE 交BC 于点H , 由(1)得△ADE ≌△BDC ,∴∠AED =∠BCD ,AE =BC , ∴AE =EF ,∵∠DHC =∠GHE , ∴∠HGE =∠HDC , ∵EF ∥BC ,∴∠GEF =∠EGH ,∴∠AEF =∠EDC =∠ADB =90°,∴△AEF 是等腰直角三角形,∠FAE =45°;………………9分 (3)由(2)知∠AEF =∠ADB =∠CDE =90°, 在△ABD 和△CED 中,AD =BD ,CD =DE ,∠ADB =∠CDE , ∴△ABD ∽△CED , ∴AB CE =AD CD =12, ∵AB =2,∴CE =4, 在△AEF 和△CDE 中, ∵∠AEF =∠CDE ,AE CD =EFDE ,∴△AEF ∽△CDE , ∴S △AEF S △CDE=(AF CE )2,即(AF4)2=3,解得AF =4 3.………………14分说明:方法不唯一,正确即得分.。

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷(含答案解析)

2020年安徽省中考数学一模试卷一、选择题(本大题共9小题,共36.0分)1.下列四个选项中,既是轴对称又是中心对称的图形是()A. 矩形B. 等边三角形C. 正五边形D. 正七边形2.在有理数2,0,−1,−1中,最小的是()2A. 2B. 0C. −1D. −123.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为()A. 82×104B. 82×105C. 8.2×105D. 8.2×1064.已知x=1是关于x的一元一次方程2x−a=0的解,则a的值为()A. −1B. −2C. 1D. 25.如图,直线a//b,等边三角形ABC的顶点B在直线b上,∠CBF=20°,则∠ADG的度数为()A. 20°B. 30°C. 40°D. 50°6.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③9a+3b+c<0;④b2−4ac<0⑤当m≠1时,a+b>am2+bm;其中正确的有()A. 2个B. 3个C. 4个D. 5个7.9.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2017年起到2019年累计投入4250万元,已知2017年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是()A. 1500(1+x)2=4250B. 1500(1+2x)=4250C. 1500+1500x+1500x2=4250D. 1500(1+x)+1500(1+x)2=4250−15008.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE,则EF等于()A. b3a2B. a3b2C. b4a3D. a4b39.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ//BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B.C. D.二、填空题(本大题共5小题,共24.0分)10.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,点P是线段AB上一动点.将△ABC绕点C按顺时针方向旋转,得到△A1B1C.点E是A1C上一点,且A1E=2,则PE长度的最小值为______,最大值为______.11.分解因式:xy−x=______.12.不等式组{3x+4≥0,12x−24≤1的所有整数解的积为________.13.一抛物线和抛物线y=−2x2的形状相同、开口方向相反,顶点坐标是(1,3),则该抛物线的解析式为_______.14.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB的距离的最小值是___________三、计算题(本大题共1小题,共8.0分)15.计算:|√3−2|+(π−2019)0−(−13)−1+3tan30°四、解答题(本大题共8小题,共82.0分)16.《九章算术》是我国古代第一部数学专著,成于公元一世纪左右.此专著中有这样一道题:今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共买一头羊.若每人出5文钱,则还差45文钱;若每人出7文钱,则仍然差3文钱.求买羊的人数和这头羊的价格.17.如图,在平面直角坐标系中,△OAB的三个顶点的坐标分别为A(6,3),B(0,5).(1)画出△OAB绕原点O逆时针方向旋转90°后得到的△OA1B1;(2)画出△OAB关于原点O的中心对称图形△OA2B2;(3)直接写出∠OAB的度数.18.如图,是由边长相等的小正方形组成的几何图形,S n(n≥1)表示第n个图形中小正方形的个数.(1)观察下列图形与等式得关系,并填空:(2)根据(1)中的两个结论填空:S12=______,S n=______(用含有n的代数式表示)19.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度ℎ(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)20.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,点F为线段DE上一点,且∠AFE=∠B.(1)判断△ADF_________△DEC(填“相似”、“不相似”或“无法判断”);(2)若AB=4,AD=3√3,AE=3.求AF的长.21.如图,在△ABC中,AD⊥BC,AE平分∠BAC交BC于点E.(1)∠B=30°,∠C=70°,求∠EAD的大小;(2)若∠B<∠C,则2∠EAD与∠C−∠B是否相等?若相等,请说明理由.22.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(1)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,1吨水生产出的饮料所获的利润是多少?(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.设该厂日用水量为t吨,当日所获利润为W元,求W与t 的函数关系式;已知该厂原来日用水量不少于20吨,后来该厂加强管理,积极节水,使日用水量不超过30吨,但仍不少于20吨,求该厂的日利润的取值范围.23.22.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)ΔABE≌ΔADE;(2)EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60∘,AE:EC=1:3,求BG的长.【答案与解析】1.答案:A解析:解:A、矩形是轴对称图形,也是中心对称图形,故此选项正确;B、等边三角形是轴对称图形,不是中心对称图形,故此选项错误;C、正五边形是轴对称图形,不是中心对称图形,故此选项错误;D、正七边形是轴对称图形,不是中心对称图形,故此选项错误.故选:A.根据轴对称图形与中心对称图形的概念求解.本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.解:根据有理数比较大小的方法,可得−1<−1<0<2,2故最小的有理数是−1.故选:C.3.答案:D解析:解:820万=8200000=8.2×106故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:D解析:本题考查了一元一次方程的解,解一元一次方程,解题的关键是:熟记解一元一次方程的一般步骤.将x=1代入方程2x+a=3,然后解关于a的一元一次方程即可.解:∵x=1是关于x的方程2x−a=0的解,∴2×1−a=0,解得a=2.故选D.5.答案:C解析:解:∵△ABC是等边三角形,∴∠ACB=60°,过C作CM//直线a,∵直线a//直线b,∴直线a//直线b//CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB−∠MCB=60°−20°=40°,∴∠ADG=∠2=40°.故选C.过C作CM//直线a,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.本题考查了平行线的性质,等边三角形的性质的应用,解此题的关键是能正确作出辅助线,注意:两直线平行,内错角相等.6.答案:B解析:【试题解析】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).=1及函数的最大值逐一判断可根据抛物线的开口方向、x=0、x=3时的函数值、对称轴x=−b2a得.解:∵抛物线开口向下,∴a<0,>0,∵−b2a∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;=1,∵x=−b2a∴b=−2a,即2a+b=0∴结论②正确;∵当x=−1和x=3时,函数值小于0,∴y=9a+3b+c<0,∴结论③正确;∵二次函数与x轴有两个不同交点,则Δ>0,即b2−4ac>0∴④错误;由图象知当x=1时函数取得最大值,∴当m≠1时,am2+bm+c<a+b+c,即a+b>m(am+b),故⑤正确;故选:B.7.答案:D解析:本题考查由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.解:设2017−2019年投入经费的年平均增长率为x,则2018年投入1500(1+x)万元,2019年投入1500(1+x)2万元,根据题意得1500(1+x)+1500(1+x)2=4250−1500.故选D.8.答案:C解析:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,又∵∠DCE=∠CBD,∴△BCD∽△CDE,又∵∠EDF=∠DCE,∴△CDE∽△DFE,∴ACBC =BCDC,CDBD=DECD,EFDE=DECE,且易知BC=BD=b,EC=DC,∴CD=b2a ,DE=b3a2,EF=b4a3,故选C.9.答案:C解析:本题考查了动点问题的函数图象,等腰直角三角形的判定与性质,三角形的面积,二次函数图象,求出点Q到AD的距离,从而列出y与x的关系式是解题的关键.判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE,BE,然后表示出PE,QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=√2AB=2√2,∵BE=DE,PD=x,∴PE=DE−PD=2√2−x,∵PQ//BD,BE=DE,∴QE=PE=2√2−x,又∵△ABE是等腰直角三角形,∴点Q到AD的距离=√22(2√2−x)=2−√22x,∴△PQD的面积y=12x(2−√22x)=−√24(x−√2)2+√22,纵观各选项,只有C选项符合.故选C.10.答案:2√3−24√3+2解析:解:∵∠C=90°,∠ABC=30°,AC=4,∴BC=4√3∵将△ABC绕点C按顺时针方向旋转,得到△A1B1C∴AC=A1C=4,且A1E=2∴CE=2∴点E在以C为圆心,CE为半径的圆上,如图,当点C,点E,点P共线,且PC⊥AB时,PE长度最小,∵PC⊥AB,∠ABC=30°∴PC=12BC=2√3∴PE最小值为2√3−2当点P与点B重合,且点E在PC的延长线上时,PE长度最大,∴PE最大值为:4√3+2故答案为:2√3−2,4√3+2由直角三角形的性质可得BC=4√3,由旋转的性质可得AC=A1C=4,可得CE=2,即点E在以C 为圆心,CE为半径的圆上,则当点C,点E,点P共线,且PC⊥AB时,PE长度最小,当点P与点B重合,且点E在PC的延长线上时,PE长度最大.本题考查了旋转的性质,直角三角形的性质,确定点E的轨迹是本题的关键.11.答案:x(y−1)解析:解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:0解析:本题考查解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.解:{3x+4≥0①12x−24≤1②,解不等式①得:x≥−43,解不等式②得:x≤50,∴不等式组的整数解为−1,0,1, (50)所以所有整数解的积为0,故答案为0.13.答案:y=2(x−1)2+3解析:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.直接利用顶点式写出抛物线解析式.解:抛物线解析式为y=2(x−1)2+3.故答案为y=2(x−1)2+3.14.答案:1.2解析:本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到AFAB =FMBC求出FM即可解决问题.解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴AFAB =FMBC,∵CF=2,AC=6,BC=8,∴AF=4,AB=√AC2+BC2=10,∴410=FM8,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.15.答案:解:原式=2−√3+1−(−3)+3×√3=2−√3+1+3+√3=6.3解析:直接利用绝对值的性质、零指数幂、负整数指数幂的性质以及特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,所以根据题意得:5x+45=7x+3,解得:x=21,所以7x+3=150,经检验,符合题意,答:买羊的人数为21人,这头羊的价格是150文.解析:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.设买羊的人数为x人,则这头羊的价格是(5x+45)文,也可表示为(7x+3)文,根据羊的价格不变,即可得出关于x的一元一次方程,解之即可得出结论.17.答案:解:(1)△OA1B1如图所示;(2)△OA2B2如图所示;(3)如图,∠OAB为等腰直角三角形的一个锐角,所以,∠OAB=45°.解析:(1)根据网格结构找出点A、B绕原点O逆时针方向旋转90°后的对应点A1、B1的位置,然后与点O顺次连接即可;(2)根据网格结构找出点A、B关于原点O的中心对称点A2、B2的位置,然后与点O顺次连接即可;(3)根据网格结构可以作出以∠OAB为锐角的等腰直角三角形,然后根据等腰直角三角形的性质解答.本题考查了利用旋转变换作图,等腰直角三角形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.答案:(1)n,n2;(2)78;n2+n.2解析:解:(1)S n−S n−1=n,S n+S n−1=n2,故答案为n,n2;(2)由S n−S n−1=n,S n+S n−1=n2,S12−S11=12,S12+S11=122,2S12=12+122=156,∴S12=78;∵S n−S n−1=n,S n+S n−1=n2,∴2S n=n2+n,S n=n2+n,2.故答案为78;n2+n2(1)观察规律发现S n−S n−1=n,S n+S n+1=n2;(2)由(1)可得S12−S11=12,S12+S11=122,将两式相加,可得S12=78,同理将S n−S n−1=n,S n+S n+1=n2两式相加求出S n.此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.19.答案:解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD−∠ACD=∠CGD+∠CDE−∠ACD=90°+12°−80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC⋅sin∠CAF=0.8×0.93≈0.744m,在Rt△CDG中,CG=CD⋅sin∠CDE=1.6×0.21≈0.336m,∴FG=FC+CG=0.744+0.336≈1.1m.答:故跑步机手柄的一端A的高度约为1.1m.解析:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG 中,根据三角函数可求CG,再根据FG=FC+CG即可求解.20.答案:解:(1)相似;(2)∵四边形ABCD是平行四边形,∴AD//BC CD=AB=4又∵AE⊥BC,∴AE⊥AD;在Rt△ADE中,DE=√AD2+AE2=√(3√3)2+32=6,∵△ADF∽△DEC,∴ADDE =AFCD;∴3√36=AF4,∴AF=2√3.解析:本题主要考查的是平行四边形的性质及相似三角形的判定和性质.(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD=∠C,由此可判定两个三角形相似;(2)在Rt△ADE中,即可求出DE的值;从而根据相似三角形得出的成比例线段求出AF的长.解:(1)∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴∠ADF=∠CED,∵∠AFD+∠AFE=180°,∠ABC+∠BCD=180°,∠AFE=∠B,∴∠AFD=∠BCD,∴△ADF∽△DEC.故答案为相似;(2)见答案.21.答案:解:(1)∵∠B=30°,∠C=70°,∴∠BAC=180°−∠B−∠C=80°,∵AE平分∠BAC,∴∠EAC=12∠BAC=40°,∵AD是高,∠C=70°,∴∠DAC=90°−∠C=20°,∴∠EAD=∠EAC−∠DAC=40°−20°=20°;(2)由(1)知,∠EAD=∠EAC−∠DAC=12∠BAC−(90°−∠C)①把∠BAC=180°−∠B−∠C代入①,整理得,∠EAD=12∠C−12∠B,∴2∠EAD =∠C −∠B .解析:本题利用了三角形内角和定理、角的平分线的定义、直角三角形的性质求解.(1)由三角形内角和定理可求得∠BAC 的度数,在Rt △ADC 中,可求得∠DAC 的度数,AE 是角平分线,有∠EAC =12∠BAC ,故∠EAD =∠EAC −∠DAC ;(2)由(1)知,用∠C 和∠B 表示出∠EAD ,即可知2∠EAD 与∠C −∠B 的关系.22.答案:解:(1)设用1吨水生产的饮料所获利润y(元)与1吨水的价格x(元)的一次函数式为y =kx +b ,(k ≠0)根据题意得:一次函数y =kx +b 过(4,200)和(6,198),∴{198=6k +b 200=4k +b , 解得{k =−1b =204, ∴所求一次函数式是y =−x +204,当x =10时,y =−10+204=194(元);答:y 与x 的函数关系式为y =−x +204,当水价为每吨10元时,1吨水生产出的饮料所获的利润是194元.(2)当1吨水的价格为40元时,所获利润是:y =−40+204=164(元).∴日利润W 与t 的函数关系式是W =200×20+(t −20)×164,即W =164t +720,∵20≤t ≤30, 当t =20时,W =164t +720=4000;当t =30时,W =164t +720=5640;∴4000≤w ≤5640.解析:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y 随x 的变化,结合自变量的取值范围确定最值.(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200),(6,198)可求出解析式,即可求出结果;(2)根据函数式可求出一吨水价是40元的利润,然后根据题意可得W =200×20+164(t −20),把t =20与t =30代入计算即可求出日利润的取值范围.23.答案:(1)证明见解析;(2)证明见解析;(3)BG =4√13.解析:(1)用SAS证明即可;(2)先证明△EDF∽△EGD,得到ED2=EF⋅EG,代换ED=EB即可;(3)根据已知先求出BE和EF值,再根据EB2=EF⋅EG求出EG值,最后用BG=BE+EG计算即可.【详解】解:(1)∵ABCD是菱形,∴AB=AD,∠BAC=∠DAC,∵AE=AE,∴ΔABE≌ΔADE;(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得ΔABE≌ΔADE,∴∠ABG=∠ADE,∴EGD=∠ADE,∵∠FED=∠DEG,∴ΔEDF∽ΔEGD,∴EDEG =EFED,∴ED2=EF⋅EG,由ΔABE≌ΔADE得ED=EB,∴EB2=EF⋅EG;(3)∵菱形ABCD,∴AB=BC,∵∠ABC=60∘,∴ΔABC为等边三角形,∴AC=AB=4.连接BD交AC于点O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE:EC=1:3,∴AE=OE=1,∴BE=√(2√3)2+12=√13,∵AD//BC,∴AEEC =EFBE=13,∴EF=13BE=√133,由(2)得EB2=EF⋅EG,∴EG=EB2EF =√13)2√133=3√13,∴BG=BE+EG=4√13.本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的性质.线段间的转化是解题的关键.。

2020年安徽省中考数学模拟试卷含答案(2套)

2020年安徽省中考数学模拟试卷含答案(2套)

2020年安徽省中考数学一模试卷姓名:—得分:—日期:一、选择题(本大题共10小题,共40分)1、(4分)-3的倒数是()A.-3B.3C.--D.-332、(4分)下列运算正确的是()A.a2+a2=a4B.(-b2)3=-b6C.2x«2x2=2x3D.(m-n)2=m2-n23、(4分)我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路"地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.44X108B.4.4X108C.4.4X109D.4.4X10104、(4分)如图是一个螺母零件的立体图形,它的左视图是()2%-1<5一5、(4分)不等式组3X-11>y的解集在数轴上表小正确的是()I-L.26、(4分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10 (1+x) 2=36.4B.10+10 (1+x) 2=36.4C.10+10 (1+x) +10 (l+2x) =36.4D.10+10 (1+x) +10 (1+x) 2=36.4 7、(4分)为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产 合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A.甲、乙的众数相同C.甲的平均数小于乙的平均数 B.甲、乙的中位数相同D.甲的方差小于乙的方差8、(4分)如图,点C 在反比例函数y=j (x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A, B,且AB=BC,% a AOB 的面积为1,则k 的值为( )A.1B.2C.3D.49、(4分)如图,点E 是矩形ABCD 的边AD 的中点,且BE1AC 于点F,则下列结论中错误的是( )C.ZDCF=ZDFC B S m 时=1S'CDF 3"宜曷=y10、(4分)在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点0, P 是 BD 上一动点,过P 作EFHAC,分别交正方形的两条边于点E, F.设BP=x,ABEF的面积为y,则能反映y与x之间关系的图象为()二、填空题(本大题共4小题,共20分)11、(5分)面的平方根是.12、(5分)分解因式:2xy2+4xy+2x=.13、(5分)如图,AB是O0的弦,点C在过点B的切线上,且0C1OA,OC交AB于点P,已知ZOAB=22°,贝<JzOCB=.14、(5分)如图,在矩形ABCD中,AB=3,BC=4,动点M,N分别从A,C同时向B,D匀速移动,且两点的运动速度相同,当动点M到达B点时,M,N同时停止运动,过点N作NP1CD,交BD于P点,当ABMP为等腰三角形时, AM=.三、计算题(本大题共1小题,共8分)15、(8分)计算:(―1)2019—|—3|X亨+媚+兀。

2020年安徽中考数学模拟试题及答案

2020年安徽中考数学模拟试题及答案

45.分式方程x安徽省模拟中考数学一、选择题(本题共10小题,每小题4分,满分40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。

每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.34相反数是【】4433A. B.- C. D.-3342.今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元。

若用科学记数法表示,则94亿可写为【】A.0.94×109B.9.4×109C.9.4×107D.9.4×1083.如图,直线l∥l,∠1=550,∠2=650,则∠3为【】12A)500.B)550C)600D)6504.如图,在⊙O中,∠ABC=50°,则∠AOC等于【】A.50°B.80°C.90°D.100°1=的解是【】x+12A.x=1B.x=-1C.x=2D.x=-26.如图是某几何体的三视图及相关数据,则判断正确的是…【】A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c27.如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP的长等于【】A.40cm B. 15p cm C. cm D. 75pcm11. 不等式组 ⎨⎧- x + 4 < 2,3x -4≤840 70 70 B.C.D.117 11 48.挂钟分针的长 10cm ,经过 45 分钟,它的针尖转过的弧长是【】A.15p 75p2 29.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的 长和宽分别为 x 、y ,剪去部分的面积为 20,若 2≤x≤10,则 y 与 x 的函数图象是…【 】 10.如图,△PQR 是⊙O 的内接正三角形,四边形 ABCD 是⊙O 的内接正方形,BC∥QR,则∠ AOQ=【 】A.60°B. 65°C. 72°D. 75° 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)⎩ 的解集是_______________.12.如图,已知∠1=100°,∠2=140°,那么∠3=______13. 如图,AD 是△ABC 的边 BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角 形的是__________________。

安徽省2020年中考数学模拟题及答案

安徽省2020年中考数学模拟题及答案

第 1 页 共 9 页安徽省2020年中考数学模拟题注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.3-的绝对值是( ) A .3B .3-C .13D .13-2.下列多项式中,能用公式法分解因式的是( ) A .2x xy -B .2x xy +C .22x y -D .22x y +3.2018年安徽省经济保持平稳健康发展,经国家统计局核定,实现地区生产总值(GDP )超过3000000000000元.将数据3000000000000用科学记数法表示为( ) A .3×1010B .3×1011C .3×1012D .3×10134.如图,在O 中,50ABC ∠=,则AOC ∠等于( )A .50B .80C .90D .1005.分式方程112x x =+的解是( )A .1x =B .1x =-C .2x =D .2x =-6.如图是某几何体的三视图及相关数据,则判断正 确的是( ) A .a c > B .b c > C .2224a b c +=D .222a b c +=7.函数ky x=的图象经过点(12)A -,,则k 的值为( )A .12B .12- C .2 D .2-8.某火车站的显示屏,每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是( ) A .16B .15C .14D .139.若一个多边形的外角和是其内角和的,则这个多边形的边数为( ) A .2B .4C .6D .810.如图,在ABC △中,5AB AC ==,6BC =,点M 为BC 的中点,MN AC ⊥于点N ,则MN 等于( )第4题图ABOC第6题图主视图左视图 俯视图。

2020年安徽省中考模拟数学试题(含答案)

2020年安徽省中考模拟数学试题(含答案)

九年级模拟考试·数学试题卷注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共1页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 23-的相反数是( ) A .23 B .23- C .32 D .32- 2. 下列计算正确的是( )A .77a a a ÷=B .()2243 9a a -=-C .3362a a a ⋅=D .()236a a =3. 岂日无衣,与子同袍新冠肺炎()19COVID -疫情暴发以来,全国共有346支医疗队,4.26万医护人员驰援湖北愈是在危难时刻,愈加体现中华民族强大的凝聚力和国家制度的优越性.数据4.26万用科学记数法表示为( )A .40.42610⨯B .44.2610⨯C .54.2610⨯D .242610⨯4. 以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A .B .C. D .5.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为,x 则下列关于x 的方程正确的是( )A .()264.2%170. 8%x +=B .()64.2%1270.8%x +=C.()()2164.2%1170.8%x ++=+ D .()()164.2%12170.8%x ++=+ 6. 若关于x 的不等式组11,0,x m x ->⎧⎨-<⎩的解集是2,x >则m 的取值范围是( )A .2m <B .2m ≤C .2m >D .2m ≥ 7. 如图,正比例函数1y k x =与反比例函数2k y x =的图象相交于A B 、两点,AC x ⊥轴于点,//C CD AB 交y 轴于点,D 连接,AD BD 、若6,ABD S =V 则下列结论正确的是( )A .16k =-B 13k =-.C .26k =-D .212k =-8. 如图,在ABC V 中,60,8,10,B AB BC E ∠=︒==为AB 边上任意点,EF BC ⊥于点,//F EG BC 交AC 于点,G 连接,FG 若四边形BEGF 为平行四边形,则AE =( )A .2BC .167D .3 9. 若()2,0-是二次函数()20y ax bx a =+>图象上一点,则抛物线()222y a x bx b =-+-的图象可能是( )A .B .C .D .10. 如图,矩形ABCD 中,4,AB =对角线AC BD 、交于点,120,O AOD E ∠=︒为BD 上任意点,F 为AE 中点,则FO FB +的最小值为( )A .B .2+C .5D .二、填空题(每题5分,满分20分,将答案填在答题纸上)11.因式分解:339a b ab -=_ .12.已知直线12//,l l 将一块含30︒角(在1l 上方的角为30︒)的直角三角板按如图所示方式放置,直角顶点落在2l 上,若132∠=o ,则2∠= o13. 如图,ABC V 中,4,24,AB C =∠=︒以AB 为直径的O e 交BC 于点,D D 为BC 的中点,则图中阴影部分的面积为 .14. 若抛物线2221y x kx k =-++在11x -≤≤时,始终在直线2y =的上方,则k 的取值范围是 . 三、解答题 (本大题共2小题,共16分.解答应写出文字说明、证明过程或演算步骤.)15.计算:1012602sin -⎛⎫+-︒ ⎪⎝⎭16.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?四、(本大题共2小题,每小题8分,满分16分)17. 观察下列等式:2111123⎛⎫÷⨯+= ⎪⎝⎭ 21111324⎛⎫÷⨯+= ⎪⎝⎭ 21111435⎛⎫÷⨯+= ⎪⎝⎭ 21111546⎛⎫÷⨯+= ⎪⎝⎭()1写出第⑥个等式: ;()2写出你猜想的第个等式: (用含n 的等式表示),并证明.18. 如图,方格纸上每个小正方形的边长均为1个单位长度,点A B 、都在格点上(两条网格线的交点叫格点).()1将线段AB 平移到11A B ,使得点B 和点1B 关于原点对称,请画出平移后的线段11A B ;()2在坐标系中找出一个格点C (任找一个即可),使得1145,A CB ∠=o 标出点C 坐标,并直接写出此时11A CB S =V .五.(本大题共2小题,每小题10分,满分20分)19.如图1是一款可调节儿童书桌椅,图2是它的示意图.座位DE 宽度为40,cm 其竖直高度CD 为30,cm O 为桌面板AB 的中点,某儿童坐在座位上眼睛F 距离水平地面的高度为100cm 研究表明:当桌面板与竖直方向夹角80,AOC ∠=︒视线FO 与桌面板所呈锐角30FOA ∠=︒时最舒适,问此时OD 高度应调节为多少?(参考数据:200.34,200.94,sin cos ︒≈︒≈200.36,800.98tan sin ︒≈︒≈,800.17,80 5.67,cos tan ︒≈︒≈ 结果精确到1cm )20.如图,AB 与O e 相切于点,A OB 及其延长线交O e 于C D 、两点,F 为劣弧AD 上一点,且满足2,FDC CAB ∠=∠延长DF 交CA 的延长线于点E .()1求证:DE DC =;()2若2,1,tan E BC ∠==求O e 的半径.六、(本题满分12分)21. 某校为调查“停课不停学”期间九年级学生平均每天上网课时长,随机抽取了50名九年级学生做网络问卷调查.共四个选项:4(A 小时以下)、5(4~B 小时)、6(5~C 小时), 6(D 小时以上),每人只能选一 项.并将调查结果绘制成如下不完整的统计表和统计图.被调查学生平均每天上网课时间统计表根据以上信息,解答下列问题:()1a = ,b = ,()2补全条形统计图;()3该校有九年级学生720名,请你估计仝校九年级学生平均每天上网课时长在5小时及以上的共多少名;()4在被调查的对象中,平均每天观看时长超过6小时的,有2名来自九()1班,1名来自九()5班,其余都来自九()2班,现教导处准备从D 选项中任选两名学生进行电话访谈,请用列表法或画树状图的方法求所抽取的2名学生恰好来自同一个班级的概率.七、(本题满分12分)22. 随着新冠肺炎的爆发,市场对口罩的需求量急剧增大.某口罩生产商自二月份以来,--直积极恢复产能,每日口罩生产量y (百万个)与天数2(19,x x ≤≤且x 为整数)的函数关系图象如图所示,而该生产商对口供应市场对口罩的需求量<(百万个)与天数x 呈抛物线型,第1天市场口罩缺口(需求量与供应量差)就达到7.5(百万个),之后若干天,市场口罩需求量不断上升,在第10天需求量达到最高峰60(百万个).()1求出y 与x 的函数解析式;()2当市场供应量不小于需求量时,市民买口罩才无需提前预约,那么在整个二月份,市民无需预约即可购买口罩的天数共有多少天?八、(本题满分14分)23. 如图,正方形ABCD 中,E 为BC 边上任意点,AF 平分,EAD ∠交CD 于点F .()1如图1,若点F 恰好为CD 中点,求证: 2AE BE CE =+;()2在()1的条件下,求CE BC的值; ()3如图2,延长AF 交BC 的延长线于点G ,延长AE 交DC 的延长线于点,H 连接,HG 当OG DF =时,求证:HG AG ⊥.九年级模拟考试·数学参考答案一、选择题1-5:ADBDA 6-10:BCCDA二、填空题11.()()3131ab ab ab +- 12.28 13.815π 14. 2k >或2k <- 三、解答题15.解:原式2123=+--=16.解:设第八批安徽共出动了x 名医护人员,则可列方程为310130x x ++=,解得30x =.答:第八批安徽共出动了30名医护人员.四、(本大题共2小题,每小题8分,满分16分)17. 解:()()211161181n ⎛⎫⨯ +⎪=⎭+⎝÷ ()()22111112n n n ⎛⎫⨯ ⎪+⎝+=+⎭÷ 证明:左边()()221112111n n n n n =÷+=++=+=+右边, 故等式成立.18. 解:()1如图,线段AB 即为所求, ()2如图,情况一:()1115,0,3ACB C S -=V ;情况二:()1121,0,5ACB C S -=V 五、(本大题共2小题,每小题10分,满分20分)19. 解:如图,作,OH FG ⊥垂足为H ,延长FE 交水平线CG 于点G .易得,40,20OH FOH =∠=在Rt FHO V 中,FH tan FOH OH ∠=,即2040FH tan ︒= ()20400.364014.4FH tan cm ∴=︒⨯≈⨯=.()10014.43055.656OD cm ∴=--=≈答:此时OD 高度应调节为56.cm20.() 1证明:如图,连接OA AD 、.CD Q 为直径,90DAC ∴∠=︒又AB Q 为O e 切线,90OAB ∴∠=o.DAO CAB ∴∠=∠2,EDC CAB ∠=∠Q2EDC DAO ∴∠=∠,DO AO =Q.OAD ODA ∴∠=∠2EDC ADO ∴∠=∠AD ∴平分EDC ∠,AD EC ⊥QDE DC ∴=()2解:,,CAB ADB B B ∠=∠∠=∠QACB DAB ∴V :VAD AB AC BC∴= 又E DCA ∠=∠Q , 2,tan DCA ∴∠=即2AD AC = 2AB BC∴= 1,.BC =Q2AB ∴=在Rt OAB V 中,设半径为r .由勾股定理得:()22221,r r +=+ 解得32r = 即O e 的半径为32 六、(本题满分12分)21. 解:()128 10() 2如图()()372040%10%360⨯+=(人).答:估计全校九年级学生平均每天上网课时长在5小时及以上的共360名.()4由题意可知,D 选项中共有5名学生,其中2名来自九()1班,2名来自九()2班,1名来自九()5班,可画树状图如下:共有20种等可能的情况,其中两名学生来自同一个班级的情况有4种.设所抽取的2名学生恰好来自同一个班级的事件为,A则()41205P A ==七、(本题满分12分)22. 解:()1当018x ≤≤时,设,y kx b =+把()()0,10,18,46代入, 得184610,k b b ⎧⎨⎩+==,解得2,10.k b ==⎧⎨⎩所以210y x =+.当1829x ≤≤时,46y =.综上所述,()210118,461829),(x x x y x x +≤≤⎧=⎨<≤⎩为整数为整数()2由题意可设()21060z a x =-+当1x =时,代入210,y x =+得12y =,此时口罩需求量为127.519.5+=(百万个)将()1,19.5代入中()21060z a x =-+,得 816019.5,a +=解得12a =- 所以()2110602z x =-+- 当118x ≤≤时,令,y z = 即()2121010602x x +=--+. 解得10x =(舍去)216,x =,即此时需求和供应平衡,均为42百万个 当1816x ≥≥时,y 随着x 增大而增大,故42y ≥;当2918x ≥≥时,4642y =>;当2916x ≥≥时,z 随着x 增大而减小,所以42x ≤.综上所述,在第16天开始,y z ≥2916114-+=(天).答:在整个二月份,市民无需预约即可购买到口罩的天数共有14天.八、(本题满分14分)23.()1证明:如图,延长BC 交AF 的延长线于点G .//,AD OG QDAF G ∴∠=∠又AF Q 平分DAE ∠DAF EAF ∴∠=∠G EAF ∴∠=∠,EA EG ∴=Q 点F 为CD 中点,CF DF ∴=又,,DFA CFG FAD G ∠=∠∠=∠Q()ADF GCF AAS ∴V V ≌AD CG ∴=CG BC BE CE ∴==+2.EG BE CE CE BE CE AE ∴=++-+=()2解:设,,CE a BE b ==则2,AE a b AB a b =+=+.在Rt ABE V 中,222AB BE AE +=,即()()2222a b b a b ++=+. 解得3,b a b a ==-(舍去).14CE a BC a b ∴==+ ()3解:如图,连接DG .,,,CG DF DC DA ADF DOG ∴==∠=∠ ()ADF DCG SAS ∴V V ≌CDG DAF ∴∠=∠HAF FDG ∴∠=∠.又,AFH DFG ∠=∠Q,.AFH DFG ∴V :VAF FH DF FG∴= 又,AFD HFG ∠=∠QADF HGF ∴V :VADF FGH ∴∠=∠90ADF ∠=︒Q90FGH ∴∠=oAG GH ∴⊥。

2020中考安徽数学模拟试卷4套

2020中考安徽数学模拟试卷4套

2020 年安徽省初中学业水平考试数学模拟试卷(一)时间:120分钟 满分:150分一、选择题(1.合肥市某日的气温是-2 ℃~6 ℃,则该日的温差是( A ) A .8 ℃ B .5 ℃ C .2 ℃D .-8 ℃2.计算-a 2·a 3的结果是( B ) A .a 5 B .-a 5 C .-a 6D .a 63.在我国古代数学名著《九章算术》中,将底面为矩形、一条侧棱垂直于底面的四棱锥称之为“阳马”(如图).“阳马”的俯视图是( A )4. 太阳的温度很高,其中心的温度约为19 200 000 ℃,用科学记数法可将19 200 000表示为( B ) A .1.92×106 B .1.92×107 C .19.2×106D .0.192×1075.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是( C )A .64°B .65°C .66°D .67°6.不等式组⎩⎪⎨⎪⎧2(x +3)≥2,5-x >4)的解集是( A )A .-2≤x <1B .-2<x ≤1C .-1<x ≤2D .-1≤x <27.小明为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).根据以上信息,下面结论错误的是( D ) A .被抽取的天数为50天B .空气轻微污染的所占比例为10%C .扇形统计图中表示优的扇形的圆心角度数57.6°D .估计该市这一年(365天)达到优和良的总天数不多于290天8.某商品原价300元,连续两次降价a %后售价为260元,下面所列方程正确的是( D ) A .300(1+a %)2=260 B .300(1-a 2%)=260 C .300(1-2a %)=260D .300(1-a %)2=2609.若函数y =ax -c 与函数y =bx的图象如图所示,则函数y =ax 2+bx +c 的大致图象为( D )10.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =23,Q 为AC 上的动点,P 为Rt △ABC 内一动点,且满足∠APB =120°,若D 为BC 的中点,则PQ +DQ 的最小值是( A )A .43-4B .43C .4D .43+4二、填空题(本大题共4小题,每小题5分,满分20分) 11. 要使式子a +1a -1有意义,则a 的取值范围是__a ≥-1且a ≠1__ . 12.因式分解:a 3-4ab 2=__a (a +2b )(a -2b )__.13.如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC相交于点E ,则劣弧CE ︵ =3cm__.14.对于一个函数,如果它的自变量x 与函数值y 满足:当-1≤x ≤1时,-1≤y ≤1,则称这个函数为“闭函数”.例如:y =x ,y =-x 均是“闭函数”.已知y =ax 2+bx +c (a ≠0)是“闭函数”,且抛物线经过点A (1,-1)和点B (-1,1),则a 的取值范围是__-12≤a <0或0<a ≤12__.三、(本大题共2小题,每小题8分,满分16分) 15.计算:9+(π-3)0-|-5|+(-1)2 019+⎝⎛⎭⎫12-2解:原式=3+1-5-1+4=2.16.先化简,再求值:⎝⎛⎭⎫x x +1-3x x -1÷xx 2-1,其中x =-2.解:原式=x (x -1)-3x (x +1)(x +1)(x -1)·(x +1)(x -1)x =-2x 2-4xx =-2x -4,把x =-2代入,得-2×(-2)-4=0.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 为格点三角形(顶点在网格线的交点).(1)将△ABC 向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△ABC 绕着某点O 逆时针方向旋转90°后,得到△A 2B 2C 2,请画出旋转中心O ,并直接写出在此旋转过程中,线段AB 扫过的区域的面积.解:(1)如图所示:△A 1B 1C 1即为所求;(2)如图所示:点O 即为所求;线段AB 扫过的区域的面积为:90π·(62+12)2360-90π·(42+22)2360=17π4.18.观察以下等式:第1个等式:11-11×2+12=1,第2个等式:12-12×3+23=1,第3个等式:13-13×4+34=1,第4个等式:14-14×5+45=1,……按照以上规律,解决下列问题: (1)写出第5个等式;(2)写出你猜想的第n (n 为正整数)个等式(用含n 的等式表示),并证明. 解:(1)第5个等式为:15-15×6+56=1;(2)第n 个等式为:1n -1n (n +1)+n n +1=1;证明:左边=n +1n (n +1)-1n (n +1)+n 2n (n +1)=n 2+n n (n +1)=n (n +1)n (n +1)=1=右边,∴等式成立.五、(本大题共2小题,每小题10分,满分20分)19.为了测量山坡上的电线杆PQ 的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A 处测得信号塔顶端P 的仰角是45°,信号塔底端点Q 的仰角为30°,沿水平地面向前走100米到B 处,测得信号塔顶端P 的仰角是60°,求信号塔PQ 的高度.解:延长PQ 交直线AB 于点M ,连接AQ ,如图所示:则∠PMB =90°,设PM 的长为x 米,在Rt △P AM 中,∠P AM =45°,∴AM =PM =x 米,∴BM =x -100(米),在Rt △PBM 中,∵tan ∠PBM =PMBM ,∴tan 60°=xx -100=3,解得:x =50(3+3).在Rt △QAM 中, ∵tan ∠QAM =QMAM,∴QM =AM ·tan ∠QAM =50(3+3)×tan 30°=50(3+1)∴PQ =PM -QM =100(米).20.如图,点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A ,B . (1)若∠A =30°,求证:P A =3PB ;(2)小明发现,∠A 在一定范围内变化时,始终有∠BCP =12(90°-∠P )成立.请你写出推理过程.证明:(1)∵AB 是直径,∴∠ACB =90°.∵∠A =30°,∴AB =2BC .∵PC 是⊙O 切线,∴∠BCP =∠A =30°,∴∠P =30°,∴PB =BC ,BC =12AB ,∴P A =3PB ;(2)∵点P 在⊙O 外,PC 是⊙O 的切线,C 为切点,直线PO 与⊙O 相交于点A ,B ,∴∠BCP =∠A .∵∠A +∠P +∠ACB +∠BCP =180°,且∠ACB =90°,∴2∠BCP =90°-∠P ,∴∠BCP =12(90°-∠P ).六、(本题满分12分)21.中国式过马路,是网友对部分中国人集体闯红灯现象的一种调侃,即“凑够一撮人就可以走了,和红绿灯无关”.针对这种现象某媒体记者在多个路口采访闯红灯的行人,得出形成这种现象的四个基本原因,①红绿灯设置不科学,交通管理混乱占1%;②侥幸心态;③执法力度不够占9%;④从众心理,该记者将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调査了__200__ 名行人; (2)求图1中④所在扇形的圆心角,并补全图2;④所在扇形的圆心角70200×360°=126°,③的人数200×9%=18(人),②的人数200-18-2-70=110(人),第②种情况110人,第③种情况18人,补全图形如图:(3)在本次调查中,记者随机采访其中的一名行人,求他属于第②种情况的概率. P =110200=1120,他属于第②种情况的概率为1120.七、(本题满分12分)22.安徽凤凰城建材市场为某工厂代销一种建筑材料.当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.(1)当每吨售价是240元时,计算此时的月销售量;(2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9 000元? (3)小明说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由. 解:(1)当每吨售价是240元时,此时的月销售量为 45+260-24010×7.5=60(吨);(2)设当售价定为每吨x 元时,由题意,可列方程(x -100)⎝⎛⎭⎫45+260-x10×7.5=9 000,化简得x 2-420x+44 000=0.解得x 1=200,x 2=220,当售价定为每吨200元时,销量更大,所以售价应定为每吨200元;(3)小明说的不对.∵由(2)知,x 2-420x +44 000=0,∴当月利润最大时,x 为210元,理由:方法一:当月利润最大时,x 为210元,而对于月销售额W =x ⎝⎛⎭⎫45+260-x 10×7.5=-34(x -160)2+19 200来说,当x为160元时,月销售额W 最大,∴当x 为210元时,月销售额W 不是最大,∴小明说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17 325元;而当x 为200元时,月销售额为18 000元.∵17 325元<18 000元,∴当月利润最大时,月销售额W 不是最大.∴小明说的不对.八、(本题满分14分)23. 定义:经过三角形一边中点,且平分三角形周长的直线叫做这个三角形在该边上的中分线,其中落在三角形内部的部分叫做中分线段.(1)如图,△ABC 中,AC >AB ,DE 是△ABC 在BC 边上的中分线段,F 为AC 中点,过点B 作DE 的垂线交AC 于点G ,垂足为H ,设AC =b ,AB =c .①求证:DF =EF ;②若b =6,c =4,求CG 的长度; (2)若题(1)中,S △BDH =S △EGH ,求bc的值.(1)①证明:∵F 为AC 中点,DE 是△ABC 在BC 边上的中分线段,∴DF 是△CAB 的中位线,∴DF =12AB =12c ,AF =12AC =12b ,CE =12(b +c ),∴AE =b -CE =b -12(b +c )=12(b -c ),∴EF =AF -AE =12b -12(b -c )=12c ,∴DF =EF ;②解:过点A 作AP ⊥BG 于P ,如图1所示: ∵DF 是△CAB 的中位线,∴DF ∥AB ,∴∠DFC =∠BAC .∵∠DFC =∠DEF +∠EDF ,EF =DF ,∴∠DEF =∠EDF ,∴∠BAP +∠P AC =2∠DEF .∵ED ⊥BG ,AP ⊥BG ,∴DE ∥AP ,∴∠P AC =∠DEF ,∴∠BAP =∠DEF =∠P AC .∵AP ⊥BG ,∴AB =AG =4, ∴CG =AC -AG =6-4=2;(2)解:连接BE ,DG ,如图2所示:∵S △BDH =S △EGH ,∴S △BDG =S △DEG , ∴BE ∥DG .∵DF ∥AB ,∴△ABE ∽△FDG ,∴AB DF =AE FG =21,∴FG =12AE =12×12(b -c )=14(b -c ).∵AB =AG =c ,∴CG =b -c ,∴CF =12b =FG +CG =14(b -c )+(b -c ),∴3b =5c ,∴b c =53.2020 年安徽省初中学业水平考试数学模拟试卷(二)时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.在0,1,-12,-1四个数中,最小的数是( D )A .0B .1C .-12D .-12.下列计算中,正确的是( B ) A .a 2+a 3=a 5 B .(a 2)5=(-a 5)2 C .(a 3b 2)3=a 6b 5D .a 2·a 3=a 6 3. 中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为 ( C )A .1.2×109个B . 12×109个C . 1.2×1010个D . 1.2×1011个4.我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是( A )5. 一辆汽车沿一条公路上山,速度是10 km /h ,从原路下山,速度是20 km /h ,这辆汽车上、下山的平均速度是( A )A .403 km /hB .12.5 km /hC .14.5 km /hD .15 km /h6.化简1xy -y 2+x +y x 2-y 2的结果是( B )A .1y (x -y )B .y +1y (x -y )C .y -1y (x -y )D .1y (x +y )7.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( C )A .扇形统计图能反映各部分在总体中所占的百分比B .每天阅读30分钟以上的居民家庭孩子超过50%C .每天阅读1小时以上的居民家庭孩子占20%D .每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°8.如图,平行四边形ABCD 中,∠B =60°.G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF ,下列说法不正确的是( D )A .四边形CEDF 是平行四边形B .当CE ⊥AD 时,四边形CEDF 是矩形C .当∠AEC =120°时,四边形CEDF 是菱形D .当AE =ED 时,四边形CEDF 是菱形9.甲、乙两人在一条长为600 m 的笔直马路上进行跑步,速度分别为4 m/s 和6 m/s ,起跑前乙在起点,甲在乙前面50 m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y (m )与时间t (s )的函数图象是( C )10.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC BC =13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( C )A .(2,2)B .⎝⎛⎭⎫52,52 C .⎝⎛⎭⎫83,83D .(3,3)二、填空题(本大题共4小题,每小题5分,满分20分) 11.因式分解:x 3-4x =__x (x +2)(x -2)__. 12.已知a <0,那么|a 2-2a |=__-3a __.13.如图,△ABC 中,∠B =60°,BA =3,BC =5,点E 在BA 的延长线上,点D 在BC 边上,且ED =EC .若AE =4,则BD =__2__.14.定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为22时,称点M 为PQ 的等高点,称此时MP +MQ 的值为PQ 的“等高距离”.已知P (1,2),Q (3,4),当PQ 的“等高距离”最小时,则点M 的坐标为__(4,1)或(0,5)__.三、(本大题共2小题,每小题8分,满分16分) 15.计算(-2)-1+(3-3)0-|-cos 45°| 解:原式=-2-1+1-22=-2-22. 16.某乒乓球馆有两种计费方案,如下图表.李强和同学们打算周末去此乒乓球馆连续打球4小时,经服务生测算后,告知他们包场计费方案会比人数计费方案便宜,则他们参与包场的人数至少为多少人?解:设共有x 人,由题意得,若选择包场计费方案需付50×4+5x =5x +200(元),若选择人数计费方案需付20x +(4-2)×6x =32x (元),∴5x +200<32x ,解得x >20027=71127.∴他们参与包场的人数至少为8人.四、(本大题共2小题,每小题8分,满分16分) 17.观察下面的点阵图和相应的等式,探究其中的规律:(1)认真观察,并在④后面的横线上写出相应的等式.①1=1 ②1+2=(1+2)×22=3 ③1+2+3=(1+3)×32=6 ④__10__…(2)结合(1)观察下列点阵图,并在⑤后面的横线上写出相应的等式.①1=12 ②1+3=22 ③3+6=32 ④6+10=42 ⑤__52__… (3)通过猜想,写出(2)中与第n 个点阵相对应的等式__n 2__.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(4,-1).(1)把△ABC 向上平移5个单位后得到对应的△A 1B 1C 1,画出△A 1B 1C 1,并写出C 1的坐标; (2)以原点O 为对称中心,再画出与△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标. 解:根据平移定义和图形特征可得:(1)C 1(4,4);(2)C 2(-4,-4).五、(本大题共2小时,每小题10分,满分20分)19.如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且AE =25 cm ,手臂AB =BC =60 cm ,末端操作器CD =35 cm ,AF ∥直线L .当机器人运作时,∠BAF =45°,∠ABC =75°,∠BCD =60°,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)解:如图,作BH ⊥AF 于H ,延长CD 交AF 于J ,交EL 于M ,则四边形AEMJ 是矩形,四边形BHJG 是矩形.在Rt △ABH 中,∵∠BAH =45°,AB =60(cm),∴BH =GJ =302(cm).∵BG ∥FJ ,∴∠GBA =∠BAH =45°.∵∠CBA =75°,∴∠CBG =30°,∴CG =12BC =30(cm),∴DM =CM -CD =CG +GJ +JM -CD =30+302+25-35=(20+302)(cm).20.如图,在△ABC 中,∠BAC =90°,以AC 为直径的⊙O 交BC 于点D ,点E 在AB 上,连接DE 并延长交CA 的延长线于点F ,且∠AEF =2∠C .(1)判断直线FD 与⊙O 的位置关系,并说明理由; (2)若AE =2,EF =4,求⊙O 的半径. 解:(1)直线FD 与⊙O 相切;理由:连接OD ,∵∠AEF =2∠C ,∠AOD =2∠C ,∴∠AEF =∠AOD .∵∠AEF +∠AED =180°.∴∠AOD +∠AED =180°,∵∠BAC =90°,∴∠ODF =90°,∴直线FD 与⊙O 相切;(2)∵∠BAC =90°,AE =2,EF =4,∴∠F =30°,AF =3AE =2 3.∵∠ODF =90°,∴OF =2OD ,∴OD =F A ,∴⊙O 的半径为2 3.六、(本题满分12分)21.某校举办的课外活动中,有一项是小制作评比.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.第三组的件数是12.请回答:(1)本次活动共有__60__件作品参赛;各组作品件数的中位数是__10.5__件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?第四组有作品60×62+3+4+6+4+1=18(件);第六组有作品60×12+3+4+6+4+1=3(件);∴第四组的获奖率为1018=59,第六组的获奖率为23;∵59<23,∴第六组的获奖率较高;(3)小制作评比结束后,组委会决定从4件最优秀的作品A ,B ,C ,D 中选出两件进行全校展示,请用树状图或列表法求出刚好展示B ,D 的概率.画树状图如下.或列表如下P =212=16.七、(本题满分12分)22.研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的注意力激增,中间有一段时间,学生的注意力保持平稳状态,随后开始分散.学生注意力指标数y随时间x变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分;当10≤x≤20和20≤x≤45时,图象是线段.根据图象回答问题:(1)课堂上,学生注意力保持平稳状态的时间段是__10到20分钟__;(2)结合函数图象回答,一道几何综合题如果需要讲25分钟,老师最好在上课后大约第__4__分钟到第__29__分钟讲这道题,能使学生处于注意力比较集中的听课状态.当0≤x≤10时,设抛物线的函数关系式为y=ax2+bx+c,∵图象过点(0,20),(5,39),(10,48),∴⎩⎪⎨⎪⎧c =20,25a +5b +c =39,100a +10b +c =48,)解得a =-15,b =245,c =20,∴y =-15x 2+245x +20(0≤x ≤10),当20≤x ≤45,设其函数解析式为y =kx +b ,将(20,48),(45,20)代入得⎩⎪⎨⎪⎧48=20k +b 20=45k +b ),解得⎩⎪⎨⎪⎧k =-1.12b =70.4),∴y =-1.12x +70.4,当y =39时,得x =28128,28128-5=23128,∴老师最好在上课后大约第 4分钟到第 29分钟讲这道题,能使学生处于注意力比较集中的听课状态.故答案为4,29.八、(本题满分14分)23.已知四边形ABCD 中,AB =AD ,对角线AC 平分∠DAB ,过点C 作CE ⊥AB 于点E ,点F 为AB 上一点,且EF =EB ,连接DF .(1)求证:CD =CF ;(2)连接DF ,交AC 于点G ,求证:△DGC ∽△ADC ;(3)若点H 为线段DG 上一点,连接AH ,若∠ADC =2∠HAG ,AD =3,DC =2,求FGGH 的值.(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC .在△ADC 和△ABC 中,⎩⎪⎨⎪⎧AC =AC ,∠DAC =∠BAC ,AD =AB ,∴△ADC≌△ABC (SAS ),∴CD =CB .∵CE ⊥AB ,EF =EB ,∴CF =CB ,∴CD =CF ;(2)证明:∵△ADC ≌△ABC ,∴∠ADC =∠B .∵CF =CB ,∴∠CFB =∠B ,∴∠ADC =∠CFB ,∴∠ADC +∠AFC =180°.∵四边形AFCD 的内角和等于360°,∴∠DCF +∠DAF =180°.∵CD =CF ,∴∠CDG =∠CFD .∵∠DCF +∠CDF +∠CFD =180°,∴∠DAF =∠CDF +∠CFD =2∠CDG .∵∠DAB =2∠DAC ,∴∠CDG =∠DAC .∵∠DCG =∠ACD ,∴△DGC ∽△ADC ;(3)解:∵△DGC ∽△ADC ,∴∠DGC =∠ADC ,CG CD =DGAD.∵∠ADC =2∠HAG ,AD =3,DC =2,∴∠HAG =12∠DGC ,CG 2=DG3,∴∠HAG =∠AHG ,CG DG =23,∴HG =AG .∵∠GDC =∠DAC =∠F AG ,∠DGC =∠AGF ,∴△DGC ∽△AGF ,∴GF AG =CG DG =23,∴FG GH =23.2020 年安徽省初中学业水平考试数学模拟试卷(三)时间:120分钟 满分:150分一、选择题(1.-6的绝对值的相反数是( A ) A .-6 B .6 C . 16D .-162.计算:a 3÷a 的结果是( B ) A .3 B .a 2 C .a 3D .a 4 3. 下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( B )4.设a 为正整数,且a <37<a +1,则a 的值为( B ) A . 5 B . 6 C . 7D . 85.已知:如图,AB ∥CD ∥EF ,∠ABC =50°,∠CEF =150°,则∠BCE 的值为( C )A .50°B .30°C .20°D .60°6.计算a 2-2a +1a 2-1÷a 2-a a +1-1a +1的正确结果为( B )A .1a -1B .1C .2D .-1a7.我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.”如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是( B )A .x (x +12)=864B .x (x -12)=864C .x 2+12x =864D .x 2+12x -864=08.如图,▱ABCD 中,AC ⊥BC ,BC =3,AC =4,则B ,D 两点间的距离是( A )A .213B .62C .10D .559.二次函数y =ax 2+bx +c 的图象如图所示,正比例函数y =bx 与反比例函数y =ax 在同一坐标系中的大致图象可能是( B )10.如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE =x ,DE 的延长线交CB 的延长线于点F ,设BF =y ,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( C )A .AD =2B .当x =1时,y =6C .若AD =DE ,则BF =EF =1D .若BF =2BC ,则AE =43二、填空题(本大题共4小题,每小题5分,满分20分)11.港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为__7.2×1010__元.12.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是__18__.13.如图,已知四边形ABCD 内接于⊙O ,AD 是直径,∠ABC =120°,CD =3,则弦AC =第13题图 第14题图14.如图,抛物线y =-2x 2-8x -6与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴交于点B ,D ,若直线y =-x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是__-3<m <-158__.三、(本大题共2小题,每小题8分,满分16分) 15.计算⎝⎛⎭⎫-12-2-|2-2|-2cos 45°+(3-π)0 解:原式=1⎝⎛⎭⎫-122-(2-2)-2×22+1=4+2-2-2+1=3.16.定义一种新运算,观察下列式: 1⊙3=1×4+3=7 3⊙(-1)=3×4-1=11 5⊙4=5×4+4=24 4⊙(-3)=4×4-3=13(1)请你想一想:a ⊙b =__4a +b __;若a ≠b ,那么a ⊙b __≠__b ⊙a (填入“=”或“≠”); (2)若a ⊙(-2b )=4,请计算(a -b )⊙(2a +b )的值.解:∵a ⊙(-2b )=4a -2b =4,∴2a -b =2,(a -b )⊙(2a +b )=4(a -b )+(2a +b )=4a -4b +2a +b =6a-3b=3(2a-b)=3×2=6.四、(本大题共2小题,每小题8分,满分16分)17.2019年2月24日,华为发布旗下最新款折叠屏手机MateX,如图是这款手机的示意图,当两块折叠屏的夹角为30°时(即∠ABC=30°),测得AC之间的距离为40 m m,此时∠CAB=45°.求这款手机完全折叠后的宽度AB长是多少?(结果保留整数,参考数据:2≈1.414,3≈1.732,6≈2.449)解:过点C作CD⊥AB于点D,∵AC=40 m m,∠A=45°,∴CD=AD=402=202(mm).∵∠B=30°,∴BC=2CD=402(mm),∴由勾股定理可知:BD=206(mm),∴AB=AD+BD=202+206≈77(mm)18.已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;(2)画出将△A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所求.五、(本大题共2小题,每小题10分,满分20分)19.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA,CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D,E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.解:(1)∵OD 经过圆心O ,OD ⊥AC ,∴AD =DC ,同理:CE =EB ,∴DE 是△ABC 的中位线,∴DE =12AB .∵AB =8,∴DE =4; (2)过点O 作OH ⊥AB ,垂足为点H ,OH =3,连接OA .∵OH 经过圆心O ,∴AH =BH =12AB .∵AB=8,∴AH =4,在Rt △AHO 中,AH 2+OH 2=AO 2,∴AO =5,即圆O 的半径为5.20.为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数; (3)估计该校1 200名学生中有多少人喜爱跑步项目.解:(1)4÷5%=80(人),即在这次问卷调查中,一共抽查了80名学生; (2)喜爱游泳的学生有:80×25%=20(人),补全的频数分布直方图如下图所示:扇形统计图中“体操”所对应的圆心角度数是:360°×1080=45°; (3)1 200×1080=150(人),故估计该校1 200名学生中有150人喜爱跑步项目.六、(本题满分12分)21.如图:一次函数的图象与y 轴交于C (0,4),且与反比例函数y =kx (x >0)的图象在第一象限内交于A (3,a ),B (1,b )两点.(1)求△AOC 的面积;(2)若a 2-2ab +b 2=2,求反比例函数和一次函数的解析式.解:(1)∵一次函数的图象与y 轴交于C (0,4),与反比例函数y =kx (x >0)的图象在第一象限内交于A (3,a ),B (1,b )两点.∴S △AOC =12×4×3=6;(2)∵A (3,a ),B (1,b )两点在反比例函数y =kx(x >0)的图象上,∴3a =b ,∵a 2-2ab +b 2=2,∴|a -b |=2,∵由图象可知a <b ,∴a -b =-2,∴⎩⎪⎨⎪⎧a -b =-2,3a =b ,解得⎩⎪⎨⎪⎧a =1,b =3,∴A (3,1),B (1,3),把A 点的坐标代入y =k x (x >0)得,1=k 3,∴k =3,∴反比例函数的解析式为y =3x(x >0);设一次函数的解析式为y =mx +n ,∵一次函数的图象经过点A ,C ,∴⎩⎪⎨⎪⎧m +n =3,3m +n =1,解得⎩⎪⎨⎪⎧m =-1,n =4.∴一次函数的解析式为y =-x +4.七、(本题满分12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克,根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果售价为28元/千克,求当天该芒果的销售量;(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?解:(1)设该一次函数解析式为y =kx +b 则⎩⎪⎨⎪⎧25k +b =35,22k +b =38,)解得⎩⎪⎨⎪⎧k =-1,b =60,)∴y =-x +60(15≤x ≤40),∴当x =28时,y =32,∴芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知m =y (x -10) =(-x +60)( x -10) =-x 2+70x -600,当m =400时,则-x 2+70x -600=400,整理,得x 2-70x +1 000=0,解得x 1=20,x 2=50.∵15≤x ≤40,∴x =20,∴这天芒果的售价为20元. 八、(本题满分14分)23.如图1,在锐角△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在AC 上,且满足∠AFE =∠A ,DM ∥EF 交AC 于点M .(1)证明:DM =DA ;(2)如图2,点G 在BE 上,且∠BDG =∠C ,求证:△DEG ∽△ECF ; (3)在图2中,取CE 上一点H ,使得∠CFH =∠B ,若BG =3,求EH 的长.(1)证明:如图1所示,∵DM ∥EF ,∴∠AMD =∠AFE .∵∠AFE =∠A ,∴∠AMD =∠A ,∴DM =DA ;(其他解法酌情给分)(2)证明:如图2所示,∵D ,E 分别是AB ,BC 的中点,∴DE ∥AC ,∴∠BDE =∠A ,∠DEG =∠C .∵∠AFE =∠A ,∴∠BDE =∠AFE ,∴∠BDG +∠GDE =∠C +∠FEC .∵∠BDG =∠C ,∴∠GDE =∠FEC ,∴△DEG ∽△ECF ;(3)解:如图3所示,∵∠BDG =∠C =∠DEB ,∠B =∠B ,∴△BDG ∽△BED ,∴BD BE =BGBD ,∴BD 2=BG ·BE .∵∠AFE =∠A ,∠CFH =∠B ,∴∠C =180°-∠A -∠B =180°-∠AFE -∠CFH =∠EFH .又∵∠FEH =∠CEF ,∴△EFH ∽△ECF ,∴EH EF =EFEC ,∴EF 2=EH ·EC .∵DE ∥AC ,DM ∥EF ,∴四边形DEFM是平行四边形,∴EF =DM =DA =BD ,∴BG ·BE =EH ·EC .∵BE =EC ,∴EH =BG =3.2020 年安徽省初中学业水平考试数学模拟试卷(四)时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题4分,满分40分) 1.下列四个数中,最小的数是( B ) A .2 B .-2 C .0D .-122.下列运算正确的是( B ) A .3a -a =3 B .a 2·a 3=a 5 C .(a 2)3=a 5D .(2a )2=2a 2 3.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( B )A .10B .9C .8D .74.2019年端午节小长假期间,黄山风景区接待游客约为85 000人,将数据用科学记数法表示为( C )A .8.5×105B .0.85×105C .8.5×104D .85×1035.如图,AB ∥CD ,CE 交AB 于点F .∠A =20°,∠E =30°,则∠C 的度数为( A ) A .50° B .55° C .60°D .65°6.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =2的解为⎩⎪⎨⎪⎧x =2,y =1,则2a -3b 的值为( B ) A .4 B .6 C .-6D .-47. 下列变形正确的是( D ) A .-x +y x -y =-x -y x +yB .-x +y x -y =-x -y x +yC .-x +y x -y =x +y x -yD .-x +y -x -y =x -y x +y8.某工厂计划用两个月把产量提高21%,如果每月比上月提高的百分数相同,求这个百分数.若设每月提高的百分数为x ,原产量为a ,可列方程为a (1+x )2=a (1+21%),那么解此方程后依题意作答,正确的是( D )A .这个百分数为2.1%或10%B .x 1=2.1,x 2=0.1C .x 1=-2.1,x 2=0.1D .这个百分数为10%9.如图,矩形ABCD 中,AB =5,BC =12,点E 在边AD 上,点G 在边BC 上,点F ,H 在对角线BD 上,若四边形EFGH 是正方形,则AE 的长是( B )A .5B .11924C .13024D .1692410.如图,点P 是以AB 为直径的半圆上的动点,CA ⊥AB ,PD ⊥AC 于点D ,连接AP ,设AP =x ,P A -PD =y ,则下列函数图象能反映y 与x 之间关系的是( C )二、填空题(本大题共4小题,每小题5分,满分20分) 11.-8的立方根等于__-2__.12.某班的中考英语听力口语模拟考试成绩如下:该班中考英语听力口语模拟考试成绩的众数比中位数多__1__分.13.如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以A 为圆心,AC 长为半径画弧,交AB 于D ,则扇形CAD 的周长是__2+π3__(结果保留π).14.小南利用几何画板画图,探索结论,他先画∠MAN =90°,在射线AM 上取一点B ,在射线AN 上取一点C ,连接BC ,再作点A 关于直线BC 的对称点D ,连接AD ,BD ,得到如上图形,移动点C ,小南发现:当AD =BC 时,∠ABD =90°;请你继续探索;当2AD =BC 时,∠ABD 的度数是__30°或150°__.三、(本大题共2小题,每小题8分,满分16分) 15.解方程3x 2-5x +1=0.解:∵a =3,b =-5,c =1,∴Δ=b 2-4ac =(-5)2-4×3×1=13>0,∴x =5±136,∴原方程的解为x 1=5+136,x 2=5-136. 16.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.请你求出此人第六天的路程.解:设第六天走的路程为x 里,则第五天走的路程为2x 里,依此往前推,第一天走的路程为32x 里,由题意,得x +2x +4x +8x +16x +32x =378,解得x =6.故此人第六天走的路程为6里.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在由边长为1的小正方形组成的网格图中,已知点O 及△ABC 的顶点均为网格线的交点. (1)将△ABC 绕着点B 顺时针旋转90°,得到△A 1BC 1,请在网格中画出△A 1BC 1;(2)以点O 为位似中心,将△ABC 放大为原来的三倍,得到△A ′B ′C ′,请在网格中画出△A ′B ′C ′. 解:(1)如图所示:△A 1BC 1,即为所求; (2)如图所示:△A ′B ′C ′,即为所求.18.【阅读理解】借助图形的直观性,我们可以直接得到一些有规律的算式的结果,比如:由图①,通过对小黑点的计数,我们可以得到1+2+3+…+n =12n (n +1);由图②,通过对小圆圈的计数,我们可以得到1+3+5+…+(2n -1)=n 2.那么13+23+33+…+n 3结果等于多少呢?如图③,AB 是正方形ABCD 的一边,BB ′=n ,B ′B ″=n -1,B ″B =n -2,……,显然AB =1+2+3+…+n =12n (n +1),分别以AB ′,AB ″,AB 、…为边作正方形,将正方形ABCD 分割成块,面积分别记为S n ,S n -1,S n -2,…,S 1.【规律探究】结合图形,可以得到S n =2BB ′×BC -BB ′2=__n 3__,同理有S n -1=__(n -1)3__,S n -2=__(n -2)3__,…,S 1=13.所以13+23+33+…+n 3=S 四边形ABCD =__⎣⎡⎦⎤12n (n +1)2__.【解决问题】根据以上发现,计算13+23+33+493+5031+2+3+…+49+50的结果为__1 275__.五、(本大题共2小题,每小题10分,满分20分)19.如图,是某小区入口抽象成的平面示意图,已知入口BC 宽4米,栏杆支点O 与地面BC 的距离为0.8米,当栏杆OM 升起到与门卫室外墙AB 的夹角成30°时,一辆宽2.4米,高1.6米的轿车能否从该入口的正中间位置进入该小区?若能,请通过计算说明;若不能,请说明理由.(参考数据:3≈1.7)解:轿车能安全通过.理由:如图所示:当轿车从该入口的正中间位置进入该小区时,车与OB 的距离为:4.0÷2-2.4÷2=0.8(m ),在BC 上取点Q ,使BQ =0.8 m ,过Q 作QP ⊥BC 交MO 于点P ,过O 作OM ⊥PQ 于点M ,则MQ =OB =0.8 m ,OM =BQ =0.8 m ,在Rt △OPM 中,∵tan 60°=PMOM ,∴PM =OM ·tan 60°=0.8×3≈1.36(m ),∴PQ =PM +MQ =2.16 m >1.6 m ,∴轿车能安全通过.20.如图,在⊙O 中AB 是直径,点F 是⊙O 上一点,点E 是AF ︵的中点,过点E 作⊙O 的切线,与BA ,BF 的延长线分别交于点C ,D ,连接BE .(1)求证:BD ⊥CD .(2)已知⊙O 的半径为2,当AC 为何值时,BF =DF ,并说明理由.(1)证明:如图1,连接OE ,∵CD 与⊙O 相切于点E ,∴OE ⊥CD ,∴∠CEO =90°.∵点E 是AF ︵的中点,∴AE ︵ =EF ︵,∴∠ABE =∠DBE .∵OB =OE ,∴∠ABE =∠OEB ,∴∠DBE =∠OEB ,∴OE ∥BD ,∴BD ⊥CD ;(2)解:当AC =4时,BF =DF .理由如下:如图2,连接AF ,∵AB 是⊙O 的直径,∴∠AFB =90°,由(1)知∠D =90°,∴∠D =∠AFB ,∴AF ∥CD ,∴BF DF =ABAC .∵⊙O 的半径为2,∴AB =4,∴当此时AC =AB=4,∴AB AC =1,∴BFDF=1,∴BF =DF .六、(本题满分12分)21.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)本次调查的学生共有__50__ 人,扇形统计图中喜欢乒乓球的学生所占的百分比为__28%__ ; (2)请补全条形统计图(图2),并估计全校500名学生中最喜欢“足球”项目的有多少人? 补全条形统计图如下:500×16%=80(人),故估计全校500名学生中最喜欢“足球”项目的约有80人;(3)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.画树状图为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年安徽省中考数学模拟试卷含答案(满分150分,时间120分钟)一、选择题(本大题共10小题,每题4分,共40分)1.﹣5的倒数是()A.5 B.﹣5 C.D.﹣2.下列运算中,正确的是()A.5a﹣2a=3 B.(x+2y)2=x2+4y2C.x8÷x4=x2D.(2a)3=8a33.据统计,中国水资源总量约为27500亿立方米,居世界第六位,其中数据27500亿用科学记数法表示为()A.2.75×108B.2.75×1012C.27.5×1013D.0.275×10134.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B. C. D.5.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上,体育老师记录了小刚的一组立定跳远训练成绩如下表:成绩(m) 2.35 2.4 2.45 2.5 2.55次数 1 1 2 5 1则下列关于这组数据的说法中正确的是()A.众数是2.45 B.平均数是2.45 C.中位数是2.5 D.方差是0.486.某人沿坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的.设人行通道的宽度为x千米,则下列方程正确的是( )A.(2-3x)(1-2x)=1B.(2-3x)(1-2x)=1C.(2-3x)(1-2x)=1D.(2-3x)(1-2x)=28.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是菱形,则四边形ABCD需满足的条件是()A.AB=AD B.AC=BD C.AD=BC D.AB=CD9.设△ABC的一边长为x,这条边上的高为y,y与x满足的反比例函数关系如图所示,当△ABC 为等腰直角三角形时,x+y的值为( )A.4B.5C.5或3D.4或310. 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确的是()A.①②③B.②③④C.①③④D.①②③④二、填空题(本大题共4小题,每题5分,共20分)11.分解因式:ax2﹣6ax+9a= .12 如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为 .13.如图1,一张纸条上依次写有10个数,如图2,一卡片每次可以盖住纸条上的3个数,那么随机地用卡片盖住的3个数中有且只有一个是负数的概率.14.已知,如图,Rt△ABC中,∠BAC=90°,以AB为直径的☉O交BC于D,OD交AC的延长线于E,OA=1,AE=3.则下列结论正确的有.①∠B=∠CAD;②点C是AE的中点;③;④tan B=.三、(本大题共2小题,每题8分,共16分)15. 计算:-(-1)0-2sin 60°.16. 解方程:x2+4x-2=0.四.(本大题共2小题,每题8分,共16分)17. 如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立如图所示的平面直角坐标系.(1)将△ABC向左平移7个单位后再向下平移3个单位,请画出两次平移后的△A1B1C1.若M 为△ABC内的一点,其坐标为(a,b),直接写出两次平移后点M的对应点M1的坐标;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1∶2.请在网格内画出在第三象限内的△A2B2C2,并写出点A2的坐标.18. 甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?五.(本大题共2小题,每题10分,共20分)19. 如图,AB为☉O的直径,点C在☉O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。

(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断DC与☉O的位置关系,并说明理由。

(2)若cos B=,BP=6,AP=1,求QC的长。

20. 某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度。

如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)。

六. (本大题共12分)21. 为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶梯,一、二阶梯用水的单价之比等于1:2(第二阶梯用水超出第一阶梯用水上界的部分,按第一阶梯用水单价的2倍计算).如图折线表示实行阶梯水价后每月水费y(元)与用水量x(m3)之间的函数关系,其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.七 (本大题共12分)22. 若两个二次函数图象的顶点相同,开口大小相同,但开口方向相反,则称这两个二次函数为“对称二次函数”.(1)请写出二次函数y=2(x-2)2+1的“对称二次函数”;(2)已知关于x的二次函数y1=x2-3x+1和y2=ax2+bx+c,若y1-y2与y1互为“对称二次函数”,求函数y2的表达式,并求出当-3≤x≤3时,y2的最大值.八.(本大题共14分)23. 如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D,F分别在AB,AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)角时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°角时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=4,AD=时,求线段BG的长.数学答案(满分150分,时间120分钟)一、选择题(本大题共10小题,每题4分,共40分)1. D.【考点】倒数.【分析】根据倒数的定义可直接解答.【解答】解:﹣5的倒数是﹣.故选:D.2. D.【考点】幂的乘方与积的乘方;合并同类项;同底数幂的除法;完全平方公式.【解答】解:A、5a﹣2a=3a,故错误;B、(x+2y)2=x2+4xy+4y2,故错误;C、x8÷x4=x4,故错误;D、正确;故选:D.3.B【考点】科学记数法—表示较大的数.【解答】解:将27500亿用科学记数法表示为:2.75×1012.故选:B.4.C.【考点】简单组合体的三视图.【解答】解:从上边看是一个实线的同心圆。

故选:C.5.C【考点】方差;算术平均数;中位数;众数.【解答】解:A、如图表所示:众数是2.5,故此选项错误;B、平均数是:(2.35+2.4+2.45×2+2.5×5+2.55)=2.47(m),故此选项错误;C、中位数是: =2.5,故此选项正确;D、方差为: [(2.35﹣2.225)2+(2.4﹣2.225)2+…+(2.55﹣2.225)2]=(0.015625+0.030625+0.050625+0.378125+0.105625)=0.0580625,故此选项错误;故选:C.6.B 【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2 ∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.7.A【考点】列一元二次方程解应用题.【解答】矩形绿地的长和宽分别为(2-3x),(1-2x),由题意可得方程2×(2-3x)(1-2x)=×2×1,即(2-3x)(1-2x)=1.故选A.8.D【考点】菱形的判定.【解答】解:∵点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EH=FG=CD,∵当EF=FG=GH=EH时,四边形EFGH是菱形,∴当AB=CD时,四边形EFGH是菱形.故选:D.9. D【考点】本题考查反比例函数知识【解答】.由反比例函数的图象得xy=4,当等腰直角△ABC的斜边为底时,该底边上的高为这个底的一半,即x=2y,2y2=4,解得y=,∴x+y=3;当等腰直角△ABC的一条直角边为底时,该底边上的高为另一条直角边,即x=y,y2=4,解得y=2,∴x+y=4.综上知x+y 的值为4或3.10. D.【考点】抛物线与x轴的交点;二次函数图象与系数的关系;二次函数的最值.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0 a+b+c≥3b﹣3a a+b+c≥3(b﹣a)≥3所以④正确.故选:D.二、填空题(本大题共4小题,每题5分,共20分)11. a(x﹣3)2【考点】提公因式法与公式法的综合运用.【解答】解:ax2﹣6ax+9a=a(x2﹣6x+9)=a(x﹣3)2.12 120°【考点】平行线的性质和垂直的概念等【解答】过点E作EG∥AB,则EG∥CD,由平行线的性质可得∠GEC=90°,所以∠GEB=90°-30°=60°,从而∠ABE=180°-60°=120°.13.1/2 【考点】简单概率的计算.【解答】用卡片随机地盖住纸条上的3个数,共有8个等可能结果.其中有且只有一个是负数的结果有4个,所以所求的概率P=.14.①③④【考点】圆的性质、锐角三角函数、三角形相似【解答】∵AB为直径,∴∠ADB=90°,∴∠B+∠DAB=90°,∵∠CAD+∠DAB=90°,∴∠B=∠CAD,故①正确;由∠CAD=∠B=∠ODB=∠CDE,∠E=∠E,∴△ECD∽△EDA,∴,∵OA=1,AE=3,∴OE=,ED=-1,∴,∴CE=AE=,故②不正确;由△ECD∽△EDA,得,在Rt△ABC中,AD⊥BC,∴△ACD∽△BAD,∴,∴,故③正确;tan B=,故④正确.三、(本大题共2小题,每题8分,共16分)15.【考点】本题考查二次根式的运算、零指数幂、负指数幂及三角函数值的运算.【解答】原式=2+4-1-2×=2+4-1-=3+.16.【考点】配方法、一元二次方程的解法【解答】解:x2+4x+4=6,即(x+2)2=6,∴x+2=±,x1=-2.四.(本大题共2小题,每题8分,共16分)17.【考点】本题考查图形的变换【答案】(1)△A1B1C1如图所示.M1(a-7,b-3).(2)△A2B2C2如图所示.A2(-1,-4).18.【考点】分式方程的应用.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.五.(本大题共2小题,每题10分,共20分)【考点】圆的有关性质、切线的判定以及三角函数的应用.【答案】(1)CD是☉O的切线.理由如下:连接OC.∵OC=OB,∴∠B=∠OCB.又∵DC=DQ,∴∠Q=∠DCQ.∵∠B+∠Q=90°,∴∠OCB+∠DCQ=90°, ∴∠DCO=∠QCB-(∠OCB+∠DCQ)=180°-90°=90°,∴OC⊥DC.又∵OC是☉O的半径,∴CD是☉O的切线.(2)连接AC.∵AB是☉O的直径,∴∠ACB=90°.在Rt△ABC中,BC=AB cos B=(AP+BP)cos B=(1+6)×.在Rt△BPQ中,BQ==10.∴QC=BQ-BC=10-.20.【考点】解直角三角形【答案】如图,作CM∥AB交AD于点M,MN⊥AB于点N.由题意,即,∴CM= (米),在Rt△AMN中,∵∠ANM=90°,MN=BC=4米,∠AMN=72°,∴tan 72°=,∴AN=MN·tan 72°≈4×3.08≈12.3(米).∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=米,∴AB=AN+BN=13.8米.六. (本大题共12分)21. 【考点】一次函数的应用.【解答】解:(1)图中B点的实际意义表示当用水25m3时,所交水费为70元;(2)设第一阶梯用水的单价为x元/m3,则第二阶梯用水单价为2x元/m3,设A(a,30),则,解得,,∴A(15,30),B(25,70)设线段AB所在直线的表达式为y=kx+b,则,解得,∴线段AB所在直线的表达式为y=4x﹣30.七 (本大题共12分)22.【考点】二次函数的性质,新定义【参考答案】(1)y=-2(x-2)2+1.(2)y1=x2-3x+1,y2=ax2+bx+c,∴y1-y2=(1-a)x2-(3+b)x+1-c=(1-a)·.又y1-y2与y1互为“对称二次函数”,y1=x2-3x+1=,∴解得∴y2=2x2-6x+.∴y2=2,∴y2的对称轴为直线x=,∵2>0,且-3≤x≤3,∴当x=-3时,y2最大值=2×(-3)2-6×(-3)+.八.(本大题共14分)【考点】相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰直角三角形、正方形的性质以及图形旋转的性质【答案】(1)BD=CF成立.∵△ABC是等腰直角三角形,四边形ADEF是正方形,∴AB=AC,AD=AF,∠BAC=∠DAF=90°,∵∠BAD=∠BAC-∠DAC,∠CAF=∠DAF-∠DAC,∴∠BAD=∠CAF,∴△BAD≌△CAF.∴BD=CF.(2)①设BG交AC于点M.∵△BAD≌△CAF,∴∠ABM=∠GCM.∵∠BMA=∠CMG,∴△BMA∽△CMG.∴∠BGC=∠BAC=90°,∴BD⊥CF.②过点F作FN⊥AC于点N.∵在正方形ADEF中,AD=,∴AN=FN=AE=1.在等腰直角△ABC中,AB=4,∴CN=AC-AN=3,BC==4.在Rt△FCN中,tan∠FCN=.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC-AM=4-,BM=.∵△BMA∽△CMG,∴.∴,∴CG=.在Rt△BGC中,BG=.。

相关文档
最新文档