以太网远距离传输
网络高清传输的六种方案

网络高清传输的六种方案一、常规方式——使用网线加交换机网线传输网络高清信号最远不能超过100米距离,所以这种方式只限于较近距离,中小项目使用;二、较远距离,及要求效果、画质推荐使用——光纤收发器光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的信号转换传输设备,将前端的以太网信号,通过光纤收发器的发射端将以太网的电信号转换器成光信号进行远距离传输,光纤收发器的接收端将光信号还有成电信号;三,远距离光纤传输,任意间设备可作为终端——高清网络一纤通高清一纤通传输方式采用一芯光纤上传输多达60个光网点,实现百万高清视频、报警、对讲、控制信号同时传输;组网方式:1.串联组网鸿泰一纤通采用串联组网方式将设备逐级连入线路中,避免每对设备都要使用一芯光纤;节省了光纤;如图所示:2.混合组网一纤通还可与交换机一起混合组网使用,在摄像机集中的地方可以先把信号传入到交换机中,再由高清一纤通传入到机房中;如图所示:扩展能力强如果需要增加节点,无需重新布线;每个光网点可以根据需要放置1-8个网络摄像机,在首尾两台设备的上光口与下光口联上光缆,可以实现环网传输,即使中间节点光缆出现异常,也可以正常传输其它无故障的视频信号;高性能每芯光纤最多可支持250个高清网络摄像机,在联接250个摄像机时,最远节点信号延时小于,实现所有画面有延时,无拖尾现象;安装简单即插即用,无需软件硬件设置;传输稳定,网络失帧率少,实时性高,节省光纤线材,环网传输能做到有备无患;成本低低价位的光纤传输方式;升级快可将原系统升级成数字化,应用更全面;质量保证三级防雷设计,品质保证;工业级设计,100%老化测试,确保产品质量万无一失;四、旧工程改造中,原有模拟摄像机,可以建议使用——网络串联器普通的视频线或两芯的电源线无需任何改造,直接转换成网络高清本产品是用同轴电缆或两芯线代替传统的网线传输百万高清网络视频,传输距离1000米且一根电缆还能同时传输多路视频;优点:只适合用于改造项目;或近距离项目缺点:1,传输距离近1500米,光纤项目无法实现2,视频线寿命有限,稳定性差,引发后续问题多3,载波传输,传输点位少4,不易升级、不便扩展五、较多级网络系统拓展,可以节省交换机和光纤收发器及繁琐连接的设备——N光+N 电光纤收发器六、解决网络高清传输电流的传输问题——POE合成分离器什么是POEPOE Power Over Ethernet指的是在现有的以太网布线基础架构不作做何改动的情况下,在为一些基于IP的终端如IP电话机、无线局域网接入点AP、网络摄像机等传输数据信号的同时,还能为此类设备提供直流供电的技术;POE通过电缆供电的原理标准的五类网线有四对双绞线,但是在l0M BASE-T和100M BASE-T中只用到其中的两对;IEEE80 允许两种用法,应用空闲脚供电时,4、5脚连接为正极,7、8脚连接为负极;应用数据脚供电时,将DC电源加在传输变压器的中点,不影响数据的传输;在这种方式下线对1、2和线对3、6可以为任意极性;标准不允许同时应用以上两种情况;电源提供设备PSE只能提供一种用法,但是电源应用设备PD必须能够同时适应两种情况;POE供电的好处1、它节约成本;因为它只需要安装一条而不是两条电缆;许多情况下,都需要安装在难以部署AC电源的地方;随着与以太网相连的设备的增加,如果无需为设备提供本地电源,将大大降低部署成本,并简化其可管理性;2、它易于安装和管理;客户能够自动、安全地在网络上混用原有设备和PoE设备,能够与现有以太网电缆共存;3、它安全;因为PoE供电端设备只会为需要供电的设备供电;只有连接了需要供电的设备,以太网电缆才会有电压存在,因而消除了线路上漏电的风险;4、它易于网络设备的管理特别注意:请用户尽量使用9-48V电压,对于5V 电压的设备,由于设备对电压比较敏感,使用原配电源会出现供电不足情况,这个是网线衰减所致,跟本商品无关;如是5V 电压设备请选择高一档的电源,可正常工作;。
数据传输方式分类

数据传输方式分类数据传输是指在计算机网络中,将数据从一个地方传输到另一个地方的过程。
为了实现高效、安全和可靠的数据传输,人们发明了多种不同的数据传输方式。
本文将根据不同的特点和应用场景,对数据传输方式进行分类和介绍。
一、有线传输方式有线传输方式是指通过物理连接线缆来传输数据的方式。
常见的有线传输方式包括以下几种:1. 以太网传输方式以太网是一种广泛应用于局域网的传输方式。
它采用双绞线作为传输介质,通过CSMA/CD协议实现多个设备之间的数据传输。
以太网传输方式具有传输速度快、成本低廉等优点,适用于大多数家庭和办公场所。
2. 同轴电缆传输方式同轴电缆传输方式是指利用同轴电缆传输数据的方式。
同轴电缆由内部的铜导线、绝缘层和外部的金属屏蔽层组成,能够有效地防止信号干扰。
同轴电缆传输方式适用于长距离传输和高速传输,常见于电视有线信号传输和宽带接入。
3. 光纤传输方式光纤传输方式是利用光纤作为传输介质来传输数据的方式。
光纤传输方式具有传输速度快、抗干扰能力强等优点,适用于长距离传输和高带宽需求的场景,如长途通信和数据中心互联。
二、无线传输方式无线传输方式是指通过无线信号传输数据的方式。
无线传输方式具有灵活性高、便捷性好等优点,适用于移动设备和无线网络环境。
常见的无线传输方式包括以下几种:1. Wi-Fi传输方式Wi-Fi是一种基于无线局域网技术的传输方式。
它利用无线信号将数据传输到设备之间,支持高速传输和大量设备连接。
Wi-Fi传输方式广泛应用于家庭和办公场所的无线网络接入和数据传输。
2. 蓝牙传输方式蓝牙是一种短距离无线传输技术,能够在设备之间建立起稳定的无线连接,用于传输数据和实现设备之间的通信。
蓝牙传输方式适用于手机、平板电脑等移动设备之间的数据传输和外围设备连接。
3. 移动网络传输方式移动网络是一种基于手机通信技术的传输方式。
它利用移动网络基站建立起与手机之间的连接,通过无线信号传输数据。
移动网络传输方式适用于移动设备在任何地点都能够接入网络并进行数据传输的场景。
gige 接口 标准

gige 接口标准
"GigE" 是指千兆以太网(Gigabit Ethernet)接口,用于数据通信,特别是在图像采集和处理领域中,常用于工业相机等设备。
以下是对GigE接口标准的详细介绍:
速率:
GigE接口支持千兆比特每秒(Gbps)的数据传输速率,提供高带宽的网络连接。
物理连接:
使用标准的RJ-45插座,类似于常见的以太网连接。
这使得它在现有的网络基础设施中更容易集成。
协议标准:
基于IEEE 802.3协议标准,与传统的以太网技术兼容。
这意味着它可以与其他以太网设备进行互操作。
数据帧格式:
遵循以太网数据帧格式,但在数据帧头部有特定的GigE Vision协议标识,以支持图像传输和设备控制。
GigE Vision标准:
为工业相机等设备提供了一个通用的图像传输和设备控制标准,确保了兼容性和互操作性。
GigE Vision定义了设备发现、图像传输和设备控制等方面的标准协议。
远距离传输:
GigE接口支持远距离传输,允许设备与计算机之间的连接距离达到几百英尺。
网络兼容性:
由于基于以太网标准,GigE设备可以连接到企业网络中,实现分
布式图像采集和处理。
驱动程序和软件支持:
有丰富的驱动程序和软件支持,包括用于设备控制、图像采集和数据处理的库和工具。
实时性能:
虽然GigE提供了高带宽,但由于以太网的共享特性,对于一些对实时性能要求较高的应用,可能不如一些专用的实时通信接口。
GigE接口的广泛应用使其成为工业图像采集领域的一种常见选择,尤其是在需要高带宽、灵活性和网络兼容性的场景中。
四种方案—实现百米以上长距离布线

四种方案—实现百米以上长距离布线一、双绞线直连很多用户都知道,在正式的规范中双绞线的最大传输距离为100米——双绞线一般用于星型网络的布线,每条双绞线通过两端安装的RJ-45连接器(俗称水晶头)与网卡和集线器或交换机相连,最大网线长度为100米。
之所以规定双绞钱最大传输极限为100米,是因为信号在双绞线中传输时,彼此之间的相互干扰,也会受到外界电磁波的干扰,还会由于电阻和电容的原因而导致信号衰减或畸变,距离过长后累积的信号衰减将不能保证信号稳定地传输。
但随着超5类和6类、超6类双绞线的出现,这种百米内的连接限制正被突破。
与5类双绞线相比,超5类双绞线的衰减和串扰更小,可提供更坚实的网络基础,满足更多应用的需求。
原标准规定的超5类线的传输特性与普通5类线的相同,只是超5类双绞线的全部4对线都能实现全双工通信。
而目前市场上主流的品牌超5类双绞线已超出了原有的标准——市面上新的带宽为125MHz和200MHz的超5类双绞线,其特性较原标准有了提高,这些超5类双绞的传输距离已超过了100米的界限,可达到130米甚至更长。
如果你的连接距离正好在百米以上,那么就可优选质量较好的这类超5类和6类、超6类双绞线进行布线,再配以质量较好的水晶头和连接设备,便可以实现150米左右的双绞线局域网互联。
当然,如果你想确保连接质量万无一失,不介意多投入资金的话,还可通过在中间布设交换机进行接力延展,这样,一个局域网的双绞线最大连接距离可轻松达到200-500米。
当然,也可通过在两段双绞线电缆间安装中继器的方法来实现距离延展,在同一线路中可安装4个中继器,这样便可使网络的最大连接距离可达500米。
二、网络延伸设备虽然光纤的连接距离很长,可达数公里以上,但对于一般用户来说,其投入成本和布设方便度都不甚理想,所以一些厂家在双绞线连接的基础上还推出了一些更方便的网络延伸连接技术。
比如,网络市场上常见的网络延伸器或网线延长器这类设备,便可扩展五类线或超五类线连接的10M以太网网断至150米-700米。
Ethernet的介绍及其IP核简介

Ethernet的介绍及其IP核简介1.1 Ethernet的介绍以太网(Ethernet)指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范,是当今现有局域网采用中最通用的通信协议标准。
以太网络采用CSMA/CD(载波监听多路访问及冲突检测)技术,并且可以以10M/S 的速率运行在多种类型的电缆上。
以太网包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网。
它们都符合IEEE802.3的相关协议要求。
以太网通信通常采用双绞线或者光纤作为传输介质。
光纤因为其抗干扰性好,主要用于主干网络的远距离传输。
而双绞线则主要用于短距离的布线,或者用来组建内部局域网。
1.1.1 IEEE802.3系列标准IEEE802.3标准描述的是在多种媒体上从1MB/S-10MB/S的局域网解决方案。
IEEE802.3 标准描述了物理层(PHY层)和数据链路层的MAC子层的实现方法,以及在多种物理媒体上以多种速率采用CSMA/CD的方式访问的方法。
当然,对于快速以太网该标准说明的实现方法有所扩展。
IEEE802.3标准的帧结构如下图1.1所示。
它的每一帧包含有8个域:前导码(preamble)包含7个字节(octet),每一帧以一7个字节的前导字段开头;帧起始定界符(SFD)包含1个字节,表示帧本身的开始;目的地址(DA)包含6个字节;源地址(SA)包含6个字节;类型域包含2个字节;数据域和填充段共包含46-1500字节;帧校验序列(FCS)包含4个字节;扩展段包含在帧校验序列部分之中。
1.1.2 CSMA/CD访问方式CSMA/CD(Carrier Sense Multiple Access with Collision Detection)即带冲突检测的载波监听多路访问技术。
在传统的共享以太网中,所有的节点共享传输介质。
如何保证传输介质有序、高效地为许多节点提供传输服务而避免因发生冲突导致介质传输效率降低,就成了以太网的介质访问控制协议所要解决的问题。
poe远程供电传输两百米以上方案

POE远程供电传输两百米以上方案
在网络摄像机和无线ap的大量部署过程中,会遇到超过100米的设备需要供电和接入的问题。
甚至会出现POE远程供电传输两百米以上的情况。
排除长距离数据传输,仅考虑200多米POE供电,随着POE大功率IEEE802.3AT标准的制定,POE厂家推出了大功率的POE供电设备,供电功率可达50w,考虑到线路中的损耗,供电距离达到300米后传到的功率还是够用的。
其实这是受以太网传输距离的限制。
以太网标准规定传输距离最远100米,超过100米可能会发生数据延迟,丢包等现象,因为信号在双绞线中传输时,彼此之间相互干扰,还会受到外界电磁波的干扰,同时由于导线之间产生寄生电容和寄生电感的原因而导致信号衰减或畸变,距离过长后累积的信号衰减将不能保证信号稳定地传输。
所以以太网传输距离不超过100米。
要解决POE远程供电传输距离两百米以上的问题,可以用采用广迅600米网络延长器TE305和POE供电器配合使用。
广迅的网络延长器上连端口与交换机连接,下联端口插入POE供电器输入端口,POE供电器的输出端口提供数据与电,经过100-300米的非屏蔽网线,就可给远端的网络摄像机和无线ap连接,提供电力和数据链接。
网络链接图如下:。
以太网传输速率与距离的关系图

以太网传输速率与距离的关系图——光纤2010-05-03 16:51今天,以太网技术已成为局域网中不可或缺、暂时还无可取代的技术。
随着局域网的广泛普及、网络规模的扩大、以太网接入技术的快速发展、网络传输速率的不断增长,以及网络互联互通和下一代网络技术的应用需求,以太网的传输方式、传输能力、服务质量越来越受到关注,其中传输距离、传输速率是以太网传输能力的重要体现,是以太网从传统的局域网技术走向城域网技术甚至广域网技术的关键。
然而,从技术的角度来看,传输速率越高,传输受限距离越短;从应用需求来说,越是高速率,越可能用于骨干传输,其传输距离要求越长。
也正因为这一对矛盾的存在,以及高速以太网向更大范围的园区骨干和城域应用的快速扩展,以太网相关标准的传输距离限制常常遇到挑战:为何受到标准距离的限制?能否突破以满足实际距离需求?本文以基于光纤介质的吉位以太网相关标准为参照,着重从媒体访问控制方式、传输损耗、传输色散等角度分析以太网传输距离的限制因素和突破办法。
2 吉位以太网相关标准的距离限制 自从1998年6月IEEE 802.3z吉位以太网标准(有关1 000 Base-SX,1 000 Base-LX和1 000 Base-CX接口)正式通过以来,先后通过了IEEE802.3ab(有关1 000 Base-T接口)吉位以太网标准和IEEE 802.3ae(有关10 GBase-SR, 10 GBase-LR,10 GBase-ER,10 GBase-SW,10 GBase-LW,10 GBase-EW和10 GBase-LX4接口)10 G以太网标准。
但就长距离传输的吉位以太网来说,主要关心的是与光纤介质相关的吉位以太网标准——IEEE 802.3z。
依据IEEE 802.3z标准,不同光纤带宽对应的波长、最大传输距离如表1所示。
其中,工作波长850 nm对应1 000 Base-SX,工作波长1 310 nm对应1 000 Base-LX。
高速以太网——精选推荐

高速以太网定义:速率达到或超过100Mb/s的以太网称为高速以太网。
一、高速以太网的特点高速以太网系统分两类:由共享型集线器组成的共享型高速以太网系统和有高速以太网交换机构成的交换性高速以太网系统。
100Base-FX因使用光缆作为媒体充分发挥了全双工以太网技术的优势。
100Base-T的网卡有很强的自适应性,他能够自动识别能够自动识别10Mb/s和100Mb/s。
10Mb/s和100Mb/s的自适应系统是指端口之间10Mb/s和100Mb/s传输率的自动匹配功能。
自适应处理过程具有以下两种情况:(1)原有10Base-T网卡具备自动协商功能,即具有10Mb/s和100Mb/s自动适应功能,则双方通过FLP信号进行协商和处理,最后协商结果在网卡和100Base-TX集线器的相应端口上均形成100Base-TX的工作模式。
(2)原有10Base-T网卡不具备自动协商功能的,当网卡与具备10Mb/s和100Mb/s自动协商功能的集线器端口连接后,集线器端口向网卡端口发出FLP信号,而网卡端口不能发出快速链路脉冲(FLP)信号,但由于在以往的10Base-T系统中,非屏蔽型双绞线(UTP)媒体的链路正常工作时,始终存在正常链路脉冲(NLP)以检测链路的完整性。
所以在新系统的自动协调过程中,集线器的10Mb/s和100Mb/s自适应端口接收到的信号是NLP信号;由于NLP信号在自动协调协议中也有说明,FLP向下兼容NLP,这样集线器的端口就自动形成了10Base-T工作模式与网卡相匹配。
二、高速以太网的体系结构高速以太网的体系结构如图所示:从OSI层次模型看,与10Mb/s以太网相同,仍有数据链路层、物理层和物理媒体。
从IEEE802模型看,它具有MAC子层和物理层的功能。
三、高速以太网的类型(1)、共享型快速以太网系统:使用共享型集线器。
(2)、交换型以太网系统:使用快速以太网交换器。
四、高速以太网的适用范围适用于较远距离的传输五、高速以太网使用的介质光纤:作为网络的物理介质,提供基本带宽。