酶工程重点

酶工程重点
酶工程重点

酶工程

第一章:绪论

1、基因工程(genetic engineering )

以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

2、细胞工程(Cell engineering)

应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,按照人们的需要和设计,在细胞水平上的遗传操作,重组细胞的结构和内含物,以改变生物的结构和功能,即通过细胞融合、核质移植、染色体或基因移植以及组织和细胞培养等方法,快速繁殖和培养出人们所需要的新物种的生物工程技术。

3、发酵工程(Fermentation Engineering)

指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、扩大培养和接种、发酵过程和产品的分离提纯等方面。

4、酶工程(Enzyme Engineering)

将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。

5、基因工程:DNA 细胞工程:细胞水平酶工程:蛋白质

发酵工程:微生物工业

6、1777年,意大利物理学家斯巴兰沙尼(Spallanzani)的山鹰实验。

1822年,美国外科医生博蒙特(Beaumont)研究食物在胃里的消化。

19世纪30年代,德国科学家施旺获得胃蛋白酶。

1926年,美国康乃尔大学的“独臂学者”Sumner(萨姆纳)博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质。

1890年,Fisher——锁钥学说。

1902年,Henri——中间产物学说。

1913年,Michaelis 和Menten——米氏学说。

1958年,Koshland——诱导契合学说。

1960年,Jacob 和Monod——操纵子学说。

1982年,Thomas R.Cech等人发现四膜虫细胞的26S rRNA前体具有自我剪接功能,将这种具有催化活性的天然RNA称为核酶—Ribozyme。

1983年,Altman等人发现核糖核酸酶P的RNA组分具有加工tRNA前体的催化功能。而RNase P中的蛋白组分没有催化功能,只是起稳定构象的作用。

1894年,日本的高峰让吉用米曲霉制备得到淀粉酶,开创了酶技术走向商业化的先例。

1908年,德国的Rohm用动物胰脏制得胰蛋白酶,用于皮革的软化及洗涤。

1908年,法国的Boidin制备得到细菌淀粉酶,用于纺织品的褪浆。

1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清。

1949年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕。

1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量。

Buchner兄弟的试验:用细砂研磨酵母细胞,压取汁液,汁液不含活细胞,但仍能使糖发酵生成酒精和二氧化碳。证明:发酵与细胞的存活无关,但是活细胞产生的。

1969年,日本,千畑一郎,固定化氨基酰化酶,从DL-氨基酸连续生产L-氨基酸,首次工业规模应用固定化酶,促使酶工程作为一个独立的学科从发酵工程中脱离出来;

7、酶(enzyme):活细胞产生的,能在细胞内外起作用的(催化)生理活性物质。

8、单体酶:只有单一的三级结构蛋白质构成。

寡聚酶:由多个(两个以上)具有三级结构的亚基聚合而成。

多酶复合体:由几个功能相关的酶嵌合而成的复合体。

9、酶的分类:氧化还原酶,转移酶,水解酶,裂解酶,异构酶,合成酶,核酶

10、酶活力:又称为酶活性,酶催化一定化学反应的能力,通常以在一定条件下酶所催化的化学反应速度来表示。

11、酶的比活力是每单位(一般是mg)蛋白质中的酶活力单位数(如:酶单位/mg蛋白),实际应用中也用每单位制剂中含有的酶活力数表示(如:酶单位/mL(液体制剂),酶单位/g(固体制剂)),对同一种酶来讲,比活力愈高则表示酶的纯度越高(含杂质越少),所以比活力是评价酶纯度高低的一个指标。

第二章:酶的生物合成与发酵生产

1、酶生物合成的调节:通过调节酶合成的量来控制微生物代谢速度的调节机制,是在基因转录水平上进行的。

2、调节基因(regulator gene):可产生一种组成型调节蛋白(regulatory protein),通过与效应物(effector)的特异结合而发生变构作用,从而改变它与操纵基因的结合力。调节基因常位于调控区的上游。

3、启动基因(promotor gene)(启动子):有两个位点:

(1)RNA聚合酶的结合位点

(2)cAMP-CAP的结合位点。

4、操纵基因(Operator gene):位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,操纵酶合成的时机与速度。

5、结构基因(Structural gene):决定某一多肽的DNA模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA,再翻译为蛋白质。

6、酶的诱导:乳糖操控子是大肠杆菌中控制β半乳糖苷酶诱导合成的操纵子。包括调控元件P(启动子)和O(操纵基因),以及结构基因lacZ(编码半乳糖苷酶)、lacY(编码通透酶)和lacA(编码硫代半乳糖苷转乙酰基酶)。

(1)、无乳糖时,调节基因lacI 编码阻遏蛋白,与操纵基因O 结合后抑制结构基因转录,不产生代谢乳糖的酶。(2)、只有乳糖存在时,乳糖可与lac阻遏蛋白结合,而使阻遏蛋白不与操纵基因结合,诱导结构基因转录,代谢乳糖的酶产生以代谢乳糖。

(3)、葡萄糖和乳糖同时存在时,葡萄糖的降解产物能降低cAMP含量,影响CAP(cAMP受体蛋白)与启动基因结合,抑制结构基因转录,抑制代谢乳糖的酶产生。

7、色氨酸操纵子——酶的阻遏:无色氨酸存在时,调节基因编码阻遏蛋白(无活性),阻遏蛋白不能与操纵基因结合,结构基因表达;有色氨酸存在时,结构基因编码阻遏蛋白(无活性),阻遏蛋白与色氨酸结合使其构型改变与操纵基因结合,结构基因不能表达。

8、分解代谢阻遏:在含有葡萄糖和乳糖的培养基上生长,优先利用葡萄糖。待葡萄糖耗尽后才开始利用乳糖,产生了两个对数生长期中间隔开一个生长延滞期的“二次生长现象”(diauxie或biphasic growth)又称葡萄糖效应。

葡萄糖的分解代谢产物能能抑制腺苷酸环化酶的活性使cAMP不能形成,并激活磷酸二酯酶使cAMP转化为5’-AMP,降低胞内的cAMP水平,使CAP呈失活状态,RNA聚合酶不能与启动子结合。当葡萄糖分解完以后,cAMP与CPA 结合成cAMP-CAP,CAP激活,并结合在cAMP-CAP的结合位点,RNA与启动子结合,结构基因进行表达。

9、在分批培养(batch culture)过程中,细胞生长一般要经历延迟期、指数生长期、减速期、静止期和衰亡期5个阶段。(填空)

10、根据酶的合成与细胞生长之间的关系,可将酶的生物合成分为3种模式:生长偶联型(同步合成型、中期合成型),部分生长偶联型(延续合成型),非生长偶联型(滞后合成型)

11、生长偶联型(又称同步合成型):酶的生物合成与细胞生长同步。

特点:酶的合成可以诱导,但不受分解代谢物阻遏和反应产物阻遏。

当去除诱导物、细胞进入平衡期后,酶的合成立即停止,表明这类酶所对应的mRNA很不稳定。

12、生长偶联型中的特殊形式——中期合成型

酶的合成在细胞生长一段时间后才开始,而在细胞生长进入平衡期以后,酶的合成也随着停止。

特点:酶的合成受产物的反馈阻遏或分解代谢物阻遏。所对应的mRNA是不稳定的。

13、部分生长偶联型(又称延续合成型)

酶的合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成较长一段时间。

14、非生长偶联型(又称滞后合成型)

只有当细胞生长进入平衡期以后,酶才开始合成并大量积累。许多水解酶的生物合成都属于这一类型。

特点:受分解代谢物的阻遏作用。所对应的mRNA稳定性高。

15、酶生产中最理想的合成模式:

延续合成型:发酵过程中没有生长期和产酶期的明显差别。细胞开始生长就有酶的产生,直至细胞生长进入平衡期后,酶还可以继续生成一段时间。

对于:

同步合成型:提高对应的mRNA的稳定性,如降低发酵温度。

滞后合成型:尽量减少甚至解除分解代谢物阻遏,使酶的合成提早开始。

中期合成型:要在提高mRNA稳定性以及解除阻遏两方面努力。

16、固定化细胞:又称固定化活细胞、固定化增殖细胞,用各种方法固定在载体上又能进行生长、繁殖和新陈代谢的细胞。

17、固定化细胞发酵产酶的特点:

(1)提高产酶率:细胞密度增大使生化反应加速导致产酶率提高

(2)可在高稀释度下连续发酵:不影响固定化细胞;

(3)基因工程菌的质粒稳定,不易丢失;

(4)发酵稳定性好:细胞受载体保护,pH和T适应性宽;

(5)缩短发酵周期,提高设备利用率;

(6)产品容易分离纯化;

(7)适于胞外酶等胞外产物的生产。

18、在无菌条件下,将植物器官或组织(如芽、茎尖、根尖或花药)的一部分切下来,放在适当的人工培养基上进行培养,这些器官或组织就会进行细胞分裂,形成新的组织。不过这种组织没有发生分化,只是一团薄壁细胞,叫做愈伤组织。再适合的光照、温度和一定的营养物质与激素等条件下,愈伤组织便开始分化,产生出植物的各种器官和组织,进而发育成一棵完整的植株

第三章:酶的提取与分离纯化

1、酶的提取:把酶从生物组织或细胞中以溶解状态释放出来的过程,即将尽可能多的酶,尽量少的杂质从原料中引入溶液。

提取目标:a. 将目的酶最大限度地溶解出来。b. 保持生物活性。

提取原则:a. 相似相溶。b. 远离等电点的pH值,溶解度增加。

提取方法:

(一)盐溶液提取

常用稀盐(常用NaCl)溶液(盐溶),对酶稳定性好、溶解度大,最常用。

(二)酸、碱溶液提取(有些酶在酸或碱溶液中溶解度比较大且比较稳定)

(三)有机溶剂提取(提取难溶于水的蛋白)

2、沉降系数(sedimentation constant):指单位离心力下颗粒的沉降速度(sedimentation velocity),用S表示。

3、差速离心(differential centrifugation):采用不同的离心速度和离心时间,使沉降速度不同的颗粒分批分离的方法。

4、密度梯度离心(density gradient centrifugation):样品在密度梯度介质中进行离心,使沉降系数比较接近的组分得以分离的一种区带分离方法。常用的密度梯度溶液是蔗糖溶液。

5、等密度梯度离心(sedimentation equilibrium centrifugation):根据颗粒的密度不同而进行分离。离心时,在离心介质的密度梯度范围内,不同密度的物质颗粒或向下沉降,或向上漂浮,达到与其相同的密度时不再移动,形成区带。

6、等电点沉淀(isoelectric precipitation) 原理:蛋白质在等电点时溶解度最低,不同的蛋白质具有不同的等电点。优点:1)大多数蛋白质的pI都在偏酸性范围内

2)无机酸(如磷酸、盐酸、硫酸)价格较低

3)无需除掉多余酸即可进行下一步纯化

缺点:酸化时,容易引起蛋白质失活

7、膜分离:借助一定孔径的高分子薄膜,将不同大小、形状、性质的颗粒或分子进行分离的技术。

8、吸附层析:利用吸附剂表面对不同组分吸附性能的差异。

离子交换层析:利用不同组分对离子交换剂亲和力的不同。

凝胶层析:利用某些凝胶对于不同分子大小的组分阻滞作用的不同。

9、按操作形式不同分类:柱层析,纸层析,薄层层析

10、层析装置:梯度洗脱器,蠕动泵,层析柱,监测仪,记录仪,收集器

11、离子交换层析(ion exchange chromatography,IEC)原理:根据待分离物质带电性质不同的分离纯化方法。

阴离子交换剂:可吸附带负电的蛋白质;阳离子交换剂:可吸附带正电的蛋白质

12、离子交换剂的选择

a. 强、弱离子交换剂的选择:

强型:适用的pH范围广,制备无离子水

弱型:适用的pH范围窄,分离生物大分子物质

b. 阴、阳离子交换剂的选择:酶的稳定性

若>pI稳定,蛋白质带负电荷,用阴离子交换剂

13、疏水层析(Hydrophobic Interaction Chromatography, HIC):

从分离纯化的机制看,属吸附层析类。利用疏水层析介质和蛋白质分子都具有一定的疏水性质,根据被分离成分与固定相之间疏水力大小的不同而进行分离。

14、电泳(electrophoresis, EP):指带电粒子在电场中向着与其所带电荷性质相反的电极方向移动的过程。

33、琼脂糖凝胶电泳:一般用于核酸的分离分析。琼脂糖凝胶孔径度较大,对大部分蛋白质只有很小的分子筛效应。聚丙烯酰胺凝胶电泳:可用于核酸和蛋白质的分离、纯化及检测。分辨率较高。

15、电荷效应: 分离胶中,蛋白质表面净电荷不同,迁移率不同。

分子筛效应:大小和形状不同的样品分子通过一定孔径的分离胶时,受阻滞的程度不同而表现出不同的迁移率。浓缩效应:使样品在浓缩胶中被浓缩成一条窄带,然后再进入分离胶进行分离。

16、SDS-聚丙烯酰胺凝胶电泳:测定蛋白质亚基相对分子量

17、冷冻干燥法:将酶溶液在较低温度下(-10℃~-50℃)冻结成固态,然后在高度真空条件下,将其中固态水分直接升华为气态而除去,也称酶的升华干燥。

18、酶的浓缩:

(1)蒸发浓缩:通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。

(2)超滤浓缩:以压力差为动力,将待浓缩溶液通过超滤膜,酶分子较大被滞留,水分子和小分子选择性透过,达到浓缩目的。

(3)胶过滤浓缩:利用葡聚糖凝胶Sephadex G-25或G-50等的吸水特性。将干胶直接加入样品溶液,吸水膨润后,再过滤或离心分出浓缩的酶液。

(4)聚乙二醇浓缩:利用PEG的吸水特性。将PEG涂于装有酶溶液的透析袋上,置于4℃下,干PEG粉末吸收水和盐类,酶溶液即被浓缩。

(5)反复冻融浓缩:利用酶溶液相对于纯水冰点较低的原理使酶分子与小分子物质分离。

19、纯化方案的设计

(一)纯化方法的选择依据

根据有效成分和杂质之间理化性质的差异

(1)调节溶解度:沉淀法

(2)根据分子大小、形状的不同:离心分离,膜分离,凝胶过滤,电泳

(3)根据分子电荷性质的不同:离子交换层析,电泳

(4)根据专一性结合的方法:亲和层析

(5)其它:吸附层析,疏水层析

(二)纯化方法的排序

先选用粗放、快速、有利于缩小样品体积的方法。精确、费时、需样品少的方法,宜后选用。

20、纯化方案的评价

(一)酶活力测定:

酶活力(enzyme activity)又称酶活性,是指酶催化某一化学反应的能力。其大小可用在一定的条件下,酶催化某一化学反应的反应速率来表示。

一般用单位时间内产物生成的量来表示酶催化的反应速率。

(二)提纯倍数与回收率:

酶的比活力(纯度)=活力单位数/毫克蛋白;比活力越高,酶纯度也越好。表示酶制剂纯度的一个指标。

纯化倍数=提纯后比活力/提纯前比活力

表示提纯过程中纯度提高的倍数。提纯倍数越大,表示该方法纯化效果越好。

总活力=酶活力单位数*酶液总体积——即样品中全部酶活力。

回收率=提纯后酶总活力/提纯前酶总活力×100%

表示提纯过程中酶损失程度的大小。回收率越高,损失越小。

判断一个分离纯化方法的优劣,常用总活力的回收率和比活力的提纯倍数两个指标。

回收率:反映酶的损失情况。

提纯倍数:表示方法的有效程度。

第四章:生物酶工程

1、克隆(Clone)是指通过无性繁殖过程所产生的与亲代完全相同的子代群体。

2、酶基因的克隆:是在体外将酶基因和载体分子按照既定目的和方案进行人工重组,将重组分子导入合适细胞,使其在细胞中扩增和繁殖,以获得该酶基因的大量拷贝。

3、克隆中常用的工具酶:限制性核酸内切酶,DNA连接酶,DNA聚合酶,末端转移酶,逆转录酶,碱性磷酸酶,核酸外切酶

4、基因克隆的基本程序:

(1)外源基因或目的基因的获得;

a.体外扩增基因法(PCR and RT-PCR)

b.人工合成基因法(重叠延伸法)

c.限制性内切酶直接分离法获得

d.基因文库筛选法

e.从cDNA文库中筛选

(2)载体的构建或选择;

载体是指能够携带外源基因转入受体细胞内进行扩增或诱导外源基因在受体细胞内表达的工具。

载体应具备的条件:带有复制子;多克隆酶切位点;筛选标志;分子量尽量小;完整的转录单位(表达型载体)(3)连接;

利用DNA连接酶把载体DNA和要克隆的目的DNA片段连接在一起,成为一个完整的重组分子,被称为连接反应。(4)重组子导入受体细胞

外源DNA分子与载体组成重组分子后,需要导入受体细胞才能进行繁殖和表达,受体细胞系指被导入重组分子的细胞,又称宿主细胞。根据导入受体细胞的方式不同,可分为:

转化(transformation):将重组DNA分子导入原核细胞的过程

转染(transfection):将重组DNA分子导入真核细胞的过程

感染(infection):噬菌体进入宿主细菌,病毒进入宿主细胞中繁殖的过程

(5)阳性重组体的筛选与鉴定

5、PCR:聚合酶链式反应(Polymerase Chain Reaction),是指利用耐热DNA聚合酶的反复作用,通过变性-复性-延伸的循环操作,在体外迅速将DNA模板扩增数百万倍的一种操作技术。

PCR体系基本组成成分:模板DNA,特异性引物,耐热DNA聚合酶,dNTPs,Mg2+

PCR主要用途:目的基因的克隆,基因的体外突变,DNA和RNA的微量分析,DNA序列测定,基因突变分析

6、定点突变(site-directed mutagenesis, SDM)指在基因的特定位点引入突变,即通过取代、插入或删除抑制DNA 序列中特定的核苷酸序列来改变酶蛋白结构中某个或某些特定的氨基酸,一次来改善酶的性质。

7、1985年加拿大的Michael Smith建立,于1993年获得了诺贝尔化学奖。

(1)聚核苷酸介导的用单链模板定点突变;

(2)双引物法定点突变;

8、重组蛋白质表达的基本程序包括:

(1)目标基因克隆入表达载体,获得表达质粒。

(2)表达质粒导入宿主细胞。

(3)目标基因在宿主中的表达。

(4)目标蛋白的分离、纯化。

第五章:固定化酶与固定化细胞:

1、固定化酶: 用物理或化学的手段定位在限定的空间区域,并保持其催化活性,在一定空间内呈闭锁状态存在的酶,能连续进行反应,反应后的酶可回收重复使用

2、酶的固定化: 将酶和菌体与不溶性载体结合的过程

3、影响固定化酶性质的因素:

(1)酶本身的变化,主要是由于活性中心的氨基酸残基、高级结构和电荷状态等发生了变化

(2)载体的影响:分配效应,空间障碍效应,扩散限制效应

(3)固定化方法的影响

4、固定化后酶性质的变化:

(1)固定化对酶活性的影响:酶活性下降,反应速度下降

原因:(1)构象变化(2)残基参与载体接合(3)位阻效应

(2)固定化对酶稳定性的影响:

a.操作稳定性提高

b.贮存稳定性比游离酶大多数提高。

c.对热稳定性,大多数升高,有些反而降低。

d.对分解酶的稳定性提高。

e.对变性剂的耐受力升高

原因:a. 固定化后酶分子与载体多点连接。b. 酶活力的释放是缓慢的。c. 抑制自降解,提高了酶稳定性。(3)最适pH的变化:催化反应的产物为酸性时,固定化酶的最适pH值比游离酶的pH值高;反之则低

(4)最适温度变化:一般与游离酶差不多,但有些会有较明显的变化;热稳定性提高,最适温度会相应提高(5)底物特异性与游离酶不同:(原因:载体空间位阻)

作用于低分子底物的酶:特异性没有明显变化

既可作用于低分子底物又可作用于大分子低物的酶:特异性往往会变化

(6)米氏常数Km的变化:Km值随载体性质变化

5、酶的固定化方法:

(1)吸附法:利用各种固体吸附剂将酶或含酶菌体吸附在其表面上,如范德华力、氢键、疏水作用

(2)离子键结合法:通过离子效应,将酶分子固定到含有离子交换基团的固相载体上的固定化方法

(3)共价键结合法:酶分子与载体之间以共价键作用而实现结合的固定化方法

(4)交联法:借助双功能试剂使酶分子之间、酶分子与惰性蛋白间或酶分子与载体间发生交联作用,制成网状结构的固定化酶的方法

(5)包埋法:将酶或含酶菌体包埋在各种多孔载体中,使酶固定化的方法

6、载体活化的方法:A.重氮法(载体具有芳香族氨基)B.叠氮法C.硅烷化法D.溴化氰法

7、细胞固定化方法:

(1)吸附法:主要通过载体与细胞间的静电引力,即细胞表面与载体之间范德华作用力,离子键和氢键作用力,才使细胞固定在载体上的

(2)交联法:利用双功能试剂,使载体与细胞之间交联起来。

(3)包埋法:包理法是在细胞自身并不与凝胶基体发生化学键合的情况下将其包埋在半透性聚合物颗粒(或膜)内的一种固定化方法。

第六章:酶的化学修饰

1、凡通过化学基团的引入或除去,而使酶蛋白

共价结构发生改变,称为酶的化学修饰

2、见右图

3、重要的修饰反应:酰化及其相关反应;烷基

化反应;氧化和还原反应;芳香环取代反应

4、特定氨基酸残基侧链基团的化学修饰:巯基

的化学修饰,氨基的化学修饰,羧基的化学修饰,

咪唑基的化学修饰,胍基的化学修饰,二硫基的

化学修饰

5、酶修饰方法:酶分子侧链基团的化学修饰,酶分子表面化学修饰,蛋白质类及其他。

6、利用水溶性大分子与酶结合,使酶的空间结构发生某些精细的改变,从而改变酶的特性与功能的方法称为大分子结合修饰法

7、模拟酶(mimic enzyme):吸收酶中起主导作用的因素,利用有机化学,生物化学等方法设计合成一些较天然酶简单的非蛋白质分子或蛋白质分子,以这些分子作为模型来模拟酶对其作用底物的结合和催化过程

8、抗体酶:具有催化活性的单克隆抗体

抗体酶的特点:催化反应多样性,更高专一性和稳定性,催化机制不同

9、酶化学修饰的原理:酶分子表面外形的不规则、各原子间极性和电荷的不同、各氨基酸残基间相互作用等使酶分子空间结构的局部形成一个包含了活性部位的微环境,不论这个微环境是极性的还是非极性的,都直接影响到酶活性部位氨基酸残基的解离状态,并为活性部位发挥催化作用提供合适的条件。天然酶分子中的这种微环境可以通过人为的方法进行合适的改造,对酶分子的侧链基团、酶分子的功能基团进行化学修饰或改造,就可以获得结构更合理、功能更完善的修饰酶。

10、分子印记:制备对某一化合物具有选择性的聚合物过程

第七章:

1、酶在有机介质中的催化特性:底物特异性、立体选择性、区域选择性、键选择性、热稳定性

2、酶在有机介质中可以催化多种反应,主要包括:合成反应、转移反应、醇解反应、氨解反应、异构反应、氧化还原反应、裂合反应等。

3、有机介质中酶催化反应主要控制的条件有:酶的种类和浓度、底物的种类和浓度、有机溶剂的种类、水含量、温度、pH、离子强度

4、反应体系中有机溶剂对酶催化反应的影响:

(1)常用的有机溶剂有辛烷,正己烷,苯,吡啶,叔丁醇,丙醇,乙腈,已酯,二氯甲烷等。

(2)在水溶液中,酶分子均一地溶解于水溶液中,可以较好地保持其完整的空间结构。在有机溶剂中,酶分子不能直接溶解,而是悬浮在溶剂中进行催化反应。根据酶分子的特性和有机溶剂的特性的不同,保持其空间结构完整性的情况也有所差别。

(3)极性较强的有机溶剂,如甲醇,乙醇等,

会夺取酶分子的结合水,影响酶分子微环境

的水化层,从而降低酶的催化活性,甚至引起

酶的变性失活。因此应选择好所使用的溶剂,

控制好介质中的含水量,或者经过酶分子修

饰提高酶分子的亲水性,避免酶在有机介质

中因脱水作用而影响其催化活性。

(4)有机溶剂与水之间的极性不同,在反应

过程中会影响底物和产物的分配,从而影响

酶的催化反应。

5、见右图

第八章:酶反应器与酶传感器

1、用于酶进行催化反应的容器及其附属设备称为酶反应器。

2、在应用游离酶进行催化反应时,酶与底物均溶解在反应溶液中,通过互相作用,进行催化反应。可以选用搅拌罐式反应器、膜反应器、鼓泡式反应器、喷射式反应器等。

通常颗粒状、片状、膜状或纤维状固定化酶均可采用填充床反应器(PBR),而颗粒状、粉末状及片状固定化酶均可使用于连续式搅拌罐(CSTR),膜状固定化酶要用螺旋卷膜式反应器。

可溶性底物适用于所有的反应器。难溶底物或者底物溶液呈胶体状者,易堵塞柱床,可选用FBR。颗粒状底物溶液可适用于CSTR。当反应过程需要控制温度、调节pH时,选用CSTR更为方便。

在反应器操作过程中,由于搅拌或液流的剪切作用,常会使酶从载体上脱落下来,或者由于磨损而使粒度变细,从而影响了固定化酶的操作稳定性。

3、间歇式反应器:

又称为批量反应器(Batch Reactor BSTR)、间歇式搅拌罐、搅拌式反应罐。其特点是:底物与酶一次性投入反应器

内,产物一次性取出;反应完成之后,固定化酶(细胞)用过滤法或超滤法回收,再转入下一批反应。

优点是:装置较简单,造价较低,传质阻力很小,反应能很迅速达到稳态。

缺点是:操作麻烦,固定化酶经反复回收使用时,易失去活性,故在工业生产中,间歇式酶反应器很少用于固定化酶,但常用于游离酶。

4、连续式反应器:

又称为连续搅拌釜式反应器(Continuous Stirred Tank Reactor, CSTR)、连续式搅拌罐。向反应器投入固定化酶和底物溶液,不断搅拌,反应达到平衡之后,再以恒定的流速连续流入底物溶液,同时,以相同流速输出反应液(含产物)。优点是:在理想状况下,混合良好,各部分组成相同,并与输出成分一致。

缺点是:搅拌浆剪切力大,易打碎磨损固定化酶颗粒

5、填充床反应器(Packed Reactor,PBR):又称固定床反应器。将固定化酶填充于反应器内,制成稳定的柱床,然后,通入底物溶液,在一定的反应条件下实现酶催化反应,以一定的流速,收集输出的转化液(含产物)。

优点是:高效率、易操作、结构简单等,因而,PBR是目前工业生产及研究中应用最为普遍的反应器。它适用于各种形状的固定化酶和不含固体颗粒、黏度不大的底物溶液,以及有产物抑制的转化反应。

缺点是:传质系数和传热系数相对较低。当底物溶度含固体颗粒或黏度很大时,不宜采用PBR。

6、流化床反应器:特点是底物溶液以足够大的流速,从反应器底部向上通过固定化酶柱床时,便能使固定化酶颗粒始终处于流化状态。其流动方式使反应液的混合程度介于CSTR的全混型和PBR的平推流型之间。FBR可用于处理黏度较大和含有固体颗粒的底物溶度,同时,亦可用于需要供气体或排放气体的酶反应(即固、液、气三相反应)。但因FBR混合均匀,故不适用于有产物抑制的酶反应

7、鼓泡式反应器:

鼓泡式反应器(bubble column reactor, BCR)是利用从反应器底部通入的气体产生的大量气泡,在上升过程中起到提供反应底物和混合两种作用的一类反应器。也是一种无搅拌装置的反应器。

鼓泡式反应器可以用于游离酶和固定化酶的催化反应。在使用鼓泡式反应器进行固定化酶的催化反应时,反应系统中存在固、液、气三相,又称为三相流化床式反应器。

鼓泡式反应器的结构简单,操作容易, 剪切力小,物质与热量的传递效率高,是有气体参与的酶催化反应中常用的一种反应器。例如氧化酶催化反应需要供给氧气,羧化酶的催化反应需要供给二氧化碳等。

8、膜反应器:

膜反应器(membrane reactor, MR)是将酶催化反应与半透膜的分离作用组合在一起而成的反应器。可以用于游离酶的催化反应,也可以用于固定化酶的催化反应。

用于固定化酶催化反应的膜反应器是将酶固定在具有一定孔径的多孔薄膜中,而制成的一种生物反应器。

膜反应器可以制成平板型、螺旋型、管型、中空纤维型、转盘型等多种形状。常用的是中空纤维反应器。

9、生物传感器:以固定化的生物材料作为敏感元件,与适当的转换元件结合构成的一类传感器

10、酶传感器:以酶作为分子识别原件上的敏感材料,同各种不同的转换器结合所构成的一类生物传感器。

《酶工程》期末复习题整理#(精选.)

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

酶工程 试题及答案

共三套 《酶工程》试题一: 一、是非题(每题1分,共10分) 1、酶是具有生物催化特性的特殊蛋白质。() 2、酶的分类与命名的基础是酶的专一性。() 3、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。() 4、液体深层发酵是目前酶发酵生产的主要方式。() 5、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。() 6、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成分或分子通过,而把大于其孔径的颗粒截留。() 7、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分离中,可把分子对中的任何一方作为固定相。() 8、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。() 9、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。() 10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用。() 二、填空题(每空1分,共28分) 1、日本称为“酵素”的东西,中文称为__________,英文则为__________,是库尼(Kuhne)于1878年首先使用的。其实它存在于生物体的__________与__________。 2、1926年,萨姆纳(Sumner)首先制得__________酶结晶,并指出__________是蛋白质。他因这一杰出贡献,获1947年度诺贝尔化学奖。

3、目前我国广泛使用的高产糖比酶优良菌株菌号为__________,高产液化酶优良菌株菌号为___________。在微生物分类上,前者属于__________菌,后者属于__________菌。 4、1960年,查柯柏(Jacob)和莫洛德(Monod)提出了操纵子学说,认为DNA分子中,与酶生物合成有关的基因有四种,即操纵基因、调节基因、__________基因和__________基因。 5、1961年,国际酶委会规定的酶活力单位为:在特定的条件下(25oC,PH及底物浓度为最适宜)__________,催化__________的底物转化为产物的__________为一个国际单位,即1IU。 6、酶分子修饰的主要目的是改进酶的性能,即提高酶的__________、减少__________,增加__________。 7、酶的生产方法有___________,___________和____________。 8、借助__________使__________发生交联作用,制成网状结构的固定化酶的方法称为交联法。 9、酶的分离纯化方法中,根据目的酶与杂质分子大小差别有__________法,__________法和__________法三种。 10、由于各种分子形成结晶条件的不同,也由于变性的蛋白质和酶不能形成结晶,因此酶结晶既是__________,也是__________。 三、名词术语的解释与区别(每组6分,共30分) 1、酶生物合成中的转录与翻译 2、诱导与阻遏 3、酶回收率与酶纯化比(纯度提高比) 4、酶的变性与酶的失活

酶工程期末复习题演示教学

第一章绪论 问题:试述木瓜蛋白酶的生产方法? 答:木瓜蛋白酶可以采用提取分离法、基因工程菌发酵法、植物细胞培养法等多种方法进行生产。 (1)提取分离法:从木瓜的果皮中获得木瓜乳汁,通过各种分离纯化技术获得木瓜蛋白酶。 (2)发酵法:通过DNA重组技术将木瓜蛋白酶的基因克隆到大肠杆菌等微生物中,获得基因工程菌,在通过基因工程菌发酵获得木瓜蛋白酶。 (3)植物细胞培养法:通过愈伤组织诱导获得木瓜细胞,在通过植物细胞培养获得木瓜蛋白酶。 第二章微生物发酵产酶 1、解释酶的发酵生产、酶的诱导、酶的反馈阻遏(产物阻遏)、分解代谢物阻遏。诱导物的种类? 答:酶的发酵生产:利用微生物的生命活动获得所需的酶的技术过程; 酶的诱导:加进某些物质,使酶的生物合成开始或加速的现象,称为诱导作用; 产物阻遏(反馈阻遏):指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象。 分解代谢物阻遏(营养源阻遏):是指某些物质经过分解代谢产生的物质阻遏其他酶合成的现象。 诱导物的种类:诱导物一般是酶催化作用的底物或其底物类似物,有的也是反应产物。2、微生物产酶模式几种?特点?最理想的合成模式是什么? 答:(1)同步合成型特点: a.发酵开始,细胞生长,酶也开始合成,说明不受分解代谢物和终产物阻遏。 b.生长至平衡期后,酶浓度不再增长,说明mRNA很不稳定。 (2)延续合成型特点: a.该类酶一般不受分解代谢产物阻遏和终产物阻遏。 b.该酶对应的mRNA是相当稳定的。 (3)中期合成型特点: a.该类酶的合成受分解代谢物阻遏和终产物阻遏。 b.该酶对应的mRNA不稳定。 (4)滞后合成型特点: a.该类酶受分解代谢物阻遏和终产物阻遏作用的影响,阻遏解除后,酶才大量合成。 b.该酶对应的mRNA稳定性高。 选择:在酶的工业生产中,为了提高酶产率和缩短发酵周期,最理想的合成模式是延续合成型。 3、可以添加什么解除分解代谢物阻遏?表面活性剂的作用? 答:(1)一些酶的发酵生产时要控制容易降解物质的量或添加一定量的cAMP,均可减少或解除分解代谢物阻遏作用。 (2)表面活性剂的作用:增溶、乳化作用、润湿作用、助悬作用、起泡和消泡作用、消毒和杀菌剂。 4、根据微生物培养方式不同,酶的发酵生产有几种类型?哪种是目前酶发酵生产的主要方式?按酶生物合成的速度把细胞中的酶分几类?酶的生物合成在转录水平的调节主要有哪三种模式?微生物细胞生长过程一般分为几个阶段?

酶工程考试复习题及答案定稿版

酶工程考试复习题及答案精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

酶工程考试复习题及答案 一、名词解释题 1.酶活力: 是指酶催化一定化学反应的能力。酶活力的大小可用在一定条件下,酶催化 某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。2.酶的专一性:是指一种酶只能对一种底物或一类底物起催化作用,对其他底物无催化 作用的性质,一般又可分为绝对专一性和相对专一性。 3.酶的转换数:是指每个酶分子每分钟催化底物转化的分子数,即是每摩尔酶每分钟催化 底物转变为产物的摩尔数,是酶的一个指标。 4.酶的发酵生产:是指通过对某些特定微生物进行发酵培养后,利用微生物生长发酵过程 中特定的代谢反应生成生产所需要的酶,最后通过提取纯化过程得到酶制剂的过程称为酶的发酵生产。 5.酶的反馈阻遏: 6.细胞破碎:是指利用机械、物理、化学、酶解等方法,使目标细胞的细胞膜或细胞壁得 以破坏,细胞中的目标产物得以选择性或全部释放便于后续收集和分离的过程称为细胞破碎。 7.酶的提取: 是指在一定的条件下,用适当的溶剂处理含酶原料,使酶充分溶解到溶剂 中的过程,也称作酶的抽提,是酶分离纯化过程常用的手段之一。 8.沉淀分离:是通过改变某些条件,使溶液中某种溶质的溶解度降低,从溶液中沉淀析 出,而与其他溶质分离的方法,常用语酶的初步提取与分离。

9.层析分离: 亦称色谱分离,是一种利用混合物中各组分的物理化学性质的差别,使各 组分以不同程度分布在两个相中,其中一个相为固定的(称为固定相),另一个相则流过此固定相(称为流动相)并使各组分由于与固定相和流动相作用力的不同以不同速度移动,从而达到分离的物理分离方法。 10.凝胶层析: 又称为凝胶过滤,分子排阻层析,分子筛层析等。是指以各种多孔凝胶为 固定相,在流动相冲洗过程中混合物中所含各种组分的相对分子质量和分子大小不同,在固定相凝胶微孔中移动的距离不同,从而依次从层析柱中分离出来,达到物质分离的一种层析技术。 11.亲和层析: 是利用生物分子与配基之间所具有的专一而又可逆的亲和力,将混合物装 入层析柱中利用流动相的冲洗作用和目标分子与固定相配基亲和作用力不同而使生物分子分离纯化的技术。 12.离心分离: 借助于离心机旋转所产生的离心力,使不同大小、不同密度的物质分离的 技术过程。 13.电泳:带电粒子在电场中向着与其本身所带电荷相反的电极移动的过程称为电泳。利 用不同的物质其带电性质及其颗粒大小和形状不同,在一定的电场中它们的移动方向和移动速度也不同,故此可使它们分离,电泳技术是常用的分离技术之一。 14.萃取:是利用物质在两相中的溶解度不同而使其分离的技术。 15.双水相萃取:双水相是指某些高聚物之间或者高聚物与无机盐之间在水中以一定的浓度 混合而形各种不相溶的两水溶液相。由于溶质在这两相的分配系数的差异进行萃取的方法称为双水相萃取。

酶工程期末复习

酶工程期末复习 一、名词解释 1、酶工程:是酶的生产、改性与应用的技术过程。由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新的技术学科。 2、酶的化学修饰:通过化学基团的引入或除去,使蛋白质共价结构发生改变。 3、必需水:一般将维持酶分子完整空间构象所必需的最低水含量称为必需水。 4、抗体酶:具有催化活性的抗体,即抗体酶。 5、别构效应:调节物与酶分子的调节中心结合之后,引起酶分子构象发生变化,从而改变催化中心对底物的亲和力。这种影响被称为别构效应或变构效应。 6、别构酶:能发生别构效应的酶称为别构酶。 7、酶活力:又称酶活性,是指酶催化某一化学反应的能力。 8、比活力:也称为比活性,是指每毫克酶蛋白所具有的酶活力单位数,一般用IU/mg 蛋白质表示。 9、生物传感器:由生物识别单元和物理转换器相结合所构成的分析仪器。 10、蛋白质工程:是以创造性能更适用的蛋白质分子为目的,以结构生物学与生物信息学为基础,以基因重组技术为主要手段,对天然蛋白质分子的设计和改造。 11、酶反应器 12、固定化酶:固定在载体上并在一定空间范围内进行催化反应,可以反复、连续使用的酶。 13、水活度:是指在一定温度和压力下,反应体系中水的摩尔系数w χ与水活度系数w γ的乘积:w w w γχα=。 14、生物反应器:指有效利用生物反应机能的系统(场所)。 15、酶反应器:以酶或固定化酶作为催化剂进行酶促反应的装置称为酶反应器。 16、活化能:从初始反应物(初态)转化成活化状态(过渡态)所需的能量,称为活化能。 二、填空题 1、酶活力测定的方法有终止法和连续反应法。常用的方法有比色法、分光光度法、滴定法、量气法、同位素测定法、酶偶联分析。 2、酶固定化的方法有吸附法(物理吸附法、离子交换吸附法)、包埋法(网格包埋法、微囊型包埋法、脂质体包埋法)、共价结合(偶联)法、交联法。 3、酶活力是酶催化反应速率的指标,酶的比活力是酶制剂纯度的指标,酶的转换数是酶催化效率的指标。 4、细胞破碎的主要方法有机械法(珠磨法、高压匀浆法、超声波破碎法)、非机械法(物理法、化学法、酶法)。 5、有机溶剂的极性系数lgP 越小,表明其极性越强,对酶活性的影响越大。 6、lgP 越大,溶剂的疏水性越强;lgP 越小,溶剂的亲水性越强。 7、酶反应器的类型根据所使用的酶,分为溶液酶反应器、固定化酶反应器。

酶工程思考题(附答案)

酶工程思考题汇总 第一章P25 1.何谓酶工程?试述其主要内容和任务. 酶的生产,改性与应用的技术过程称为酶工程。 主要内容:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。 主要任务:经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。 2.酶有哪些显著的催化特性? 专一性强(绝对专一性——钥匙学说、相对专一性——诱导契合学说)、催化效率高、作用条件温和 3.简述影响酶催化作用的主要因素. 底物浓度、酶浓度、温度、pH、激活剂浓度、抑制剂浓度等诸多因素 第二章P63 5.酶的生物合成有哪几种模式? 生长偶联型(同步合成型、中期合成型)、 部分生长偶联型(延续合成型) 非生长偶联型(滞后合成型) 7.提高酶产量的措施主要有哪些? a.添加诱导物(酶的作用底物、酶的催化反应物、作用底物的类似物) b.控制阻遏物的浓度 c.添加表面活性剂 d.添加产酶促进剂 11.固定化微生物原生质体发酵产酶有何特点? 1.提高产酶率 2.可以反复使用或连续使用较长时间 3.基因工程菌的质粒稳定,不易丢失 4.发酵稳定性好 5.缩短发酵周期,提高设备利用率 6.产品容易分离纯化 7.适用于胞外酶等细胞产物的生产 第三章P84 3.植物细胞培养产酶有何特点? 1.提高产率 2.缩短周期 3.易于管理,减轻劳动强度 4.提高产品质量 5.其他 4.简述植物细胞培养产酶的工艺过程。 外植体细胞的获取细胞培养分离纯化产物 6.动物细胞培养过程中要注意控制哪些工艺条件? 1.培养基的组成成分 2.培养基的配制 3.温度的控制 4.ph的控制 5.渗透压的控制 6.溶解氧的控制

【生物课件】《酶工程》试题一参考答案

【生物课件】《酶工程》试题一参考答案: 一、是非题(每题1分,共10分) 1、酶是具有生物催化特性的特殊蛋白质。( ?) 2、酶的分类与命名的基础是酶的专一性。(? ) 3、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。 (?) 4、液体深层发酵是目前酶发酵生产的主要方式。(?) 5、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。(?) 6、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成分或分子通过,而把大 于其孔径的颗粒截留。(?) 7、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分 离中,可把分子对中的任何一方作为固定相。(?) 8、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。(?) 9、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。(?) 10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用。(?) 二、填空题(每空1分,共28分) 1、日本称为“酵素”的东西,中文称为酶,英文则为Enzyme,是库尼(Kuhne)于1878年首 先使用的。其实它存在于生物体的细胞内与细胞外。

2、 1926年,萨姆纳(Sumner)首先制得脲酶结晶,并指出酶的本质是蛋白质。他因这一 杰出贡献,获1947年度诺贝尔化学奖。 3、目前我国广泛使用的高产糖比酶优良菌株菌号为As3.4309,高产液化酶优良菌株菌号为 BF7.658。在微生物分类上,前者属于霉菌,后者属于细菌。 4、 1960年,查柯柏(Jacob)和莫洛德(Monod)提出了操纵子学说,认为DNA分子中, 与酶生物合成有关的基因有四种,即操纵基因、调节基因、启动基因和结构基因。 5、 1961年,国际酶委会规定的酶活力单位为:在特定的条件下(25 oC,PH及底物浓度为 最适宜)每1分钟内,催化1μmol的底物转化为产物的酶量为一个国际单位,即1IU。 6、酶分子修饰的主要目的是改进酶的性能,即提高酶的活力、减少抗原性,增加稳定性。 7、酶的生产方法有提取法,发酵法和化学合成法。 8、借助双功能试剂使酶分子之间发生交联作用,制成网状结构的固定化酶的方法称为交联 法。 9、酶的分离纯化方法中,根据目的酶与杂质分子大小差别有凝胶过滤法,超滤法和超离心 法三种。 10、由于各种分子形成结晶条件的不同,也由于变性的蛋白质和酶不能形成结晶,因此

酶工程期末考试重点

酶:是由活细胞产生的,在细胞内、外一定条件下都能起催化作用的具有高效率和高度专一性的一类特殊蛋白质或核酸,酶能在机体内十分温和的条件下高效率地起催化作用,使得生物体内的各种物质处于不断的新陈代谢中。 酶工程:酶的生产与应用的技术过程,是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学.研究酶制剂大规模生产及应用所涉及的理论与技术方法. 酶的应用:通过酶的催化作用获得人们所需的物质或除去不良物质,或许所需信息的技术过程. 酶的提取:又称酶的抽提,指在一定的条件下用适当的溶剂或溶液处理含酶物料,使酶充分溶解到溶剂或溶液中的技术过程. 膜分离:又称膜过滤.采用各种高分子膜为过滤介质,将不同大小,不同形状的物质分离的技术过程. 凝胶层析:又称凝胶过滤,分子筛层析等.指以各种多孔凝胶为固定相,利用流动相中所含各种组分的相对分子质量的不同而达到物质分离的一种层析技术. 超临界萃取:又称超临界流体萃取,是利用预分离物质与杂志在超临界流体中的溶解度不同而达到的分离的一种萃取技术. 酶固定化:采用各种方法,将酶与水不溶性的载体结合,制备固定化酶的过程. 固定化酶:用物理,化学等方法将水溶性的酶固定到特定的载体上使之成为水不溶性的酶. 非水相催化:酶在非水介质中的催化作用称为酶的非水相催化. 水活度:用体系中水的蒸汽压和相同条件下纯水的蒸汽压之比表示.水活度与溶剂的极性大小关系不大,所以采用水活度作为参数来研究有机介质中水对酶催化作用的影响更为准确. 必需水:紧紧吸附在酶分子表面维持酶活化性所必需的最少水量. 反胶束体系:反胶束是在大量水不相混溶的有机溶剂中,含有少量的水溶液,加入表面活性剂后形成油包水的微小液滴. 胶束体系:胶束是在大量水溶液中含有少量与水相不相混溶的有机溶剂,加入便面活性剂后形成水包油的微小液滴. 酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰. 酶反应器:酶作为催化剂进行反应所需的装置称为酶反应器. 喷射式反应器:利用高压蒸汽的喷射作用实现酶与底物的混合是进行高温短时催化反应的一种反应器. 酶活力单位:是表示酶活力大小的尺度;1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量.

哈工大酶工程试题答案

年级2001 专业生物技术 一名词解释(每题3分,共计30分) 1.酶工程 2.自杀性底物 3.别构酶 4.诱导酶 5.Mol催化活性 6.离子交换层析 7.固定化酶 8.修饰酶 9.非水酶学 10.模拟酶 二填空题(每空1分,共计30分) 1.决定酶催化活性的因素有两个方面,一是,二是 。 2.求Km最常用的方法是。 3.多底物酶促反应的动力学机制可分为两大类,一类是,另一类是 。 4.可逆抑制作用可分为,,, 。 5.对生产酶的菌种来说,我们必须要考虑的条件有,一是看它是不是,二是能够利用廉价原料,发酵周期,产酶量,三是菌种不易,四是最好选用能产生酶的菌种,有利于酶的分离纯化,回收率高。 6.酶活力的测定方法可用反应法和反应法。 7.酶制剂有四种类型即酶制剂,酶制剂,酶制剂和 酶制剂。 8.通常酶的固定化方法有法,法,法, 法。 9.酶分子的体外改造包括酶的修饰和修饰。 10.模拟酶的两种类型是酶和酶。 11.抗体酶的制备方法有法和法。 三问答题(每题10分,共计40分) 1.固定化酶和游离酶相比,有何优缺点 2.写出三种分离纯化酶蛋白的方法,并简述其原理。 3.为什么酶制剂的生产主要以微生物为材料 4.下面是某人对酶测定的一些数据,据此求出该酶的最大反应速度和米氏常数。

10-6 10-6 10-5 10-5 10-5 10-4 10-4 10-2 酶工程试题(B) 一名词解释 1.抗体酶 2.酶反应器 3.模拟酶 4.产物抑制 5.稳定pH 6.产酶动力学 7.凝胶过滤 8.固定化酶 9.非水酶学 10.液体发酵法 二填空题(每空1分,共计30分) 值增加,其抑制剂属于抑制剂,Km不变,其抑制剂属于抑制剂,Km 减小,其抑制剂属于抑制剂。 2.菌种培养一般采用的方法有培养法和培养法。 3.菌种的优劣是影响产酶发酵的主要因素,除此之外发酵条件对菌种产酶也有很大的影响,发酵条件一般包括,,,, 和等。 4.打破酶合成调节机制限制的方有,,。 5.酶生物合成的模式分是,,, 。 6.根据酶和蛋白质在稳定性上的差异而建立的纯化方法有法,法和 法 7. 通常酶的固定化方法有法,法,法, 法。 8. 酶分子的体外改造包括酶的修饰和修饰。 9.酶与抗体的重要区别在于酶能够结合并稳定化学反应的,从而降低了底物分子的,而抗体结合的抗原只是一个态分子,所以没有催化能力 三问答题(每题10分,共计40分) 1.在生产实践中,对产酶菌有何要求 2.对酶进行化学修饰时,应考虑哪些因素 3.列出用共价结合法对酶进行固定化时酶蛋白上可和载体结合的功能团 4.某酶的初提取液经过一次纯化后,经测定得到下列数据,试计算比活力,回收率及纯化 倍数。

酶工程考试重点(第三版)

1、酶工程的定义,研究的主要内容 酶的生产、改性与应用的技术过程称为酶工程 研究的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等 酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。 2、酶的基本特征,酶命名的方法有哪些,蛋白类酶的分类方法 基本特征:专一性强,催化效率高,作用条件温和等 每一种具体的酶都有其具体的推荐名和系统命名。推荐名是在惯用名称的基础上,加以选择和修改而成的。酶的推荐名由两部分组成,第一部分为底物名称,第二部分为催化反应的类型,后面加一个酶字,不管酶的催化是正反应还是逆反应,都用同一个名,如葡萄糖氧化酶,表明该酶的作用底物是葡萄糖催化反应类型是氧化反应。 酶的系统命名更加详细更准确地反映出该酶所催化的反应。系统命名包括了酶的作用底物酶作用的基团及催化反应的类型,如上述葡萄糖氧化酶的系统命名“β-D-葡萄糖:氧1-氧化还原酶”,表明该酶所催化的反应以β-D-葡萄糖为脱氢的供体,氧为氢受体,催化作用在第一个碳原子基团上进行,所催化反应属于氧化还原反应。 蛋白酶类的分类 1、按照酶催化作用的类型,将蛋白酶类分为六大类,氧化还原酶,转移酶,水 解酶裂合酶,异构酶,合成酶 2、每个大类中,按照酶作用的底物、化学键或者基团的不同,分为若干亚类 3、每一亚类再分为若干小类 4、每一小类包含若干个具体的酶、 3、酶的生产方法有哪些 酶的生产是指通过人工操作而获得所需的酶的技术过程 酶的生产方法分为提取分离法、生物合成法、化学合成法3种,其中提取分离法是最早采用并沿用至今的方法,生物合成法是20世纪50年代以来酶生产的主要方法,而化学合成法至今仍停留在实验室阶段 4、酶的生产合成调节理论,包括操纵子,诱导作用,阻遏作用 1、操纵子在原核基因组中,由几个功能相关的结构基因及其调控区组成的一个基因表达的协同单位. ①结构基因是决定某一多肽的DNA 模板,可根据其上的碱基顺序转录出相应的mRNA,然后再可通过核糖体转译出相应的酶 ②启动子:能被依赖于DNA的RNA聚合酶所识别的碱基顺序,是RNA聚合酶的结合部位和转录起点 ③操纵基因:位于启动基因和结构基因之间的一段碱基顺序,是阻遏蛋白的结合位点,能通过与阻遏物相结合来决定结构基因的转录是否能进行 ④调节基因:用于编码组成型调节蛋白的基因,一般远离操纵子,但在原核生物中,可以位于操纵子旁边,编码调节蛋白。 2、酶合成调节的类型:诱导和阻遏

酶工程试题及答案

一、名词解释(本题共8个小题,每小题2分,共16分)。 1、固定化酶: 2、原生质体: 3、超滤: 4、酶的催化特性: 5、生物酶工程: 6、酶的必需基团和活性中心: 7、诱导与阻遏: 8、酶反应器: 二、填空题(本题共5个小题,每空2分,共24分). 1、酶的分类()()()。(三种即可) 2、酶活力是()的量度指标,酶的比活力是()的量度指标,酶转换数是()的量度指标。 3、微生物产酶模式可以分为同步合成型,()中期合成型,()四种。 4、酶的生产方法有(),生物合成法和化学合成法。 5、优良的产酶微生物所具备的条件:(1)()(2)()(3)()(写出三种即可)。 三、判断题(本题共10个小题,每空1.5分,共15分)。 1、酶是具有生物催化特性的特殊蛋白质。 2、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。 3、液体深层发酵是目前酶发酵生产的主要方式。 4、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。 5、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分离中,可把分子对中的任何一方作为固定相。 6、补料是指在发酵过程中补充添加一定量的营养物质,补料的时间一般以发酵前期为好。 7、酶固定化过程中,固定化的载体应是疏水的。 8、在酶的抽提过程,抽提液的 pH 应接近酶蛋白的等电点。 9、青霉素酰化酶不但能催化青霉素侧链的水解作用,而且也能催化逆反应。 10、亲和试剂又称活性部位指示试剂,这类修饰剂的结构类似于底物结构。 四、问答题(本题共5个小题,共45分)。 1、试述提高酶发酵产量的措施。(8 分,答出四点即可) 2、酶失活的因素?(8分) 3、酶的提取方法有哪些?(8分) 4、酶分子修饰的意义有哪些?(6分) 5、试简述酶分子的定向进化。(5分) 6、固定化酶和游离酶相比,有何优缺点?(10分,优缺点答五点即可) 答案 一、1、固定化酶:通过物理的或化学的方法,将酶固定在载体上,能使酶发挥催化作用的酶;2、原生质体:脱去细胞壁的植物、真菌或细菌细胞;3、超滤:超滤是采用中空纤维过滤新技术,配合三级预处理过滤清除自来水中杂质;4、酶的催化特性:①极高的催化效率②高度的专一性③酶活性的可调节性④酶的不稳定性5、生物酶工程:是指在基因水平上,对酶蛋白分子进行修饰、改造,改进酶蛋白的催化特性或酶蛋白的蛋白质特性等;6、酶的必需基团:指酶分子中与酶的活性密切相关的基团;活性中心:是与底物结合并催化反应的场所;7、酶合成的诱导是指加入某种物质使酶的合成开始或加速进行的过程;酶合成

酶工程-期末试题

酶工程期末考试试题(A) 一名词解释:( 每小题3分共30分) 1 酶催化的专一性:绝对专一性和相对专一性; 2 酶催化的邻近效应、定向效应:底物彼此靠近、活性中心浓度增大、底物与结合部位按有利于催化反应的方向定位; 3 Kcat:催化常数,即在最适条件下,没摩尔酶每分钟所转化的底物摩尔数; 4 酶活力:酶催化活力,用酶催化反应速度表示; 5 酶催化周期:每mole酶蛋白催化每mole底物所需要的时间; 6 Ks盐析和β盐析 Ks盐析:即蛋白质溶液的pH值和温度固定不变,改变溶液的盐浓度(离子强度),以达到沉淀蛋白的作用;此法常用的盐是硫酸铵。 β盐析法:是在一定的离子强度下,改变溶液的pH值和温度,以达到蛋白沉淀的目的。 7 离子交换剂:离子交换剂是借酯化、氧化或醚化等化学反应,在琼脂糖、纤维素或凝胶分子上某些极性基团,通过极性基团的静电吸附作用,对极性大分子进行分离。按离子交换剂上的活性基团的性质不同,可分为阳离子交换剂和阴离子交换剂两种。 8 生物酶工程:是指在基因水平上,对酶蛋白分子进行修饰、改造,改进酶蛋白的催化特性或酶蛋白的蛋白质特性等。 本章主要介绍核酶、进化酶、杂合酶和抗体酶的有关基本概念和基本知识。 9 酶分子的定向进化: 是指在分子水平上,人为地创造特殊的进化条件,模拟自然进化机制(随机突变、基因重组和自然选择),对酶基因进行改造,并进行定向选择,筛选出所需性质的酶蛋白。10 核酶:化学本质是核酸的酶,包括核酶和脱氧核酶 二填空题:(每空1分共 20分) ⑴按催化反应类型分,将酶分成6个大类,它们的名称及其代码分别是氧化还原酶、转移酶、水解酶、裂合酶、异构酶、连接酶; ⑵根据葡聚糖凝胶的交联度不同,软胶包括 G75 、 G100 、 G150 、 G200 ; ⑶酶固定化方法有吸附法、交联法、吸附交联法、共价结合法、微胶囊法; ⑷酶蛋白化学修饰的方法包括金属离子置换、大分子结合、肽链有限水解、 氨基酸置换、侧链基团修饰;

酶工程期末复习

酶工程 名词解释、填空(3*10)、简答、论述(12*2或20*1) 第一章绪论 3、生物工程:发酵工程(微生物工程)、酶工程、基因工程和细胞工程。 4、运用基因工程技术和发酵工程技术可改善原有酶的性能、提高酶的产率、增加酶的稳定性,使其在后提取工艺和应用过程中更容易操作。 5、酶工程分为2类: ①化学酶工程:又称初级酶工程,是指天然酶、化学修饰酶、固定化酶以及人工模拟酶的研究和应用。 ②生物酶工程:又称高级酶工程,是酶学和以DNA重组技术为主的现代分子生物学技术相结合的产物。主要内容包括:用基因工程技术大量生产酶(克隆酶);对酶基因进行修饰,产生遗传修饰酶(突变酶);设计新酶基因,合成自然界不曾有过的新酶。 第二章酶学基础 4、影响酶促反应的因素: ①底物浓度:酶浓度不变,当底物浓度较低时,反应速率对底物浓度的关系呈正比关系,表现为一级反应。随着底物浓度的增加,反应速率不再按正比升高,反应表现为混合级反应。当底物浓度达到相当高时,底物浓度对反应速率影响变小几乎无关,反应达最大速率,为零及反应。 ②酶浓度:酶活力的大小可以用一定条件下所催化的某一化学反应的反应速度来表示,两者呈线性关系。 ③温度:温度对酶反应速率的影响表现在两个方面,一方面是当温度升高时,反应速率加快。另一方面由于酶是蛋白质,随着温度升高,使酶蛋白逐渐变性而失活,引起酶反应速率下降。 在较低的温度范围内,酶反应速率随温度升高而增大,但超过一定温度后,反应速率反而下降,因此只有在某一温度下,反应速率达到最大值,这个温度就称为酶反应的最适温度。 ④pH:在一定pH下,酶表现最大活力,高于或低于此pH,酶活力降低,通常把表现出酶最大活力的pH称为该酶的最适pH。酶的最适pH不是一个常数,受许多因素影响。 ⑤抑制剂:不可逆抑制剂:(1)非专一性不可逆抑制剂,(2)专一性不可逆抑制剂 可逆抑制剂:最重要和最常见的是竞争性抑制剂。 ⑥激活剂:凡是能提高酶活性的物质都称为激活剂,其中大部分是无机离子或简单的有机化合物。激活剂对酶的作用具有一定的选择性,即一种激活剂对某种酶起激活作用,而对另一种酶可能起抑制作用;有时离子之间有拮抗作用;有时金属离子间也可互相替代。 ⑦其它: 5、可逆抑制作用分为3类型: (1)竞争性抑制:抑制剂和底物竞争酶的结合部位,从而影响了底物与酶的正常结合。 (2)非竞争性抑制:底物与抑制剂同时和酶结合,两者没有竞争作用。 (3)反竞争性抑制:酶只有与底物结合后,才能与抑制剂结合。 第三章酶的生物合成和发酵生产 2、发酵条件控制剂对产酶的影响: 温度:影响微生物生长和合成酶、影响酶合成后的稳定性。 pH值:影响微生物体内各种酶活性,从而导致微生物代谢途径发生变化;影响微生物形态和细胞膜通的透性,从而影响微生物对培养基中营养成分的吸收以及代谢产物的分泌;影响培养基中某些营养物质的分解或中间产物的解离,从而影响微生物对这些营养物质的利用。 溶解氧:通气量越大、氧分压越高、气液接触时间越长、气液接触面积越大,则溶氧速率越大。此外,培养液的性质,主要是粘度、气泡以及温度等对溶氧速率有明显的影响,可通过以上方面调节溶氧速率。 3、固定化微生物细胞产酶的工艺条件及其控制应注意事项 需要对固定化微生物细胞进行预培养; 增加溶宜解氧的供给; 发酵温度的控制; 培养基组分的特殊要求:1)培养基浓度不过高;2)培养基组分不能影响固定化细胞的结构稳定性,或影响很小。

酶工程 考试重点

第二章微生物发酵产酶 名词解释 酶生物合成的诱导作用:加入某些物质使酶的生物合成开始或加速进行的现象 酶生物合成的反馈阻遏作用:又称产物阻遏作用,是指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象 分解代谢物阻遏作用:是指某些物质(主要是指葡萄糖和其他容易利用的碳源等)经过分解代谢产生的物质阻遏某些酶(主要是诱导酶)生物合成的现象 判断组成酶or诱导酶受什么阻遏 固定化细胞:又称为固定化活细胞或固定化增殖细胞,指采用各种方法固定在载体上,在一定的空间范围进行生长、繁殖和新陈代谢的细胞 固定化原生质体:是指固定在载体上,在一定的空间范围内进行新陈代谢的原生质体 原生质体:是除去细胞壁后由细胞膜及包内物质组成的微球体。原生质体由于除去细胞壁这一扩散屏障,有利于胞内物质透过细胞膜分泌到细胞外,可以用于胞内酶等胞内产物的生产。 问答题 何为细胞产酶动力学,简述其动力学模型 产酶动力学主要研究发酵过程中细胞产酶速率以及各种因素对产酶速率的影响规律,主要为宏观产酶动力学。 根据细胞产酶模式的不同,产酶速率和细胞生长速率的关系也有所不同。 1)同步合成型的酶:其产酶与细胞生长欧联,在平衡期产酶速率为零,即非生长偶联的比 产酶速率β=0 方程: dE /dt=αμX 2)中期合成型的酶:在培养液中有阻遏物存在,α=0,无酶产生。在此阶段的产酶动力学 方程与同步合成型相同 3)滞后合成型:其合成模式为非生长偶联行,生长偶联的比产酶系数α=0 方程: dE /dt=βX 4)延续合成型的酶:在细胞生长期和平衡期均可以产酶,产酶速率是生长偶联与非生长偶 联产酶速率之和(最理想状态)方程: dE /dt=αμX+βX 受mRNA抑制的模型:1)、2) 原核生物中酶生物合成的调节主要是转录水平的调节,与酶的生物合成密切相关的基因有4种:调节基因、启动基因、操纵基因和结构基因。结构基因与操纵基因、启动基因一起组成操纵子。原核生物中有两种类型操纵子:诱导性,如乳糖操纵子;阻遏型操纵子,如色氨酸操纵子。 1、发酵工艺流程(了解,考点较少):细胞活化→细胞扩大培养→制作培养基(碳源、氮源、无机盐、生长因素)→分离纯化→酶 2、发酵工艺条件的控制 (1)培养基的配制调控 碳源:提供碳素化合物的营养物质;为细胞提供能量的能源 氮源:向细胞提供氮元素的营养物质 无机盐:提供细胞生命活动所必不可缺的各种无机元素,并对细胞内外的pH,氧化还原单位和渗透压其调节作用 生长因素:提供繁殖所必需的微量有机化合物,主要包括各种氨基酸、嘌呤、嘧啶、生物素。氨基酸是蛋白质的组分;嘌呤、嘧啶是核酸和某些辅酶或辅基的组分,维生素主要起辅酶作用;动植物生长激素则分别对动物细胞和植物细胞的生长、分裂起调节作用

南京林业大学酶工程期末考试重点生物技术专业

1、酶的特点和米氏方程式的推导。 酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。酶催化作用特点:(一)酶和一般催化剂的共性:①用量少而催化效率高;②不改变化学反应的平衡点;③可降低反应的活化能。(二)酶作为生物催化剂的特点:①用量少而催化效率高;②专一性高;③反应条件温和;④可调节性。 2、米氏常数的测定和意义。 答:测定:基本原则:将米氏方程变化成相当于y=ax+b的直线方程,再用作图法求出Km。意义:①当v=Vmax/2时,Km=[s](Km的单位为浓度单位)。②是酶在一定条件下的特征物理常数,通过测定Km的数值,可鉴别酶。③可近似表示酶和底物亲和力,Km愈小,E对S的亲和力愈大;Km愈大,E对S的亲和力愈小。④在已知Km的情况下,应用米氏方程可计算任意[S]时的V,或任意V下的[S](用Km的倍数表示)。 3、可逆抑制的种类和判别。 答:①竞争性抑制:某些抑制剂的化学结构与底物相似,因而能与底物竟争与酶活性中心结合。当抑制剂与活性中心结合后,底物被排斥在反应中心之外,其结果是酶促反应被抑制了。特点:Km变大,酶促反应速度减小;②非竞争性抑制:酶可同时与底物及抑制剂结合,引起酶分子构象变化,并导至酶活性下降。由于这类物质并不是与底物竞争与活性中心的结合,所以称为非竞争性抑制剂。特点:Km虽然不变,但由于Vmax减小,所以酶促反应速度也下降了;③反竞争性抑制:抑制剂仅能与酶底物复合物结合,但ESI不能转化为产物P 。 特点:Km变小,Vmax减小,斜率不变。 4、酶的分类和命名。 答:分类:氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶。 系统名:包括所有底物的名称和反应类型。 推荐名:只取一个较重要的底物名称和反应类型。 对于催化水解反应的酶一般在酶的名称上省去反应类型。 酶系统编号:采用四码编号方法,第一个号码表示该酶属于6大类酶中的某一大类,第二个号码表示该酶属于该大类中的某一亚类,第三个号码表示属于亚类中的某一小类,第四个号码表示这一具体的酶在该小类中的序号。每个号码之间用圆点(﹒)分开。 5、酶活单位和酶活测定。 答:酶活单位:①酶活单位U:在一定条件下,一定时间内将一定量的底物转化为产物所需的酶量。(浓度/时间)②国际酶活力单位IU:在最适条件下,每分钟内催化1umol底物转化为产物所需的酶量。1972年定为1kat单位:每秒钟能催化1mol底物转化为产物所需的酶量。1kat=60×106IU。③酶的比活力:用每mg蛋白质所含酶活力单位数,比活愈大,纯度愈高。比活力=酶活力U/mgPr=总活力U/总蛋白mg 酶活力测定的步骤: ①根据酶催化的专一性,选择适宜的底物,并配制成溶液。 ②根据酶的动力学性质,确定酶催化反应的温度PH值、底物浓度、激活剂浓度等反应条件。 ③在一定的条件下,将一定量的酶液和底物溶液混合均匀,反应时间。 ④运用各种生化检测技术,测定产物的生成量或底物的减少量。 注意:若不能即时测出结果的,则要及时终止反应,然后再测定。

酶工程试题

酶工程试题 一、名词解释 1.固定化酶 采用各种方法,将酶固定在水不溶性的载体上,制备成固定化酶的过程称为酶的固定化。固定在载体上,并在一定的范围内进行催化反应的酶称为固定化酶。 2.酶反应器 用于酶进行催化反应的容器及其附属设备称为酶反应器。 3.模拟酶 利用有机化学合成的方法合成的比酶结构简单,但具有催化作用的非蛋白质分子叫做模拟酶 4.抗体酶 又叫做催化抗体,是抗体的高度选择性和酶的高效催化能力巧妙结合的产物,是一类具有催化活力的免疫球蛋白,其可变区赋予了酶的属性 5.印迹酶 以一种分子充当模板,其周围用聚合物交联,当模板分子除去后,聚合物就留下了与此分子相匹配的空穴,若构建合适,这种聚合物就像锁一样,对钥匙具有选择性识别作用。这种技术称为分子印迹,该技术的酶产物称为印迹酶。 6.融合酶 将两个或者多个酶分子组合在一起形成的融合蛋白 7.定点突变 只在基因的特定位点引入突变,通过取代、插入或者删除已知DNA序列中特定的核苷酸序列来改变酶蛋白结构中某个或某些特定的氨基酸,以此来提高酶对底物的亲和力,增强酶的专一性等。

8.必需水 在有机介质中,酶分子需要一层水化层以维持其完整的空间构象,将对于维持酶活性所必需的最低水量为必需水,由于其与酶分子的结合十分紧密,又称结合水。 9.酶传感器 以酶作为分子识别元件上的敏感材料,同各种不同的转换器结合所构成的一类生物传感器。 10.酶的必需基团和活性中心 酶的必需基团是指酶分子中与酶的活性密切相关的基团,酶的活性中心是指与底物结合并催化反应的场所。 二、填空题 1.酶根据主要组分的不同可以分为:蛋白类酶和核酸类酶两大类,根据酶的作用的底 物和催化反应的类型进行分类可以分为:氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(连接酶)。(写出4种即可) 2.酶的活力是酶催化速度的度量指标,酶的比活力是酶纯度的度量指标,酶转换数是 酶催化效率的度量指标。 3.酶的生产方法有:提取分离法生产,发酵法生产,化学合成法生产,生物合成 法生产。 4.酶反应器类型有:搅拌罐式反应器,填充床式反应器,流化床反应器,鼓泡式 反应器,膜反应器,喷射式反应器。(写出3种即可) 5.可逆抑制作用可分为_竞争性抑制作用、_非竞争性抑制作用_和_反竞争性抑制作 用。 6.非竞争性抑制的特点是最大反应速度Vm降低,米氏常数Km不变。 7.细胞破碎的主要方法有:机械破碎,物理破碎,_化学破碎_和_酶促破碎_。

酶工程练习题及部分答案.

酶工程练习题 一、是非题(每题1分,共10分) 1、酶是具有生物催化特性的特殊蛋白质。() 2、酶的分类与命名的基础是酶的专一性。() 3、酶活力是指在一定条件下酶所催化的反应速度,反应速度越大,意味着酶活力越高。() 4、液体深层发酵是目前酶发酵生产的主要方式。() 5、培养基中的碳源,其唯一作用是能够向细胞提供碳素化合物的营养物质。() 6、膜分离过程中,膜的作用是选择性地让小于其孔径的物质颗粒成分或分子通过,而把大于其孔径的颗粒截留。() 7、在酶与底物、酶与竞争性抑制剂、酶与辅酶之间都是互配的分子对,在酶的亲和层析分离中,可把分子对中的任何一方作为固定相。() 8、角叉菜胶也是一种凝胶,在酶工程中常用于凝胶层析分离纯化酶。() 9、α-淀粉酶在一定条件下可使淀粉液化,但不称为糊精化酶。() 10、酶法产生饴糖使用α-淀粉酶和葡萄糖异构酶协同作用。() 11、共价结合法既可以用于酶的固定化又可以用于微生物细胞的固定化。(╳) 12、在用PEG做酶分子修饰剂时,为了避免多蛋白聚集,较少产物不均一性,多用单甲氧基PEG(mPEG)进行修饰。(√) 13、恒流搅拌罐反应器(CSTR)能使内含物充分混合,对催化剂的牢固性不高,故而可以使用于大部分固定化酶的生产。(╳)14、流化床反应器具有固体、流体混合好的优点,应用前景广泛,但目前仅有很少的固定化酶细胞工艺用流化床反应器。(√)二、填空题(每空1分,共28分) 1、日本称为“酵素”的东西,中文称为__________,英文则为__________,是库尼(Kuhne)于1878年首先使用的。其实它存在于生物体的__________与__________。 2、1926年,萨姆纳(Sumner)首先制得__________酶结晶,并指出__________是蛋白质。他因这一杰出贡献,获1947年度诺贝尔化学奖。 3、目前我国广泛使用的高产糖比酶优良菌株菌号为__________,高产液化酶优良菌株菌号为___________。在微生物分类上,前者属于__________菌,后者属于__________菌。 4、1960年,查柯柏(Jacob)和莫洛德(Monod)提出了操纵子学说,认为DNA分子中,与酶生物合成有关的基因有四种,即操纵基因、调节基因、__________基因和__________基因。 5、1961年,国际酶委会规定的酶活力单位为:在特定的条件下(25oC,PH及底物浓度为

相关文档
最新文档