高中数学分层抽样教案

合集下载

高中数学 学案 分层抽样

高中数学 学案 分层抽样

2.1.3 分层抽样学 习 目 标核 心 素 养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点) 3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.1.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由差异明显的几部分组成时,往往选用分层抽样的方法. 2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层). 第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=各层总的个体数×抽样比. 第四步,依各层抽取的个体数,按简单随机抽样从各层抽取样本. 第五步,综合每层抽样,组成样本. 思考:什么情况下适用分层抽样?[提示] 当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样C [依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .按每层所含个体在总体中所占的比例抽样D .只要抽取的样本容量一定,每层抽取的个体数没有限制 C [分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4C [抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三 [三种抽样方法均为不放回抽样.]分层抽样的概念【例1】 下列问题中,最适合用分层抽样抽取样本的是( ) A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 中,D 中总体个体无明显差异且个数较多,适合用系统抽样;B 中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况. (2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1 600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解] 因为不同年级的学生消费情况有明显差别,所以应采用分层抽样. 因为520∶500∶580=26∶25∶29. 所以将80分成26∶25∶29的三部分. 设三部分各抽取的个体数分别为26x,25x,29x, 由26x +25x +29x =80得x =1, 所以高三学生中应抽查29人.分层抽样的设计及应用1.怎样确定分层抽样中各层入样的个体数? [提示] 在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办? [提示] 可四舍五入取整,也可先将该层等可能地剔除多余个体. 3.分层抽样公平吗?[提示] 分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,N i 为第i 层的个体数,则第i 层抽取的个体数n i =n·N iN ,每个个体被抽到的可能性是n i N i =1N i ·n ·N i N =nN.【例2】 某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本 [解] ∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥. ∵10020=5, ∴105=2,705=14,205=4. ∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1 200人,销售人员2 000人,车间工人6 000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解] 改革关系到每个人的利益,采用分层抽样较好.抽样比:461 200+2 000+6 000=1200.∵1 200×1200=6(人),2 000×1200=10(人),6 000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人. 因为各层中个体数目均较多,可以采用系统抽样的方法获得样本. 2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解] 从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为( )A .分层抽样,分层抽样,简单随机抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D [①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按年龄分层抽样D .系统抽样C [因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解] (1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比. 2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法. (2)当总体容量较大,样本容量较小时,可采用随机数法. (3)当总体容量较大,样本容量也较大时,可采用系统抽样法. (4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.( )(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.( )(3)分层抽样中不含系统抽样和简单随机抽样.( )[答案](1)√(2)×(3)×2.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3 600∶5 400∶1 800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有( )①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.W。

人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案

人教A版高中数学必修三213《分层抽样》教案教案主题:分层抽样授课对象:人教A版高中数学必修三教案大纲:一、教学目标:1.理解分层抽样的定义和原理;2.掌握分层抽样的步骤和方法;3.能够运用分层抽样解决实际问题;4.培养学生的抽样技能和数据分析能力。

二、教学重点与难点:1.理解和应用分层抽样的原理;2.掌握分层抽样的步骤和方法;3.运用分层抽样解决实际问题。

三、教学过程:1.导入(5分钟)向学生介绍分层抽样的概念和重要性,引发学生的学习兴趣和探究欲望。

2.知识讲解(20分钟)2.1什么是分层抽样:解释分层抽样的定义,并举例说明。

2.2分层抽样的原理:介绍分层抽样的原理,即将总体分成多个层次,然后从每个层次中随机选择一部分样本。

2.3分层抽样的步骤和方法:具体讲解分层抽样的步骤和方法,包括确定总体和层次、确定样本容量和比例等。

3.示例分析(30分钟)以一个实际问题为例,让学生分析问题并设计相应的分层抽样方案,并对样本数据进行分析和总结。

4.练习与拓展(20分钟)4.1练习题:布置一些练习题,让学生进行独立思考和解答。

4.2拓展问题:提出一些拓展问题,让学生运用分层抽样解决实际问题,并进行总结与讨论。

5.归纳总结(10分钟)让学生总结分层抽样的基本原理、步骤和方法,并强调分层抽样在实际应用中的重要性。

四、教学资源:1.PPT课件:准备一份包含分层抽样的相关概念、原理、步骤和方法的PPT课件,便于学生理解和记忆。

2.实例材料:准备一些实例材料,例如人口数据、市场调查数据等,用于示范和练习。

五、教学评价:1.学生的问题解答能力和实际应用能力;2.学生课后练习的完成情况和答题质量;3.学生的课堂表现和参与度。

六、教学反思:通过本节课的教学实践,学生对分层抽样的概念和方法应该有了初步的了解,并且能够初步运用分层抽样解决一些实际问题。

但是,可能部分学生对分层抽样的原理和步骤还不够理解,需要进一步进行巩固和拓展。

高中数学-《分层抽样》说课及教案、教学设计

高中数学-《分层抽样》说课及教案、教学设计

《分层抽样》说课及教案、教学设计高中数学人教A版必修三一、说教材本节选自高中数学人教A版必修三第二章,是在学习了简单随机抽样和系统抽样的基础上,研究的第三种抽样方式,为下节“用样本估计总体”的学习打下了基础。

因此本节内容具有承上启下的过渡作用。

【教学目标】1.理解分层抽样的概念与特征;掌握其于前两种抽样(简单随机抽样、系统抽样)的区别与联系。

2.通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法3.通过对统计学知识的研究,感知数学知识中“估计与精确性”的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

【教学重点】分层抽样的含义及特点【教学难点】灵活选择三种抽样方法解决问题二、说学情高中数学课程标准中强调“统计观念和随机思想将成为现代社会一种普遍适用并且强有力的思维方式,要使学生形成尊重事实,用数据说话的态度。

”高一学生思维由经验型向理论型转化。

数据分析能力、瑞吉思维能力依然有待加强。

知识上,学生已经了解了简单随机抽样和系统抽样的特点和适用范围,以及在随机抽样中必须保证样本的代表性,这些为本节课的学习提供了帮助。

但学生面对较为复杂的总体时,对保证样本的代表性有疑虑。

分层抽样的概念对于他们来说还是比较抽象的。

而要透彻理解分层抽样的方法并能够解决实际问题更是有一定的困难。

三、说教法和学法【教法】自主学习法、合作探究法、引导发现法、讲练结合法【学法】自主探究法和合作学习法。

四、说教学过程(一)温故知新,导入新课改编教材上的导入问题:只给出学生总人数24300人,选择合理的抽样方法选出243个样本。

并说出具体的操作步骤。

学生根据已有知识回答:使用系统抽样的方式处理问题。

系统抽样的具体步骤:1、编号;2、确定分段间隔;3、从第一组起在每组的相同位置抽取一个样本。

在此基础上,继续利用PPT展示教材上的探究题。

引导学生继续思考:如果在这个前提下我们依旧选择系统抽样,选取出来的样本是否还具有代表性,引出课题。

高中数学《分层抽样》教案

高中数学《分层抽样》教案

高中数学《分层抽样》教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职业道德、时事政治、政治理论、专业基础、说课稿集、教资面试、综合素质、教案模板、考试题库、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as professional ethics, current affairs and politics, political theory, professional foundation, lecture collections, teaching interviews, comprehensive qualities, lesson plan templates, exam question banks, other materials, etc. Learn about different data formats and writing methods, so stay tuned!高中数学《分层抽样》教案一、教学目标【知识与技能】了解随机抽样中的分层抽样的特点和适用情况,并会用分层抽样解决实际问题。

数学《分层抽样》教案

数学《分层抽样》教案

数学《分层抽样》教案1. 教学目标:了解分层抽样的概念、特点和方法,掌握其中常见的几种方法。

2. 教学重点:掌握分层抽样的方法。

3. 教学难点:如何根据实际情况选择合适的分层抽样方法。

4. 教学内容:4.1 分层抽样的概念和特点。

4.2 分层抽样的方法。

4.2.1 基本分层抽样法。

4.2.2 无重复抽样法。

4.2.3 系统抽样法。

4.2.4 分层整群抽样法。

4.2.5 整群随机抽样法。

5. 教学方法:讲授、演示、讨论。

6. 教学步骤:6.1 引入:教师简要讲解分层抽样的概念和作用。

6.2 分层抽样的方法:6.2.1 基本分层抽样法:按照某些特征将总体分为若干层,从每层中抽取若干单位进行抽样。

6.2.2 无重复抽样法:从所有单位中随机抽取若干单位,再将这些单位按照所属层来进行分类,以保证每层都有样本。

6.2.3 系统抽样法:从第一个单位开始按照固定间隔进行抽样,以保证每个单位有被抽中的机会。

6.2.4 分层整群抽样法:将总体按照一定比例分成若干群,在每个群中选择全部的单位作为样本。

6.2.5 整群随机抽样法:将总体按照一定比例分成若干群,随机选择若干个群,再从每个群中随机抽取一定数量的单位作为样本。

6.3 讨论:讨论在不同情况下,如何选择合适的分层抽样方法,以保证样本的质量。

7. 教学总结:对分层抽样的概念、特点和方法进行简要总结,并引导学生思考如何灵活应用分层抽样的方法。

8. 课后作业:完成指定的分层抽样练习题,掌握分层抽样的操作技巧。

教案高中数学【优秀5篇】

教案高中数学【优秀5篇】

教案高中数学【优秀5篇】篇一:高中数学优秀教案篇一教学目标:1、结合实际问题情景,理解分层抽样的必要性和重要性;2、学会用分层抽样的方法从总体中抽取样本;3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:通过实例理解分层抽样的方法。

教学难点:分层抽样的步骤。

教学过程:一、问题情境1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100∶2500=1∶25,所以在各年级抽取的个体数依次是。

即40,32,28。

三、建构数学1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2、三种抽样方法对照表:类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3、分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分。

高中分层抽样试讲教案模板

高中分层抽样试讲教案模板

---一、教学目标1. 知识与技能:了解分层抽样的概念、特点和适用情况,掌握分层抽样的步骤和方法,并能运用分层抽样解决实际问题。

2. 过程与方法:通过小组合作、案例分析和实际问题解决,提升学生的归纳总结能力和实际应用能力。

3. 情感、态度与价值观:在探索分层抽样的过程中,培养学生严谨的科学态度和团队合作精神,体会数学在生活中的应用价值。

二、教学重点分层抽样的特点及步骤。

三、教学难点分层抽样特点的探究过程。

四、教学准备多媒体课件、相关案例、调查问卷等。

五、教学过程(一)引入新课1. 情境导入:提出问题:“如果要调查某校高一学生的平均身高,应该怎样调查?”2. 讨论与预设:引导学生讨论,简单随机抽样和系统抽样可能存在的问题,如样本代表性不足等。

3. 引出概念:讲解选择抽样方法之前,充分利用对总体情况的了解的重要性,引出新的抽样方法——分层抽样。

(二)探索新知1. 分层抽样概念讲解:介绍分层抽样的定义、特点和适用范围。

2. 案例展示:展示某地区教育部门为了了解本地区中小学生的近视情况及其形成的原因,如何运用分层抽样进行调查的案例。

3. 分组讨论:将学生分成小组,讨论以下问题:- 你认为哪些因素可能影响学生的视力?- 设计抽样方法时需要考虑这些因素吗?- 根据前面的问题情境,如果让你来抽样你会如何进行?4. 小组汇报:各小组汇报讨论结果,教师点评并总结。

(三)实践应用1. 案例分析:提供实际案例,让学生运用分层抽样方法进行分析和解决问题。

2. 课堂练习:布置练习题,让学生巩固分层抽样的应用。

(四)总结与反思1. 回顾总结:回顾分层抽样的概念、特点和步骤,强调分层抽样的优势和应用价值。

2. 反思与评价:引导学生反思分层抽样在生活中的应用,评价分层抽样方法的有效性。

六、板书设计分层抽样- 概念:将总体按某种特征分成若干层,然后从每一层中抽取样本。

- 特点:样本具有代表性,适用于总体差异较大的情况。

- 步骤:1. 确定分层标准;2. 确定各层的样本量;3. 从各层中抽取样本。

《分层抽样》教案

《分层抽样》教案

《分层抽样》教案【教学目标】1、正确理解分层抽样的概念;掌握分层抽样的一般步骤.2、通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法.3、通过对统计学知识的研究,感知数学知识中“估计”与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观.【教学重点】分层抽样的概念和步骤;应用分层抽样方法解决部分实际问题.【教学难点】对分层抽样方法的理解.【教学过程】一、创设情境,温故求新1、复习提问(1)为了了解我班65名同学的近视情况,准备抽取10名学生进行检查,应怎样进行抽取?(2)为了了解我校高二年级1403名学生的近视情况,准备抽取100名学生进行检查,应怎样进行抽取?通过对学生采用不同抽样方法的原因进行提问,归纳总结:当总体中的个体数较少时采用简单随机抽样的方法,当总体中的个体数较多时采用系统抽样的方法.2、新课引入(3)为了了解我区高中生2400人,初中生10900人,小学生11000人的近视情况,要从中抽取1%的学生进行检查,应怎样进行抽取?对于这个问题,我们还能不能采用前两节所学的简单随机抽样或系统抽样呢?样本中应该高中生、初中生和小学生都有,那么他们应该按照什么比例来抽取呢?为了尽可能地保证样本结构和总体结构的一致性,我们可以按各部分所占的比例进行抽取,抽取高中生、初中生和小学生各1%的人,即抽取高中生:2400×1%=24(人)初中生:10900×1%=109(人)小学生:11000×1%=110(人)然后再在各个学段用简单随机抽样或系统抽样的方法把这24人、109人和110人抽取出来,最后再将这些抽取出来的个体合在一起,即构成了我们所要调查的样本.二、启发引导,形成概念1、分层抽样的定义根据刚才的分析,让学生思考讨论,引导学生给出分层抽样的定义.一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2、强调定义关键词分成互不交叉的层:将相似的个体归入一类,即为一层;分成互不交叉的层是为了抽取过程中既不重复也不遗漏,从而确保了抽取样本的公平性;比例:按照一定的比例抽取是指所有层都采用同一抽样比等可能抽样,这样可以保证样本结构与总体结构的一致性,从而提高了样本的代表性;各层独立地抽取:在分层抽样中,每一层内部都要独立地进行抽样,并且为了确保抽样的随机性,各层应分别按简单随机抽样或系统抽样的方法抽取,因此,分层抽样也是一种等概率抽样.三、新知初用,示例练习例某单位有500名职工,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了了解该单位职工年龄与身体状况的有关指标,从中抽取100名职工作为样本,应该怎样抽取?解:(1)分三层:不到35岁的职工,35~49岁的职工,50岁以上的职工;(2)确定样本容量与总体的个体数之比100:500=1:5;(3)利用抽样比确定各年龄段应抽取的个体数:1 =25(人)不到35岁的职工:125×51 =56(人)35~49岁的职工:280×51 =19(人)50岁以上的职工:95×5(4)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取25,56,19人;(5)然后将抽取的25,56,19人合在一起,就是所抽取的样本.四、 掌握步骤,巩固深化1、分层抽样的步骤根据上例的分析,请同学们归纳整理出分层抽样的步骤.1、分层——根据已有信息,将总体分成互不相交的层;2、定比——根据总体中的个体数N 与样本容量n 确定抽样比Nn k =; 3、定量——确定第i 层应该抽取的样本数k N n I i ⨯≈(i N 为第i 层所包含的个体数)使得各i n 之和为n ;4、抽样——在各个层中,按步骤3中确定的数目在各层中随机抽取个体;5、组样——综合每层抽样,得到容量为n 的样本.2、应用举例,巩固新知1、下列问题中,采用怎样的抽样方法比较合理:①从10台冰箱中抽取3台进行质量检查; 简单随机抽样 ②某电影院有32排座位,每排有40个座位,座位号为1~40。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.②③都不能为系统抽样B.②④都不能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样
解析:如果按分层抽样时,在一年级抽取108× =4人,在二、三年级各抽取81× =3人,则在号码段1,2,…,108抽取4个号码,在号码段109,110,…,189抽取3个号码,在号码段190,191,…,270抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.
1.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.
则该地区生活不能自理的老人中男性比女性约多________人.
解析:在抽取的500人中,生活不能自理的老人中男性比女性约多23-21=2(人).占抽取的500的人比例为 = ,所以该地区生活不能自理的老人中男性比女性约多15 000× =60(人).
答案:B
思路2
例某地农田分布在山地、丘陵、平原、洼地不同的地形上,要对这个地区的农作物产量进行调查,应当采用什么抽样方法?
解:显然不同类型的农田之间的产量有较大差异,应当采用分层抽样的方法,对不同类型的农田按其总数的比例来抽取样本.
点评:在每个层中进行抽样时,大多数情况下是采用简单随机抽样,有时也会用到其他的抽样方法,这要根据问题的需要来决定.
三种抽样方法的比较
类别
共同点
各自特点
相互联系
适用范围
简单随机抽样
抽样过程中每个个体被抽取的概率相等
从总体中逐个抽取

总体中的个体数较少
系统抽样
将总体均分成几部分,按事先确定的规则在各部分抽取
在起始部分抽样时,采用简单随机抽样
总体中的个体数较多分层抽样Biblioteka 将总体分成几层,分层进行抽取
各层抽样时采用简单随机抽样或系统抽样
答案:D
点评:根据样本的号码判断抽样方法时,要紧扣三类抽样方法的特征.利用简单随机抽样抽取出的样本号码没有规律性;利用分层抽样抽取出的样本号码有规律性,即在每一层抽取的号码个数m等于该层所含个体数目与抽样比的积,并且应该恰有m个号码在该层的号码段内;利用系统抽样取出的样本号码也有规律性,其号码按从小到大的顺序排列,则所抽取的号码是:l,l+k,l+2k,…,l+(n-1)k.其中,n为样本容量,l是第一组中的号码,k为分段间隔= .
(3)在各层分别按抽签法或随机数表法抽取样本.
(4)综合每层抽样,组成样本.
点评:本题主要考查分层抽样及其实施步骤.如果总体中的个体有差异时,那么就用分层抽样抽取样本.用分层抽样抽取样本时,要把性质、结构相同的个体组成一层.
变式训练
1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.
总体由差异明显的几部分组成
简单随机抽样、系统抽样、分层抽样的共同特点是在抽样过程中每一个个体被抽取的可能性相等,体现了这些抽样方法的客观性和公平性.其中简单随机抽样是最简单和最基本的抽样方法,在进行系统抽样和分层抽样时都要用到简单随机抽样方法,抽样方法经常交叉起来应用,对于个体数量很大的总体,可采用系统抽样,系统中的每一均衡部分,又可采用简单随机抽样.
本节课学习了分层抽样的定义及其实施步骤.
本节练习B.
本节课重视从学生的生活经验和已有知识中学习数学和理解数学.首先为教材内容选择生活背景,让学生体验数学问题来源于生活实际;其次,大胆调用学生熟知的生活经验,使数学学习变得易于理解掌握;第三,善于联系生活实际有机改编教材习题,让学生在实践活动中理解掌握知识,变“学了做”为“做中学”.
高中数学分层抽样教案
高中数学分层抽样教案
教学分析
教学通过实例介绍了分层抽样的实施步骤.值得注意的是分层抽样在内容上与系统抽样是平行的,在教学过程中强调:分层抽样适用于由差异明显的几部分组成的情况;在每一层进行抽样时,采用简单随机抽样或系统抽样;分层抽样也是等可能抽样.
三维目标
1.通过对实例的分析,了解分层抽样方法.
(3)在各层分别按随机数表法抽取样本.
(4)综合每层抽样,组成样本.
2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()
A.简单随机抽样B.系统抽样
C.分层抽样D.先从老年人中剔除1人,再用分层抽样
解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成容量为36的样本.
答案:D
例2某学校有2 000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取200人的样本,则样本中高三学生的人数为________.
解析:抽样比是 = ,则样本中高三学生的人数为500× =50.
答案:50
点评:如果A、B、C三层含有的个体数目分别是x、y、z,在A、B、C三层应抽取的个体数目分别是m、n、p,那么有x∶y∶z=m∶n∶p;如果总体有N个个体,所抽取的样本容量为n,某层所含个体数目为a,在该层抽取的样本数目为b,那么有 = .
答案:D
2.某公司有1 000名员工,其中:高层管理人员占5%,属于高收入者;中层管理人员占15%,属于中等收入者;一般员工占80%,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当采用什么方法抽样?
解:我们可以采用分层抽样的方法,按照收入水平分成三层:高收入者、中等收入者、低收入者.可抽取5名高级管理人员、15名中层管理人员、80名一般员工,再对收入状况分别进行调查.
3.请归纳分层抽样的定义.
4.请归纳分层抽样的步骤.
5.分层抽样时应如何分层其适用于什么样的总体
讨论结果:
1.分别利用系统抽样在高中生中抽取2 400×1%=24人,在初中生中抽取10 900×1%=109人,在小学生中抽取11 000×1%=110人.这种抽样方法称为分层抽样.
2.含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.
分析:由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200× =40;200× =60;200× =100.
解:用分层抽样来抽取样本,步骤是:
(1)分层:按区将20 000名高中生分成三层.
(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.
2.使学生经历较为系统的数据处理过程,体会统计思维过程.
3.了解数学应用的广泛性,提高学生的归纳、总结能力.
重点难点
教学重点:分层抽样及其实施步骤.
教学难点:确定各层的入样个体数目.
课时安排
1课时
导入新课
思路1.中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.
(3)当总体个体差异明显时,采用分层抽样.
思路1
例1一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
(2)按抽样比确定每层抽取个体的个数;
(3)各层分别按简单随机抽样的方法抽取样本;
(4)综合每层抽样,组成样本.
5.分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层时将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则,即保证样本结构与总体结构一致性.
分析:由于研究血型与色弱的关系,按血型分层,用分层抽样抽取样本.利用抽样比确定抽取各种血型的人数.
解:用分层抽样抽取样本.
∵ = ,即抽样比为 .∴200× =8,125× =5,50× =2.
故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.
抽样步骤:
(1)确定抽样比 = ;
(2)按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;
(3)用简单随机抽样分别在各种血型中抽取样本,抽出容量为20的样本.
某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:
①7,34,61,88,115,142,169,196,223,250;
②5,9,100,107,111,121,180,195,200,265;
③11,38,65,92,119,146,173,200,227,254;
④30,57,84,111,138,165,192,219,246,270.
关于上述样本的下列结论中,正确的是()
相关文档
最新文档