提取紫杉醇初分离工艺的研究

提取紫杉醇初分离工艺的研究
提取紫杉醇初分离工艺的研究

紫杉醇(paclitaxel,商品名Taxol)是当今一种重要的抗癌新药。早在1971年,Wani等

就从红豆杉树皮中发现并分离出了这种物质。由于它特异的临床抗癌疗效,1992年被美国FA

D批准为治疗晚期乳腺癌的特效药而上市。然而,在实际药物生产中,紫杉醇的大规模制备仍

存在许多问题。首先,紫杉醇来源匮乏,其主要存在于红豆杉树皮和针叶中,其次,紫杉醇在植物中含量极低,大约为0.010%~0.013%,而紫杉醇与其它紫杉烷化合物在化学结构和极性

等方面又极为相似,要将它们完全分离困难很大。

关于紫杉醇提取分离方法,已有过不少的研究。其中以液-液萃取应用最为广泛,在文献

报道的每一种工艺中,几乎都采用过它。Willey等和Mattina等在测定样品中紫杉醇浓度时,选择了固相萃取作为HPLC分析的预处理。以分子间吸附为机理的硅胶柱层析,是制备紫杉醇

最常用的方法之一。1984年,Senilh等曾采用氧化铝柱层析处理红豆杉浸膏,但所报道的分

离效果不是太理想。1995年,Matysik等曾用制备薄层层析来少量获取紫杉醇。本研究的目的

,在于寻找一条切实可行的工艺路线,最大程度地提高紫杉醇的回收率,以充分利用有限的红豆杉资源;采用一些高效、经济的提取分离方法,减少过程步骤,快速、简捷地提取出紫杉醇。

1 材料方法

1.1 材料

红豆杉树皮提取浸膏,云南张峰植物加工厂;紫杉醇对照品,纯度大于95%,Sigma;固

相萃取柱(C18填料,10ml),大连化学物理研究所;GF254硅胶和粗孔硅胶(100~140目),青岛海洋化工厂;层析氧化铝(200~300目),上海新诚精细化学品有限公司。

DU-7紫外/可见分光光度计及FL-750HPLC仪,Beckman公司;XZ-6A旋转蒸发器,北京科龙

仪器公司;常压层析系统,Pharmacia公司。

1.2 方法

1.2.1 液-液萃取称取红豆杉树皮浸膏于锥形瓶中,加CH2Cl2(浸膏CH2Cl2的重量比为

1:50),充分溶解,再加入与CH2Cl2等量的水,充分混合后静置分层,分液回收有机相,弃

水相。有机相再加水萃取,重复三次。将有机相中的CH2Cl2减压蒸出回收,所得固相物溶解

于甲醇中,用HPLC作定性定量分析。

1.2.2 固相萃取固相萃取过程包括四个步骤,即固定相活化、样品上柱、淋洗、样品的洗脱。全过程将速度稳定控制在5~8ml/min。固定相活化:取乙酸乙酯10ml加入柱中,抽空。

依资助加入甲醇10ml和0.01mol/L(pH5.0)的乙酸铵缓冲液10ml(乙酸铵水溶液),将液面维持在胶层上1~2mm。上样及淋洗:将样品溶于80%~90%的甲醇乙酸铵溶液中,取0.5ml加入柱中

,抽空。依次用0.01mol/L的乙酸铵溶液10ml、50%的甲醇乙酸铵溶液淋洗,抽空。紫杉醇的

洗脱:在淋洗好的柱子中加入80%的甲醇乙酸铵溶液10ml,收集洗脱液,减压蒸发。从洗脱液

蒸发所得的固体物中取样,溶解于甲醇,作HPLC定性定量分析。

1.2.3 硅胶柱层析硅胶用CHCl2浸泡,超声波脱气5min,重力沉降法装柱(15mm-×260 mm),用CHCl2充分洗出硅胶中的杂质至柱床透明。样品溶解于CHCl3后上柱,再用CHCl3充分

洗去未被吸附的杂质,然后用3:97(v/v)的CH3OH:CHCl3进一步洗脱,收集洗脱峰,HPLC

测定紫杉醇的浓度和纯度。柱层析过程在常温常压下操作。

1.2.4 氧化铝柱层析CH3OH、CHCl3用分子筛脱水,层析用氧化铝190℃真空干燥6h 后,

用脱水CHCl3浸泡,超声波脱气5min,装成15mm×260mm的层析柱。清洗柱后上样,用CHCl3洗

去未被吸附的杂质,再用1%的CH3OH、CHCl3(v/v)淋洗,最后用5%的CH3OH溶液洗脱出紫杉

醇。HPLC测定其纯度,柱层析过程在常温常压下操作。

1.2.5 制备薄层层析用GF254硅胶自制100mm×200mm层析薄板,105℃活化0.5h,样品用

CH3OH溶解,配成10mg/ml的溶液。毛细管点样,成线状,每板点样量在2mg左右。在对照板中

点标准品和样品,用氯仿-甲醇(95:5)展开,254nm紫外光下确定紫杉醇的Rf值。切割并收

集制备板上的紫杉醇带,用CH3OH洗脱下硅胶上吸附的紫杉醇,HPLC测定其纯度。

1.2.6 紫杉醇的定量定性分析采用HPLC对紫杉醇作定性定量分析:4.6mm×250mm的C18

柱,检测波长为227nm,等梯度洗脱,流动相为甲醇-乙腈-水(20:32:48),流速1.0ml/m in。以紫杉醇标准品为对照,外标法作定量分析。

2 结果及分析

2.1 液-液萃取

以1:1的二氯甲烷-水对粗品液-液萃取,紫杉醇富集到有机相。实验中发现,有机相与

水相的分层速度慢,并有乳化现象。液-液萃取的紫杉醇回收率为94.6%,紫杉醇含量从0.65 %提高到1.23%。液-液萃取的缺点在于产生的废水较多。

2.2 固相萃取

用50%的CH3OH洗涤,紫杉醇不会被洗下,而浓度加大到80%,即可将紫杉醇从萃取柱洗脱

。样品经一步固相萃取,紫杉醇浓度可提高8.9倍,回收率为100%。与液-液萃取相比较,固

相萃取的优点体现在快速、简单、便于自动化。同时,固相萃取的分离效率明显高于液-液萃

取。

2.3 硅胶柱层析

紫杉醇在硅胶柱上的保留较强,用CHCl3淋洗时,紫杉醇不被洗出。而用3%的CH3-OH:C

HCl3(v/v)洗脱,可分离出两个峰。HPLC分析表明,其中的第二个峰,即图1中峰1为紫杉醇

。实验中还发现,在层析流动相中添加0.05%4 水时,分离出的紫杉醇纯度有所提高,分离速

度也能显著加快。经硅胶柱层析,能获得纯化20倍以上、纯度大于14%、回收率大于98%的紫

杉醇。

2.4 氧化铝柱层析

紫杉醇在氧化铝柱上的保留和分离大致相同。用最佳流动相和高活性(即含水量低)的吸附剂分离芳烃异构体,氧化铝柱往往要比硅胶效果好得多。用5%的甲醇洗脱,可将大部分

紫杉醇洗出。Carver等认为,氧化铝能使糖基化的紫杉醇转化为紫杉醇,从而增加了紫杉醇的总量,使紫杉醇的回收率可能大于100%。我们的实验也发现了这一现象,这一现象的确切

原因还有待于深入探索。

2.5 制备薄层层析

硅胶薄层层析(TLC)原理与硅胶柱层析原理一致。TLC可将样品分离出11条以上的色带

,紫杉醇带在薄板的中部(Rf≈0.5),呈现紫红色。应用TLC纯化紫杉醇,一步可将紫杉醇含量从0 .65%提高到13.9%,回收率为99.7%。

2.6 预处理的比较

各处理步骤比较如表1。表1中数据可知,以氧化铝柱层析纯化紫杉醇的效率最高。氧化

铝介质便宜,能充分利用有限的红豆杉原料,是一可行的纯化紫杉醇方法。其次是硅胶柱层析,浸泡好的硅胶半透明,在玻璃层析柱上能观察到层析进展情况,操作很直观。TLC的优点

是设备简单、有机溶剂消耗很少。但TLC处理量较小,工业放大困难。固相萃取的优点体现在

简单、便于自动化、能显著减少溶剂的用量。

表1 预处理步骤对紫杉醇纯化效果的比较

-------------------------------------------------------------------------

步骤样品量(mg) 紫杉醇(mg) 纯度(%) 回收率(%) 纯化倍数

粗品22.50 0.146 0.65 100 1

液-液萃取11.79 0.145 1.23 99.3 1.9

固相萃取 2.27 0.146 6.44 100 9.9

硅胶柱层析0.98 0.144 14.63 98.9 22.5

氧化铝柱层析0.79 0.205 26.3 140.5 40.5

薄层层析 1.05 0.146 13.91 99.7 21.4

-------------------------------------------------------------------------

2.7 初分离工艺的提出

HPLC分析表明,粗品经过氧化铝柱层析处理后,极性比紫杉醇弱的物质基本被除

去,而极性比紫杉醇稍强的杂质用正相柱已很难分离。仅经一步正相柱层析,样品中

的成分还较复杂,若直接上HPLC制备,必将影响HPLC柱的使用寿命、进料量等。因此,有必要对样品作进一步的处理。较理想的工艺集成是氧化铝正相柱层析处理后采用一

步反相层析,即采用一步C18固相萃取,以除去极性比紫杉醇稍强的杂质。实验结果如

表2,预处理工艺纯化紫杉醇的纯化倍数达60以上,紫杉醇回收率为135.5%,纯度为42.2%。

表2 预处理工艺纯化紫杉醇结果

--------------------------------------------------------------------------

步骤样品量(mg) 紫杉醇(mg) 纯度(%) 回收率(%) 纯化倍数

粗品85.50 0.555 0.65 100 1

氧化铝柱层析 2.99 0.775 25.9 139.7 39.8

固相萃取 1.78 0.752 42.2 135.5 64.9

--------------------------------------------------------------------------

3 结论

本工艺主要目的是简便除去紫杉醇类似物及其它生物碱,获得初步纯化的紫杉醇。过程采用价格低谦的氧化铝为层析介质,省略了液-液萃取步骤,简化了分离工艺,提高了分离效

率,有利于工业放大。

氧化铝柱层析处理云南红豆杉针叶浸膏,紫杉醇的回收率大于140%,这使有限的红豆杉

资源能得以充分的利用。

采用优化的初分离工艺,从浸膏中有效地分离出了紫杉醇。样品经此初分离工艺处理后,可直接上HPLC制备柱。初分离工艺提取紫杉醇的纯化倍数为64.9,纯度为42.2%。

第6章紫杉醇生产工艺

第六章紫杉醇的生产工艺 6.1 概述 6.1.1 紫杉醇类药物 1、紫杉醇 紫杉醇(Paclitaxel,Taxol?)的化学名称为5β,20-环氧-1β,2α,4α,7β,13α-五羟基-紫杉-11-烯-9-酮-4-乙酸酯-2-苯甲酸酯-10-乙酰基-13-[(2′R,3′S) -N-苯甲酰基-3′-苯基异丝氨酸酯] ,英文化学名称为13-[(2′R,3′S) -N-carboxyl-3′-phenylisoserine, N-benmethyl ester, 13-ester with 5β,20-epoxyl-1β,2α,4α,7β,13α-hexahydroxytax-11-en-9-one-4-acetate-2-benzoate,trihydrate。 紫杉醇具有复杂的化学结构,属三环二萜类化合物,整个分子由三个主环构成的二萜核和一个苯基异丝氨酸侧链组成(图6-1)。分子中有11个手性中心和多个取代基团。分子式为C47H51NO14,分子量为853.92,元素百分比为C:66.41,H:6.02,N:1.64,O:26.23。紫杉醇难溶于水,易溶于甲醇、二氯甲烷和乙氰等有机溶剂。 图6-1 紫杉醇的化学结构 2、多烯紫杉醇 多烯紫杉醇(多西他赛,Docetaxel,Taxotere?,图6-2)是在开展紫杉醇半合成研究过程中发现的一种紫杉醇类似物,两者仅在母环10位和侧链上3'位上的取代基略有不同。多烯紫杉醇的化学名称是5β,20-环氧-1β,2α,4α,7β,10β,13α-六羟基-紫杉-11-烯-9-酮-4-乙酸酯-2-苯甲酸酯-13-[(2′R,3′S) -N-叔丁氧羰基-3′-苯基异丝氨酸酯]·三水合物,英文化学名称为-13-[(2′R,3′S) -N-carboxyl-3′-phenylisoserine, N-tertbutyl ester, 13-ester with 5β,20-epoxyl-1β,2α,4α,7β,10β,13α-hexahydroxytax-11-en-9-one-4-acetate-2-benzoate,trihydrate 。分子式为C43H53NO14·3H2O,相对分子质量为861.9。 1985年,法国罗纳普朗克乐安公司(Rhone-Poulenc Rorer)公司和法国国家自然科学研究中心(CNRS)以10-DAB作为母环骨架,通过半合成方法成功地合成出多烯紫杉醇,目

紫杉醇提炼步骤

紫杉醇规模生产工艺及方案(1500吨/年规模) 一、项目规模生产工艺方案 1、紫杉醇概述紫杉醇具有复杂的化学结构,母核部分是一个复杂的四环体系,有许多的功能基团和立体化学特征,化学名称为:5β,20-环氧-1,2α,4,7β,10β,13α-六羟基紫杉烷-11-烯-9-酮-4,10-二乙酸酯-2-苯甲酸酯-13-[(2’R,3’S)-N-苯甲酰-3-苯基异丝氨酸酯,分子由3个主环构成二萜核,上连1个苯异丝氨酸侧链,分子中有11个手性中心和多个取代基团,分子式为C47H51NO14,相对分子质量853.92,元素百分比(%)C:66.41,H:6.02,N:1.64,O:26.23。紫杉醇结构式为:紫杉醇为白色结晶性粉末,无臭,无味,在甲醇、乙醇或氯仿中溶解,在乙醚中微溶,在水中几乎不溶。甲醇制3mg/ml 的溶液,比旋度为-48℃~56℃。甲醇制15μg/ml的溶液,在227nm处有最大紫外吸收,10mg紫杉醇加甲醇溶液10ml溶解后应澄清无色。紫杉醇注射剂是新型抗微管药物,通过促进微管蛋白聚合抑制解聚,保持微管蛋白稳定,抑制细胞有丝分裂。体外实验证明紫杉醇具有显著的放射增敏作用,可能是使细胞中止于对放疗每咸的G2和M期,适用于卵巢癌和乳腺癌及NSCLC的一线的二线治疗。用于头颈癌、食管癌、精原细胞瘤,复发非何金氏淋巴瘤等治疗,静脉给予紫杉醇注射剂,药物血浆浓度呈双曲线,蛋白结合率89%~98%,主要在肝脏代谢,随胆汗进入肠道,经粪便排出体外(﹥90%),经肾清除只占总清除的1%~8%。 红豆杉浸膏

1.1操作过程: (1)浸提:将原料投入提取罐内,干红豆杉每罐填装约1.2吨的原料,加入约4吨的甲醇浸提,温度为45±5℃,每遍循环浸提大于4小时,浸提完成后,将浸提液排入浸提液储罐中,进行蒸汽吹渣,温度控制在85±5℃,压力小于等0.2Mpa,回收残余的甲醇溶液,吹渣结束后,将废渣移到废料堆场集中处理。 (2)浓缩:浓缩温度控制在45±5℃,真空度控制在-0.07±00.1Mpa,浸提液浓缩至比重达到0.95~1.05时,将浓缩液放出到专用的储罐中。(3)萃取:将计量后的浸提浓缩液注入萃取罐,加入醋酸乙酯(按物料:醋酸乙酯=1:1),萃取三次,将醋酸乙酯层重液排入指定贮罐,将贮罐内的醋酸乙酯液抽入浓缩锅进行初浓缩预处理,温度控制在45±5℃,待浓缩液比重达到1.40±0.05时,将浓缩后的醋酸乙酯液排入指定贮罐中。 (4)干燥:将浓缩后的醋酸乙酯萃取液抽入蒸发罐内,罐内温度不超过45±5℃,真空度为-0.06±00.1Mpa,浸膏置真空干燥箱内干燥,干燥完成后,取出产品,凉干,敲碎,经检验合格后即成为紫杉醇浸膏,用铁桶封装,入库阴凉保存。 1.2紫杉醇粗制工艺步骤 1.2.1操作过程 (1)配料、装柱:将紫杉醇浸膏约100kg按物料、重量比1:1的比例加入100-200目的硅胶搅拌均匀,真空干燥,装柱。 (2)一次层析、浓缩:配制不同极性的淋洗液(乙酸乙酯:正已烷

紫杉醇的提取和性能

紫杉醇的提取和性能 姓名:高海艳 学号:51151300057 专业:种子植物分类学

紫杉醇的提取和性能 一、紫杉醇简介 紫杉醇(T axol)是一种复杂的具有抗癌活性的二萜类生物碱[1](结构如图一所示),是从短叶红豆杉(Taxus brevifolia)和东北红豆杉(Taxus cuspidata)的树皮中提取出来的。具有抗肿瘤、抗白血病的显著作用,主要用于治疗卵巢癌和乳腺癌[2],被人们誉为“植物黄金”。 Vidensek[3]对东北红豆杉(Taxus cuspidata)幼苗以及成树的不同部位中的紫杉醇含量作了分析结果表明成树紫杉醇的含量高低依次为树皮>树叶>树根>树干>种子>心材,幼苗的紫杉醇含量高低依次则是树叶>树根>嫩枝条>心材。另外,对于不同植物来源的组织培养细胞中的紫杉醇含量陈未名等[4]作了大量的研究,结果表明愈伤组织中的紫杉醇含量以云南红豆杉为最高其次为欧洲红豆杉,再次为红豆杉;而悬浮培养细胞中的紫杉醇含量从高到低依次为云南红豆杉、欧洲红豆杉、红豆杉。 二、紫杉醇提取工艺 1、从原植物体中提取紫杉醇[5]: 红豆杉枝叶、树皮、树枝的采集 原料的干燥及粉碎 有机溶剂提取:甲醇 除去浸膏 固—液萃取

细胞密度 确定接种细胞培养时间 确定培养基 细胞悬浮培养配制培养基 2、细胞培养高效提取紫杉醇[6]: 三、紫杉醇药用功能及体制液—液萃取 己烷沉淀 硅胶柱层析 结晶 TLC检测高效液相色谱检测 诱导愈伤组织 配制培养基添加植物激素 制备及接种外植体红豆杉幼茎30 天 转 接 继代培养筛选抗褐化剂 柠檬酸 VC 活性炭 确定愈伤组织 直接继代 剥离后继代 分离检测紫杉醇TLC-紫外分光光度法 多次继代至生长稳定 筛选高产细胞株培养方式 普通平板培养 条件培养 看护培养 植板率 稳 定 高 产 细 胞 株 添加多种代谢调节因子 确定培养方式小剂量连续添加一次性大剂量添加 确定代谢调节因子加入时间 高效诱导体系

紫杉醇的合成

苏州大学研究生考试答卷封面 考试科目: 有机合成考试得分 院别: 材料与化学化工学部专业: 分析化学 学生姓名: 饶海英学号: 20114209033 授课教师: 考试日期: 2012 年 1 月8 日 天然抗癌药物紫杉醇的合成进展 摘要:本文对多烯紫杉醇的合成的各种合成方法进行了综述。 关键词:多烯紫杉醇合成抗癌 多烯紫杉醇(daxotere) 商品名为多西她赛(Docetaxel) , 化学名为[ 2aR-( 2aα, 4β, 4aβ, 6β,9α, ( aR3, βS3) , 11α, 12α, 12aα, 12bα) ] -β- [ [ (1, 1 2二甲基乙氧基)羰基]氨基] -α-羟基苯丙酸[ 12b-乙酰氧-12 -苯甲酰氧-2a, 3, 4, 4a, 5, 6, 9,10, 11, 12, 12a, 12b -十二氢-4, 6, 11-三羟基-4a, 8,13, 13 -四甲基-5-氧代-7, 11-亚甲基-1H-环癸五烯并-[ 3, 4 ]苯并[ 1, 2-b ]氧杂丁环-9-基]酯,就是法国罗纳普朗克·乐安公司开发的半合成紫杉醇的衍生物,它对晚期乳腺癌、非小细胞肺癌、卵巢癌、前列腺癌、胰腺癌、肝癌、头颈部癌、胃癌等均有效。其作用机制就是通过与肿瘤细胞微管蛋白结合, 加强微管蛋白的聚合、抑制微管解聚,最终形成稳定的非功能性微管束, 从而抑制肿瘤细胞的有丝分裂与增殖[1-3] 。 商业化生产的紫杉醇类抗癌药物大多采用半合成方法,这就是现阶段最具经济性与可操作性的合成方法。多烯紫杉醇的半合成方法就是利用从红豆杉属植物的针叶中提取的10-去乙酰基巴卡亭Ⅲ (10-DAB ) ,通过选择性保护部分羟基, 然后在10-DAB C13位的羟基上连接合成的手性侧链, 再去掉保护基团得到。其中以多烯紫杉醇C13位侧链的合成以及该侧链与选择性保护的母核10-DAB进行酯化反应最为重要[4-5] 。 紫杉醇的构效关系已经被众多学者所研究与总结。具有游离羟基的C13位侧链,C2与C4位的酯基,C4、C5位四元含氧环及紫杉烷的刚性环结构对抗癌活性都起着很重要的作用。 1988年,Potier等从欧洲紫杉(Taxus baccata)中分离得到10-去乙酰巴卡亭(Baccatin) Ⅲ( DAB),DAB 已被成功地用来半合成紫杉醇,并已工业化生产[6]。半

紫杉醇提取工艺原理及操作技术

紫杉醇提取工艺原理及操作技术 紫杉醇为白色结晶性粉末,无臭,无味,在甲醇、乙醇或氯仿中溶解,在乙醚中微溶,在水中几乎不溶。紫杉醇常规的提取工艺各个生产环节需控制在低温下操作,保证产品活性。各个工时段应尽快完成,可选水浴加热提取罐(含溶剂回收装置),旋转真空浓缩机组(低温浓缩,1-2秒完成),层析柱(精制分离),板式真空干燥箱(低温干燥、速度快)。 紫杉醇提取操作过程 (1)浸提:将原料投入提取罐内,干红豆杉每罐填装约1.2吨的原料,加入约4吨的甲醇浸提,温度为45±5℃,每遍循环浸提大于4小时,浸提完成后,将浸提液排入浸提液储罐中,进行蒸汽吹渣,温度控制在85±5℃,压力小于等0.2Mpa,回收残余的甲醇溶液,吹渣结束后,将废渣移到废料堆场集中处理。 (2)浓缩:浓缩温度控制在45±5℃,真空度控制在-0.07±00.1Mpa,浸提液浓缩至比重达到0.95~1.05时,将浓缩液放出到专用的储罐中。 (3)萃取:将计量后的浸提浓缩液注入萃取罐,加入醋酸乙酯(按物料:醋酸乙酯=1:1),萃取三次,将醋酸乙酯层重液排入指定贮罐,将贮罐内的醋酸乙酯液抽入浓缩锅进行初浓缩预处理,温度控制在 45±5℃,待浓缩液比重达到1.40±0.05时,将浓缩后的醋酸乙酯液排入指定贮罐中。 (4)干燥:将浓缩后的醋酸乙酯萃取液抽入蒸发罐内,罐内温度不超过45±5℃,真空度为 -0.06±00.1Mpa,浸膏置真空干燥箱内干燥,干燥完成后,取出产品,凉干,敲碎,经检验合格后即成为紫杉醇浸膏,用铁桶封装,入库阴凉保存。 甲醇制3mg/ml的溶液,比旋度为-48℃~56℃。甲醇制15μg/ml的溶液,在227nm处有最大紫外吸收,10mg紫杉醇加甲醇溶液10ml溶解后应澄清无色。紫杉醇注射剂是新型抗微管药物,通过促进微管蛋白聚合抑制解聚,保持微管蛋白稳定,抑制细胞有丝分裂。体外实验证明紫杉醇具有显著的放射增敏作用,可能是使细胞中止于对放疗每次的G2和M期,适用于卵巢癌和乳腺癌及NSCLC的一线的二线治疗。用于头颈癌、食管癌、精原细胞瘤,复发非何金氏淋巴瘤等治疗,静脉给予紫杉醇注射剂,药物血浆浓度呈双曲线,蛋白结合率89%~98%,主要在肝脏代谢,随胆汗进入肠道,经粪便排出体外(﹥90%),经肾清除只占总清除的1%~8%。 莱特莱德膜分离技术有限公司致力于膜分离和脱盐浓缩技术以及冷冻浓缩分离技术推广与工艺设备开发。通过多年的努力,已具备丰富的工程经验,为客户提供从小试、中试、工业化设备的工艺设计到设备生产、安装调试等一系列服务,能够提供整体解决方案和交钥匙工程,并成功应用于冶金、环保、制药、化工、食品等领域,赢得了客户和业内的良好口碑。

紫杉醇

抗癌药物 ——紫杉醇 一、前沿 1963年美国化学家瓦尼(M.C. Wani)和沃尔(Monre E. Wall)首次从一种生长在美国西部大森林中称谓太平洋杉(Pacific Yew)树皮和木材中分离到了紫杉醇的粗提物。在筛选实验中,Wani和 Wall发现紫杉醇粗提物对离体培养的鼠肿瘤细胞有很高活性,并开始分离这种活性成份。由于该活性成份在植物中含量极低,直到1971年,他们才同杜克(Duke)大学的化学教授姆克法尔(Andre T. McPhail)合作,通过x-射线分析确定了该活性成份的化学结构——一种四环二萜化合物,并把它命名为紫杉醇(taxol)。 紫杉醇具有显著的抗癌活性和独特的作用机理,现主要用于治疗晚期乳腺癌和卵巢癌等癌症。紫杉醇分子结构复杂,具有特殊的三环[6+8+6]碳架和桥头双键以及众多的含氧取代基。其全合成引起国内外许多有机化学家的兴趣。先后共有30多个研究组参与研究,实属罕见。经20多年的努力,于1994年才由美国的R.A.Holton与K.C.Nicolaou两个研究组同时完成紫杉醇的全合成。随后,S.T.Danishefsky(1996年)、P.A.Wender(1997年)、T.Mukaiyama(1998年)和I.Kuwajima(1998年)4个研究组也完成这一工作。6条合成路线虽然各异,但都具有优异的合成战略,把天然有机合成化学提高到一个新水平。 紫杉醇是目前已发现的最优秀的天然抗癌药物,在临床上已经广泛用于乳腺癌、卵巢癌和部分头颈癌和肺癌的治疗.紫杉醇作为一个具有抗癌活性的二萜生物碱类化合物,其新颖复杂的化学结构、广泛而显著的生物活性、全新独特的作用机制、奇缺的自然资源使其受到了植物学家、化学家、药理学家、分子生物学家的极大青睐,使其成为20世纪下半叶举世瞩目的抗癌明星和研究重点,包括寻找新的生物资源、化学全合成、半合成、衍生物制备、生物转化、生物合成、生物工程、构-效关系研究、作用机制研究、药理学和药效学等研究.2011年是发现紫杉醇结构40周年,对紫杉醇发现的曲折历史过程进行回顾和总结,以纪念这一伟大发现并纪念为紫杉醇的研究与第二代紫杉醇的开发作出贡献的科学家。 二、紫杉醇的制备 1.1 天然红豆杉植物提取 紫杉醇的最直接来源是对天然植物红豆杉属种的提取红豆杉属植物共11种,我国有4种及1种变种,它们分别是云南红豆杉、西藏红豆杉(又名喜马拉雅红豆杉)、中国红豆杉、东北红豆杉、南方红豆杉(又名美丽红豆杉)。由于这些植物数量极少,自身繁殖率低,生长缓慢,且紫杉醇的含量又极低(每千克干树皮最多只能得到50~150mg 的纯紫杉醇),生产1g紫杉醇需砍伐3~4棵60年树龄的大树。在这种情况下,要获得足够的紫杉醇用于临床研究和基础研究,单纯靠从天然植物树皮中提取必将给红豆杉属植物的在自然界中的生存带来极大的威胁。但由于从树皮中提取紫杉醇的工艺已经成熟且工业化,因此,人们可利用人工栽培的方法来解决天然资源不足的问题. 1.2人工栽培

紫杉醇综述

紫杉醇综述 摘要:紫杉醇具有显著的抗癌活性和独特的作用机制,它的问世被誉为20世纪90年代国际上的抗癌药三大成就之一。本文综述了近年来对红豆杉的资源概括、抗癌机制、化学成分、制备方法、不良反应等方面的新研究进展,对当前工作中存在的问题进行了探讨。 关键词:紫杉醇、红豆杉、抗癌、植物组培、不良反应 前言 全世界60亿人口中,每年约新增800万癌症患者,600多万人死于癌症,几乎每6秒钟就有一名癌症患者死亡。癌症严重地威胁着人类的生命和健康,因此寻找有效的抗癌药物成为研究的热点。早在1958年美国癌症协会就发起一项历时20余年、筛选35000多种植物物种提取物的计划。在计划实施过程中,1963年美国化学家瓦尼和沃尔首次从生长在美国西部大森林中称太平洋杉中分离到了紫杉醇的粗提物。并发现紫杉醇粗提物对离体培养的鼠肿瘤细胞有很高活性。由于该活性成份含量极低,直到1971年,他们才同杜克(Duke)大学的化学教授姆克法尔合作,通过x-射线分析确定了该活性成份的化学结构——一种四环二萜化合物,并把它命名为紫杉醇。1992年12月紫杉醇被FDA批准上市,目前紫杉醇已成为世界公认的强活性广谱抗癌药物。然而由于这种天然化合物资源极其有限,严重的限制了其研究和应用的进度。同时尖锐的供需矛盾也在医学、化学和植物组织培养领域中引起了一场非同寻常的广泛研究,以增加这种化合物的来源和寻找高效、低毒、来源丰富的紫杉醇类似物[1]。 一红豆杉资源 紫杉又名红豆杉、赤柏松,为紫杉科紫杉属长绿针叶乔木,是世界珍稀濒危物种,国家一级保护植物。因其药用价值巨大,世界各国将其列为“国宝”,素有“植物黄金”之称。目前在我国共有4个种和1个变种,即云南红豆杉、西藏红豆杉、东北红豆杉、中国红豆杉和南方红豆杉(变种)。但在我国资源并不丰富。 [2]野生红豆杉一般散生在海拔2500-3000米的深山密林中,成材需50-250年,

紫杉醇的提取和性能

紫杉醇的提取与性能 姓名:高海艳 学号:51151300057 专业:种子植物分类学

紫杉醇的提取与性能 一、紫杉醇简介 紫杉醇(T axol)就是一种复杂的具有抗癌活性的二萜类生物碱[1](结构如图一所示),就是从短叶红豆杉(Taxus brevifolia)与东北红豆杉(Taxus cuspidata)的树皮中提取出来的。具有抗肿瘤、抗白血病的显著作用,主要用于治疗卵巢癌与乳腺癌[2],被人们誉为“植物黄金”。 Vidensek[3]对东北红豆杉(Taxus cuspidata)幼苗以及成树的不同部位中的紫杉醇含量作了分析结果表明成树紫杉醇的含量高低依次为树皮>树叶>树根>树干>种子>心材,幼苗的紫杉醇含量高低依次则就是树叶>树根>嫩枝条>心材。另外,对于不同植物来源的组织培养细胞中的紫杉醇含量陈未名等[4]作了大量的研究,结果表明愈伤组织中的紫杉醇含量以云南红豆杉为最高其次为欧洲红豆杉,再次为红豆杉;而悬浮培养细胞中的紫杉醇含量从高到低依次为云南红豆杉、欧洲红豆杉、红豆杉。 二、紫杉醇提取工艺 1、从原植物体中提取紫杉醇[5]: 红豆杉枝叶、树皮、树枝的采集 原料的干燥及粉碎 有机溶剂提取:甲醇 除去浸膏 固—液萃取 液—液萃取 己烷沉淀

2、细胞培养高效提取紫杉醇[6]: 1 紫杉醇就是目前已发现的最优秀的天然抗癌药物,在临床上已经广泛用于乳腺癌、卵巢癌与部分头颈癌与肺癌的治疗[12]。 2、紫杉醇作用于癌症的机制: 1979年,美国爱因斯坦医学院的分子药理学家Horwitz 博士阐明了紫杉醇独特的抗肿瘤作用机制:紫杉醇可使微管蛋白与组成微管的微管蛋白二聚体失去动态平衡,诱导与促进微管蛋白聚合、微管装配、防止解聚,从而使微管稳定并抑制癌细胞的有丝分裂与防止诱导细胞凋亡,进而有效阻止癌细胞的增殖,起到抗癌作用(如下图所示)[7-11]。

提取紫杉醇初分离工艺的研究

紫杉醇(paclitaxel,商品名Taxol)是当今一种重要的抗癌新药。早在1971年,Wani等 就从红豆杉树皮中发现并分离出了这种物质。由于它特异的临床抗癌疗效,1992年被美国FA D批准为治疗晚期乳腺癌的特效药而上市。然而,在实际药物生产中,紫杉醇的大规模制备仍 存在许多问题。首先,紫杉醇来源匮乏,其主要存在于红豆杉树皮和针叶中,其次,紫杉醇在植物中含量极低,大约为0.010%~0.013%,而紫杉醇与其它紫杉烷化合物在化学结构和极性 等方面又极为相似,要将它们完全分离困难很大。 关于紫杉醇提取分离方法,已有过不少的研究。其中以液-液萃取应用最为广泛,在文献 报道的每一种工艺中,几乎都采用过它。Willey等和Mattina等在测定样品中紫杉醇浓度时,选择了固相萃取作为HPLC分析的预处理。以分子间吸附为机理的硅胶柱层析,是制备紫杉醇 最常用的方法之一。1984年,Senilh等曾采用氧化铝柱层析处理红豆杉浸膏,但所报道的分 离效果不是太理想。1995年,Matysik等曾用制备薄层层析来少量获取紫杉醇。本研究的目的 ,在于寻找一条切实可行的工艺路线,最大程度地提高紫杉醇的回收率,以充分利用有限的红豆杉资源;采用一些高效、经济的提取分离方法,减少过程步骤,快速、简捷地提取出紫杉醇。 1 材料方法 1.1 材料 红豆杉树皮提取浸膏,云南张峰植物加工厂;紫杉醇对照品,纯度大于95%,Sigma;固 相萃取柱(C18填料,10ml),大连化学物理研究所;GF254硅胶和粗孔硅胶(100~140目),青岛海洋化工厂;层析氧化铝(200~300目),上海新诚精细化学品有限公司。 DU-7紫外/可见分光光度计及FL-750HPLC仪,Beckman公司;XZ-6A旋转蒸发器,北京科龙 仪器公司;常压层析系统,Pharmacia公司。 1.2 方法 1.2.1 液-液萃取称取红豆杉树皮浸膏于锥形瓶中,加CH2Cl2(浸膏CH2Cl2的重量比为 1:50),充分溶解,再加入与CH2Cl2等量的水,充分混合后静置分层,分液回收有机相,弃 水相。有机相再加水萃取,重复三次。将有机相中的CH2Cl2减压蒸出回收,所得固相物溶解 于甲醇中,用HPLC作定性定量分析。 1.2.2 固相萃取固相萃取过程包括四个步骤,即固定相活化、样品上柱、淋洗、样品的洗脱。全过程将速度稳定控制在5~8ml/min。固定相活化:取乙酸乙酯10ml加入柱中,抽空。 依资助加入甲醇10ml和0.01mol/L(pH5.0)的乙酸铵缓冲液10ml(乙酸铵水溶液),将液面维持在胶层上1~2mm。上样及淋洗:将样品溶于80%~90%的甲醇乙酸铵溶液中,取0.5ml加入柱中

紫杉醇的分离工艺

⒉紫杉醇的分离工艺 红豆杉针叶、树皮、根的采集 原料的干燥及研磨 初级萃取 次级萃取 水相(含键合相)有机相 色谱纯化 纯品紫杉醇 图11-4紫杉醇分离纯化工艺 紫杉醇的分离纯化工作开展较早,最早的分离巩义市1966年采用400根试管的逆流分配色谱法,从12g太平洋红豆杉树皮中提取了少量紫杉醇,历时两年,这种工艺十分琐碎,收率极低。随着相关科学技术的不断发展,分离工艺也获得了很大的改进。一般来说,紫杉醇的分离工艺可以分为粗提和纯化两个阶段,分离纯化过程可用图11-4表示。 ⒊紫杉醇粗提工艺 粗提阶段的目的在于从原料液中尽可能多的提取目标产物,所得到的物料在进行后续的提纯直至获得纯品。粗提过程中初级萃取和次级萃取所采用的溶剂不同可以导致除去杂质不同,不同时期研究者对这两个过程的研究结果列于表11-5中。 目前用于提取紫杉醇的最普遍的初级萃取剂是乙醇(甲醇)和水,采用95:5的甲醇和二氯甲烷的混合物,萃取时间35~60min;采用纯甲醇,所需萃取时间则为16~48h。在大多数情况下还需对甲醇初级萃取物进行次级萃取。一般是在初级萃取物中加入二氯甲烷和水的混合物,即液-液萃取,该方法可以有效地除去萃取液中50%(质量比)的非紫杉醇烷类物质。如果采用一个较为复杂的分离体系,发现所有的紫杉醇都在氯仿相中。 次级萃取除了可采用各种有机溶剂进行液-液萃取外,还可以采用固相浸取法和超临界流体萃取法。这两种方法的共同特点是有机溶剂用量少,减少了环境的污染。若用枝叶为原料,由于枝叶特别是枝叶中含有许多色素和蜡质,无疑将大大增加紫杉醇的提取分离难度。这要求首先在甲醇粗提取物中加入低极性溶剂如正已烷以除去此物质,该法可除去红豆杉枝叶中多达72%的可溶于正已烷的杂质。 五、正相色谱过程为核心的紫杉醇分离纯化工艺

从紫杉植物中提取紫杉醇的简化方法

从紫杉植物中提取紫杉醇的简化方法 红豆杉Taxus又名紫杉,也称赤柏松,生于海拔1000~1200m处的山地,是世界上公认的濒临灭绝天然珍稀植物,从其根、皮、茎、叶中提取的紫杉醇taxol是目前世界上最有效的抗癌药物之一。全球每年大约需要1500~2500kg紫杉醇,而1 kg树皮仅能提取50~100mg。 10-脱乙酰巴卡亭Ⅲ又称10-脱乙酰基浆果赤霉素Ⅲ,10-deacetylbaccatinⅢ,10-DABⅢ为有抑制肿瘤作用的紫杉烷二萜类化合物。Bissery等报道,可利用10-DABⅢ合成具有比紫杉醇更高抗癌活性的多烯他赛docetaxel。紫杉醇主要存在于树杆和树皮中,10-DABⅢ主要存在于树叶中,其含量大大高于紫杉醇的含量。 红豆杉是国家珍稀保护植物,生长缓慢,如果直接从红豆杉树皮中提取紫杉醇,不仅资源有限,而且不利于资源保护。以10-DABⅢ为原料采用酶催化半合成工艺方法来制备紫杉醇,可大大简化合成过程,使紫杉醇骨架修饰所需步骤更少,操作更简单,提高了紫杉醇合成的选择性和生产率,进而为在更大规模上进行紫杉醇生产提供了技术支持,最终使紫杉醇的化学合成半合成的产业化有了实现的可能。 目前文献报道从各种紫杉植物中提取紫杉醇的方法,均需经过繁冗的分离过程。本实验采用了一种适合于以各种紫杉植物树叶或树枝做原料,通过极性梯度溶剂萃取的方法逐步脱除大量不相干杂质,得到合成紫杉醇的前体10-DABⅢ的方法,然后通过反相层析柱加成,即可获得抗癌活性成分紫杉醇; 材料与方法 1 材料与仪器 南方红豆杉Taxus mairei枝叶取自浙江宁海红豆杉种植基地,8年树龄。10-DABⅢ对照品为Sigma公司产品,纯度98%;所用甲醇;乙醇、乙酸乙酯、乙酸丁酯、二氯甲烷、氯仿、正己烷、石油醚、乙腈等均为分析纯试剂。JJ一1精密增力电动搅拌仪,江苏金坛市江南仪器厂;SENCO R一201旋转蒸发仪,上海申顺生物科技有限公司;玻璃硅胶柱为2cm×40cm,杭州常盛科教器具厂;UV一2802PC/PCS型分光光度计,UNICO上海仪器有限公司;Sigma一3K18低温离心机4℃,转速18000rmin;LabAlliance高效液相色谱仪美国SSI公司。 2 实验方法 取南方红豆杉枝叶研磨成细粉,于燥保存。称取100g红豆杉细粉,45℃烘干,石油醚预处理,5L甲醇冷浸,辅以搅拌,超声40min,反复2次。浸渍液过滤,减压浓缩至100mL。加入75 mL正己烷萃取分液,重复操作2~3次。弃去正己烷层,萃余液旋干溶剂,制成浸膏。加入氯仿与水的混合液1:1反复提取。氯仿层减压浓缩至10~15mL上柱,用硅胶正相色谱柱分离。分段收集洗脱液,紫外监测,收集有效段合并浓缩,在甲醇/水中重结晶。 3 分析测试方法 采用反相高效液相色谱RP―HPLC方法检测。分析柱为Kromasil C18柱250mm×4.6 mm,5μm,流动相为乙腈-水30:70,流速为2.0 mLmin,每次进样体积为10μl,进样间隙用纯乙腈对柱子进行梯度冲洗。紫杉醇最大吸收波长为227nm,检测器测定波长为232nm,温度30℃,相关数据计算均采用峰面积归一化法。 结果 1 预处理 由于红豆杉枝叶中含有大量蜡质、植物色素诸如叶绿素等低极性杂质,故在提取前应首先加入低极性溶剂如正己烷、石油醚浸泡脱脂,以除去大量存在的此类非极性杂质,简化后续操作。该法可除去红豆杉枝叶中多达72%的极性比10-DABⅢ小且可溶于正己烷的杂质。 2 有机溶剂粗提 目前用于紫杉烷类物质提取的最普通的初级萃取剂是乙醇甲醇和水,Xu等采用的是体积比95:5的甲醇和二氯甲烷的混合物,萃取时间为35~60min;而Hoke等和Powell等都选择的是纯甲醇,所需萃取时间为16~48h。将南方红豆杉枝叶的细粉在45℃烘干,甲醇浸渍,搅拌过夜。在搅拌的不同时间内其提取出的10-DABⅢ的含量。可以看出,有机溶剂粗提时的浸渍搅拌时间应以12h左右为佳。

紫杉醇的提取工艺设计研究方案

紫杉醇提取纯化方法的研究进展 紫杉醇是最早从红豆杉属植物中分离出来的三环二菇类化合物,是继阿霉素和顺铂之后最热点的抗癌新药。紫杉醇具有复杂的化学结构,分子由3个主环构成二菇核,分子中有11个手性中心和多个取代基团,母环部分是一个复杂的四 环体系,有许多功能基团和立体化学特征。分子式C 47H 51 NO 14 ,分子量853.92。 同位素示踪表明, 紫杉醇只结合到聚合的微管上, 不与未聚合的微管蛋白二聚体反应。细胞接触紫杉醇后会在细胞内积累大量的微管,这些微管的积累干扰了细胞的各种功能,特别是使细胞分裂停止于有丝分裂期,阻断了细胞的正常分裂。通过Ⅱ-Ⅲ临床研究,紫杉醇主要适用于卵巢癌和乳腺癌,对肺癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤也都有一定疗效。 紫杉醇属于有丝分裂抑制剂,它的独特机制在于可以诱导和促进微管蛋白 聚合,促进微管装配及阻止微管的生理解聚,由此抑制癌细胞纺锤体的形成,阻止 有丝分裂的完成,使其停留在G2期和M期直至死亡,从而起到抗癌的作用。迄今为止紫杉醇是唯一促进微管聚合的新型抗癌药。这一新的发现引起了各国医药界的极大兴趣。现在已有包括我国在内的十多个国家批准了紫杉醇类药物的正式生产。目前有关紫杉醇研究的几个主要问题是:紫杉醇的提取;紫杉醇的人工合成;紫杉醇的临床应用(水不溶性问题的解决);紫杉醇的构效关系;紫杉醇的抗癌机理。紫杉醇的抗癌机理 1971年,Wani等报道了紫杉醇在一些实验体系中具有抗癌活性。1978 年,Schiff等发现紫杉醇在极低的浓度下(0.25μM)可以完全抑制Hela细胞的分裂,而且在对细胞4小时的培养过程中,对DNA、RNA和蛋白质的合成没有明显影响。

紫杉醇提取工艺优化研究

紫杉醇提取工艺优化研究 赵万年 S1315004 立体依据 紫杉醇(Paclitaxel,商品名Taxol)是Wani等[1]于1971年首次从短叶红豆杉(Taxus Bravifolia Nutt.)中分离得到的一种复杂的次生代谢产物,属二萜类化合物。其抗癌机理独特[2],活性广谱高效,是目前所发现的惟一一种具有促进微管双聚体装配成微管, 使微管稳定, 从而阻碍细胞分裂, 将癌细胞停止在G2晚期或M期,最终导致癌细胞死亡[3],抑制肿瘤生长的作用。由于紫杉醇的作用机理独特、疗效显著,因此已用于转移性卵巢癌、乳腺癌等的治疗,对肺癌、大肠癌、黑色素瘤、头颈部癌、淋巴瘤、脑瘤也都有一定疗效。 虽然现在开发了多种紫杉醇的制备方法,利用半合成、全合成、生物合成、真菌发酵、植物组织细胞培养等技术手段获得紫杉醇的研究工作也取得了较大的进展[4-6],但是要实现这些技术的工艺扩大和工业放大生产还存在一些问题,而从树皮中提取紫杉醇的工艺已经成熟且工业化,因此目前从植物中直接提取分离仍是紫杉醇的主要制备方法。但是,紫杉醇在植物中的含量非常低(含量最高的红豆杉树皮也只有万分之几)[7],且类似物多,具有热敏性,产物在中间过程中易于分解、变性,不同产地、不同季节的植物资源成分相差甚远,因此分离提取工作难度很大。 目前紫杉醇的提取纯化工艺有溶剂萃取法、固相萃取法、制备色谱法、膜分离法、超临界萃取法、离子交换法、键合物解离法、药理作用靶点法和化学反应法[8-10]。这些工艺各有优缺点,其中溶剂萃取法和制备色谱法是最简单、最常用的方法,也已经成功应用于工业生产,但仍需改进。本课题以乙醇为提取溶剂,探求从南方红豆杉树叶中浸取紫杉醇的最佳提取条件,旨在为南方红豆杉这一药用植物资源的开发与利用提供试验依据。 研究目标 采用乙醇浸提方法,考查粉碎度、乙醇浓度、料液比、提取温度和提取时间

紫杉醇的性质及色谱分析方法

紫杉醇的性质及色谱分析方法 摘要 紫杉醇是从紫杉(Taxus brevifolia)树皮中所提得,是红豆杉属植物中的一种复杂的次生代谢产物,也是目前所了解的惟一一种可以促进微管聚合和稳定已聚合微管的药物。已成为目前全球销售量排名第一的抗肿瘤药物。综述紫杉醇的发现历史、来源、性质及色谱分析方法。 Abstract Paclitaxel is extracted from Taxus brevifolia bark,whichnot only is one of the plants of the genus Taxus chinensis complex secondary metabolites, also is the only kind of antitumor drugs that can promote microtubule polymerization and stable microtubule polymerization till now. It has become the top sales in the worldwide . Review of Paclitaxel history, origin, nature and chromatographic methods. 关键词:发现历史;来源;性质;紫杉醇;色谱 Keyword:Discovery history; Source; Properties; Paclitaxel; The chromatographic

1.紫杉醇简介: 1.1发现历史 1963年美国化学家瓦尼(M.C. Wani)和沃尔(Monre E. Wall)首次从一种生长在美国西部大森林中称谓太平洋杉(Pacific Yew)树皮和木材中分离到了紫杉醇的粗提物。在筛选实验中,Wani和 Wall发现紫杉醇粗提物对离体培养的鼠肿瘤细胞有很高活性,并开始分离这种活性成份。由于该活性成份在植物中含量极低,直到1971年,他们才同杜克(Duke)大学的化学教授姆克法尔(Andre T. McPhail)合作,通过x-射线分析确定了该活性成份的化学结构——一种四环二萜化合物,并把它命名为紫杉醇(taxol)。 1.2来源 由于野生红豆杉资源有限且紫杉醇含量极低,限制了紫杉醇制药业的发展,全世界紫杉醇的需求量约为4000公斤/年,而总产量只有到300-400公斤/年。所以,从天然的红豆杉中提取紫杉醇的方法远远不能满足人们对紫杉醇日益增长的需要。因此,采用各种手段积极寻求紫杉醇新药源生产途径,扩大紫杉醇原料供应能力,已成为紫杉醇产业发展的重点研究方向之一, 目前已取得了一定的进展, 其途径可归结为以下几种: 1.2.2天然红豆杉植物提取 紫杉醇的最直接来源是对天然植物红豆杉属种树皮和叶片中中提取。但由

紫杉醇提取

紫杉醇最新提取工艺 摘要:紫杉醇为著名的抗肿瘤天然产物,来源有限,化学合成是制备紫杉醇的可能途径之一。本文主要综述了紫杉醇新的提炼方法主要是在天然提取分离、细胞培养、有机合成、紫杉醇的全合成基础上取得重要成就,从而改进得出的最新提取工艺路线。其最大的改进是少用了很多有机溶剂,为分离与纯化提供便捷。 关键词:紫杉醇;天然提取分离;细胞培养;合成 1 简介 1.1 发展史 从植物中寻找有效抗癌成分的历史至少可以追溯到公元前1500年关于纸莎草(papryrus)的研究,但真正对天然产物进行系统的科学研究却是从本世纪 50年代才开始的。50年代,Hartuell及其同事着重研究了抗癌制剂鬼臼毒素(PgdoPhyllotoxin)及其衍生物的应用。同时一系列寻找天然抗肿瘤成分的研究导致了象长春花碱(Vinblastlnc)、长春新碱(Vincristine)及秋水仙碱(Colchicine)等一系列具有代表性的抗癌药物的产生。1971年,Wanj及其同要从欧洲短叶红豆杉中分离得到一种具有细胞毒性的新化合物,命名为紫杉醇(Paclltaxel,现已商品化,其注册名为Taxol),药理实验证明,它具有广谱抗癌作用,但由于其天然含量极低,故而在当时并未引起人们的注意,直到1977年,HorwitZ博士发现其抗癌机理在于能够与微管蛋白结合,促进微管蛋白聚合装配成微管二聚体,从而抑制细胞中微管的正常生理解聚,使细胞有丝分裂停止在G2期及M期,阻止了癌细胞的快速繁殖,这一机理与上述纺锤体毒性的抗癌药物(如长春新碱与秋水仙碱)的作用机制恰好相反,从而引起随后20多年关于该属植物的广泛研究。 1.2 自然资源

从天然植物中提取紫杉醇原料的最新工艺

Patent No. U.S. 6,759,539 Assignee: Chaichem Pharmaceuticals International, Laval, Canada Title or Subject: Process for Isolation and Purification of Paclitaxel from Natural Sources This is the first of three patents covering paclitaxel 10a that is a naturally occurring compound found in the bark of yew trees and has been shown to be useful in treating various cancer tumours. The amount of 10a obtained from the bark is low, and hence, large amounts of biomass and solvents are needed to obtain reasonable quantities. Synthetic procedures are under investigation. This patent, covering 10a and its derivatives, describes an improved process to extract 10a from twigs and needles of coniferous trees of the genus T axus. An earlier process from the same company to extract 10a involves several chromatography stages and recrystallisations, and it is not particularly amenable to large-scale production. The new procedure involves an initial aqueous extraction step to remove soluble impurities from the biomass. This is then followed by extraction of 10a with methanol, followed by its isolation by chromatography and crystallisation. The various stages of the process are summarised below: A porous bag containing twigs and needles of the tree is immersed in distilled water for 3 h at room temperature, the water is drained from the bag of biomass, and MeOH is added to the biomass in the tank at room temperature, the extract is collected and the solution concentrated by distilling off the MeOH, the crude solid is precipitated by addition of aqueous NaCl solution, collected by filtration, and then dried, the solid is dissolved in Me2CO, leaving resins and pigments, hexane is added to the solution to produce an oil that is collected and purified by low-pressure column chromatography at least once, the purified oil is dissolved in acetone and cooled to give crystals of 10a, and these may be recrystallised to improve the purity. --------------------------------------------------------------------------------

紫杉醇 红杉醇的提取分离纯化工艺

紫杉醇红杉醇的提取分离纯化工艺 紫杉醇(Pac lit axe l,商品名Ta xo1)是红豆杉属植物中独有的一种抗肿瘤天然药物,由美国化学家Wa ni和W allt等人于1971年首次分离得到,并于1992年被美国FDA正式批准为抗卵巢癌新药。由于其独特的抗癌作用机制及显著的疗效而被认为是近15年来天然抗癌药物研究领域最重大的发现。随着人们对紫杉醇研究的不断深入和完善,化学合成、基因工程、细胞培养、真菌发酵等方法均可以成功获得紫杉醇,但这些方法应用于紫杉醇的生产依旧停留在实验室研究阶段。目前,国内外紫杉醇的商业化规模生产多以红豆杉植物为原料,通过一系列的分离纯化获得。由于紫杉醇在红豆杉树皮中含量极低(<0.06%),提取精制困难等原因,导致紫杉醇纯品价格昂贵。因此完善紫杉醇的提取纯化工艺,降低生产成本,得到更加便宜的原料对保障人类健康都具有重要的意义。 红杉醇是一种高效、低毒、安全可靠的治疗糖尿病的新药。 济南博纳生物技术有限公司通过与科研院校以及紫杉醇生产厂 家合作,开发了用于紫杉醇分离纯化的SKS-30-3氧化铝 SKP-10-4300层析树脂,并率先在提取工程中使用了陶瓷滤和纳滤,使原有生产工艺多次萃取、三步层析变为两次萃取两步层析,使得产品的产品纯度提高到98.5%以上,收率提高20%以上。并针对该产品副产品红杉醇的性质,用SKP-20-8300层析树脂对该产品进行富集洗脱析晶可以得到纯度99%以上的产品。

1、20目以上红豆杉干品甲醇水浸提陶瓷滤纳滤浓缩液含紫杉醇纳滤透过液含红杉醇。 2、纳滤浓缩液萃取浓缩 SKS-30-3氧化铝转化层析分段收集所需组分浓缩回收溶剂甲醇水溶解 SKP-10-4300层析树脂收集所需组分洗脱液纳滤浓缩结晶得紫杉醇。 3、纳滤透过液浓缩盐水溶解 SKP-20-8300层析树脂收集所需组分,浓缩结晶得红杉醇。 SKS-30-3氧化铝 SKP-10-4300层析树脂 SKP-20-8300层析树脂是济南博纳生物技术有限公司针对紫杉醇红杉醇提取开发的新型层析填料,SKP-10-4300层析树脂和SKS-30-3氧化铝的连用可以完全替代高压制备液相C18分离纯化,使紫杉醇的最后精制不再受设备的限制,在低压条件下就能够完成产品的较好的分离,包括紫杉烷类10-D ABⅢ、含7-木糖基类等副产品。将作为废液的处理的红杉醇得到很好的分离。

相关文档
最新文档