高中数学立体几何解题技巧

合集下载

高中数学【立体几何】解答题技巧

高中数学【立体几何】解答题技巧

高中数学【立体几何】解答题技巧立体几何解答题的基本模式是论证推理与计算相结合,以某个几何体为依托,分步设问,逐层加深,解决这类题目的原则是建模、建系.建模——将问题转化为平行模型、垂直模型及平面化模型;建系——依托于题中的垂直条件,建立空间直角坐标系,利用空间向量求解.(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=66DO.(1)证明:PA⊥平面PBC;(2)求平面PCB与平面PCE的夹角的余弦值.(1)证明设DO=a,由题设可得PO=66a,AO=33a,AB=AC=BC=a,PA=PB=PC=22a.2分因此PA2+PB2=AB2,从而PA⊥PB.3分又PA2+PC2=AC2,故PA⊥PC.又PB ,PC ⊂平面PBC ,PB ∩PC =P , 所以PA ⊥平面PBC .5分(2)解 以O 为坐标原点,OE→的方向为y 轴正方向,OD →的方向为z 轴正方向,|OE →|为单位长度,建立如图所示的空间直角坐标系O-xyz .由题设可得E (0,1,0),A (0,-1,0), C ⎝ ⎛⎭⎪⎫-32,12,0,P ⎝ ⎛⎭⎪⎫0,0,22.7分所以EC →=⎝ ⎛⎭⎪⎫-32,-12,0,EP →=⎝ ⎛⎭⎪⎫0,-1,22.8分设m =(x ,y ,z )是平面PCE 的法向量,则 ⎩⎪⎨⎪⎧m ·EP →=0,m ·EC →=0,即⎩⎪⎨⎪⎧-y +22z =0,-32x -12y =0.不妨取y =1,得m =⎝ ⎛⎭⎪⎫-33,1,2.10分由(1)知AP→=⎝ ⎛⎭⎪⎫0,1,22是平面PCB 的一个法向量. 记n =AP →,则cos 〈n ,m 〉=n ·m |n |·|m |=255.所以平面PCB 与平面PCE 的夹角的余弦值为255.12分❶得步骤分:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点一定要写全.如第(1)问缺少PA =PB =PC =22a ,遗漏PA ⊥PB 导致扣分,第(2)问建立空间直角坐标系O-xyz .❷得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问缺少PC ∩PB =P ,或PB ,PC ⊂平面PAC 等;第(2)问中不写公式cos 〈m ,n 〉=m ·n|m ||n |而得出余弦值都会各扣去1分.❸得计算分:第(2)问中,向量EC →,EP →,两个平面法向量的坐标及cos 〈m ,n 〉的求值,否则不能得分.1.如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A 1EC 1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值; (3)求二面角A-A 1C 1-E 的正弦值.(1)证明 以A 为原点,AB ,AD ,AA 1分别为x ,y ,z 轴,建立如图空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (2,0,0),C (2,2,0),D (0,2,0),C 1(2,2,2),D 1(0,2,2).因为E 为棱BC 的中点,F 为棱CD 的中点,所以E (2,1,0),F (1,2,0), 所以D 1F →=(1,0,-2),A 1C 1→=(2,2,0),A 1E →=(2,1,-2). 设平面A 1EC 1的一个法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1E →=0,即⎩⎨⎧2x 1+2y 1=0,2x 1+y 1-2z 1=0,令x 1=2,则y 1=-2,z 1=1,即m =(2,-2,1).因为D 1F →·m =2-2=0,所以D 1F →⊥m .因为D 1F ⊄平面A 1EC 1,所以D 1F ∥平面A 1EC 1. (2)解 由(1)得,AC →1=(2,2,2). 设直线AC 1与平面A 1EC 1所成角为θ,则sin θ=|cos 〈m ,AC 1→〉|=⎪⎪⎪⎪⎪⎪⎪⎪m ·AC 1→|m |·|AC →1|=23×23=39,即直线AC 1与平面A 1EC 1所成角的正弦值为39.(3)解 由正方体的特征可得,平面AA 1C 1的一个法向量为DB →=(2,-2,0),则cos 〈DB →,m 〉=DB →·m |DB →|·|m |=822×3=223,所以二面角A-A 1C 1-E 的正弦值为1-cos 2 〈DB→,m 〉=13.2.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,CD ∥AE ,AC ⊥AE ,AB ⊥BC ,CD =1,AE =AC =2,F 为DE 的中点,且点E 满足EB→=4EG →.(1)证明:GF ∥平面ABC ;(2)当多面体ABCDE 的体积最大时,求平面ABE 与平面DBE 的夹角的余弦值. (1)证明 分别取AB ,EB 的中点M ,N ,连接CM ,MN ,ND ,在梯形ACDE 中,DC ∥EA ,且DC =12EA ,M ,N 分别为BA ,BE 的中点,∴MN ∥EA ,且MN =12EA , ∴MN ∥CD ,且MN =CD , ∴四边形CDNM 为平行四边形, ∴CM ∥DN ,又EB→=4EG →,N 为EB 的中点,∴G 为EN 的中点. 又F 为ED 的中点,∴GF ∥DN ,得GF ∥CM , 又CM ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)解 在平面ABC 内,过B 作BH ⊥AC ,交AC 于H ,∵平面ACDE ⊥平面ABC ,且平面ACDE ∩平面ABC =AC ,BH ⊂平面ABC . ∴BH ⊥平面ACDE ,则BH 为四棱锥B-ACDE 的高, 又底面ACDE 的面积确定,∴要使多面体ABCDE 的体积最大,即BH 最大,此时AB =BC = 2. ∴H 为AC 的中点,连接HF ,易知HB ,HC ,HF 两两垂直.以H 为坐标原点,分别以HB ,HC ,HF 所在直线为x ,y ,z 轴建立如图所示的直角坐标系H-xyz .则A (0,-1,0),B (1,0,0), E (0,-1,2),D (0,1,1).∴AB→=(1,1,0),BE →=(-1,-1,2),DE →=(0,-2,1). 设n 1=(x 1,y 1,z 1)为平面ABE 的法向量, 则⎩⎪⎨⎪⎧n 1·AB →=x 1+y 1=0,n 1·BE →=-x 1-y 1+2z 1=0.取y 1=-1,得n 1=(1,-1,0).设n 2=(x 2,y 2,z 2)为平面DBE 的法向量, 则⎩⎪⎨⎪⎧n 2·DE →=-2y 2+z 2=0,n 2·BE →=-x 2-y 2+2z 2=0.取z 2=2,可得n 2=(3,1,2). ∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=22×14=77.∴平面ABE 与平面DBE 的夹角的余弦值为77.。

高中数学立体几何体积和表面积计算技巧

高中数学立体几何体积和表面积计算技巧

高中数学立体几何体积和表面积计算技巧在高中数学中,立体几何是一个重要的内容,其中计算几何体的体积和表面积是必不可少的技巧。

本文将介绍一些常见的计算技巧,并通过具体的题目来说明这些技巧的应用。

一、立体几何体的体积计算技巧1. 直接计算法对于常见的几何体,如长方体、正方体、圆柱体、圆锥体和球体,可以直接使用相应的公式进行计算。

举例来说,如果要计算一个长方体的体积,可以使用公式 V = lwh,其中 l、w 和 h 分别表示长方体的长、宽和高。

如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到体积 V = 6 × 4 × 3 = 72 cm³。

2. 分割法对于复杂的几何体,可以通过将其分割成若干简单的几何体来计算体积。

这种方法常用于计算不规则体的体积。

举例来说,如果要计算一个由三棱锥和一个正方体组成的复合体的体积,可以先计算三棱锥的体积,再计算正方体的体积,最后将两者相加。

3. 单位体积法对于一些特殊的几何体,可以利用单位体积的性质来计算体积。

这种方法常用于计算球台、球冠等几何体的体积。

举例来说,如果要计算一个球台的体积,可以先计算整个球的体积,再减去球冠的体积。

具体计算步骤如下:步骤一:计算整个球的体积,使用公式V = (4/3)πr³,其中 r 表示球的半径。

步骤二:计算球冠的体积,使用公式V = (1/3)πh²(3r - h),其中 h 表示球台的高度。

步骤三:将步骤一的结果减去步骤二的结果,即可得到球台的体积。

二、立体几何体的表面积计算技巧1. 直接计算法对于常见的几何体,可以直接使用相应的公式进行表面积的计算。

举例来说,如果要计算一个长方体的表面积,可以使用公式 S = 2lw + 2lh +2wh,其中 l、w 和 h 分别表示长方体的长、宽和高。

如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到表面积 S = 2(6×4) + 2(6×3) +2(4×3) = 108 cm²。

高中数学中的立体几何几何体的投影与截面计算技巧

高中数学中的立体几何几何体的投影与截面计算技巧

高中数学中的立体几何几何体的投影与截面计算技巧高中数学中的立体几何——几何体的投影与截面计算技巧几何体是立体几何中的重要概念,它们在真实世界中的应用广泛而丰富。

在高中数学学习中,我们需要了解几何体的投影与截面计算技巧,以便更好地理解和应用几何体相关的知识。

本文将就此展开讨论,并分享一些解题技巧。

一、几何体的投影计算技巧几何体的投影是指物体在某一平面上的影子。

在计算几何体投影时,我们需要考虑光源的位置、几何体的形状以及投影面的位置和朝向等因素。

以下是几何体的投影计算的一些基本技巧:1. 直线与平面的交点在计算几何体投影时,我们经常需要计算直线与平面的交点。

这可以通过求解方程组来实现。

例如,当直线的参数方程为x = x0 + at,y= y0 + bt,z = z0 + ct,平面的方程为Ax + By + Cz + D = 0时,我们可以将直线的参数方程代入平面方程,得到一个关于t的方程,进而求解出交点的坐标。

2. 投影面的选择在进行几何体投影计算时,我们需要选择合适的投影面。

常见的投影面有水平面、垂直面等。

当几何体与投影面平行时,其投影会呈现出与原几何体相似的形状。

而当几何体与投影面垂直时,其投影则会呈现出几何体在该方向上的长度、宽度等信息。

3. 考虑投影侧面在计算几何体投影时,我们还需要考虑投影的侧面。

当几何体与投影面平行时,除了顶面和底面的投影外,需要计算几何体侧面的投影。

此时,我们可以通过在侧面上选取几个关键点,进而确定侧面的投影形状。

通过掌握以上几个计算技巧,我们可以更准确地计算几何体的投影,更好地理解几何体的形状和特征。

二、几何体的截面计算技巧几何体的截面是指几何体被一个平面截断后的形状。

在高中数学学习中,我们经常需要计算几何体的截面,以便分析其性质和特点。

以下是几何体的截面计算的一些技巧:1. 平行截面当几何体被平行于其底面的平面截断时,得到的截面形状与底面相似。

根据这一性质,我们可以通过计算底面的面积和截断平面与底面的距离,来计算截面的面积和形状。

高中数学立体几何解题方法与技巧

高中数学立体几何解题方法与技巧

高中数学立体几何解题方法与技巧高中数学立体几何是数学的一个重要分支,它研究的是空间中的图形、体积、表面积以及它们之间的关系。

学好立体几何,需要掌握一些解题方法与技巧。

下面将介绍一些常用的解题方法与技巧。

一、立体几何的基本概念与性质:在学习立体几何之前,首先需要掌握一些基本概念与性质。

例如:1.空间几何图形的基本要素:点、直线、平面。

2.空间几何体的基本要素:线段、直线、面、多面体等。

3.空间几何体的性质与关系:例如四边形的内角和等于360度,平面与直线的位置关系等。

二、图形的投影与视图:解题时,往往需要在二维平面上进行推导与计算。

因此,需要了解图形的投影与视图的概念与方法。

1.图形的平面投影:例如将三维图形的投影投到一个平面上,可以简化问题的分析与计算。

2.三视图的绘制:根据题目中的给定条件,绘制三个视图,有助于理清问题的关系和结构。

三、平行与相似:平行和相似是解决立体几何问题常用的关键性质。

掌握平行线与平行面的性质,以及相似三角形的性质,对解题有很大帮助。

1.平行线及其性质:例如平行线的万能定理、内线定理、等角对内线等。

2.平行面及其性质:例如平行面的性质、平行面截平行线的性质等。

3.相似三角形及其性质:例如相似三角形的比例定理、角平分线定理、海伦公式等。

四、体积与表面积:在解体积与表面积的问题时,需要掌握各种几何体的计算公式与基本相应的性质。

1.体积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的体积公式与相关性质。

2.表面积计算:例如长方体、正方体、三棱柱、圆柱、圆锥、球体等几何体的表面积公式与相关性质。

五、解题的方法与技巧:1.运用三角形的相似性质:当我们遇到复杂的几何体时,可以通过寻找相似三角形来简化问题的分析。

2.运用等高线的思想:当题目中出现高度或等高的条件时,可以利用等高线的思想来求解。

3.利用平行投影和垂直投影:平行投影和垂直投影是解决立体几何问题常用的方法,可以通过不同的投影方式简化问题的分析与计算。

高中数学立体几何曲面解题技巧

高中数学立体几何曲面解题技巧

高中数学立体几何曲面解题技巧高中数学的立体几何是一个重要的考点,其中曲面是一个比较复杂的概念。

在解题过程中,我们需要掌握一些技巧和方法,以便更好地应对各种曲面题型。

本文将介绍一些解题技巧,并通过具体的例子来说明这些技巧的应用。

一、球面的解题技巧球面是立体几何中常见的曲面,解题时需要注意以下几个方面:1. 利用球的性质:球的表面上任意两点之间的最短距离是球的直径,球的表面上的点到球心的距离都相等。

在解题过程中,我们可以利用这些性质来求解问题。

例题:已知球心为O,P为球面上的一点,OP的长度为r,球面上的点Q到OP的距离为d。

求证:OP ⊥ QP。

解析:根据题目条件可知,点Q到球心的距离等于r,点P到球心的距离等于r,点Q到点P的距离等于d。

根据球的性质可知,点Q到点P的距离应该等于点P到球心的距离减去点Q到球心的距离,即d = r - r = 0。

由此可得,点Q和点P重合,即OP ⊥ QP。

2. 利用球面上的切线:球面上的切线与球面的切点处于同一平面上。

在解题过程中,我们可以利用球面上的切线与球面的切点的关系来求解问题。

例题:已知球心为O,球面上的点A、B、C在同一平面上,且OA ⊥ AB,OB ⊥ BC,OC ⊥ CA。

求证:AB ⊥ BC。

解析:根据题目条件可知,点A、B、C在球面上,并且OA ⊥ AB,OB ⊥BC,OC ⊥ CA。

由于OA ⊥ AB,所以OA是球面上过点A的切线。

同理,OB是球面上过点B的切线,OC是球面上过点C的切线。

根据球面上切线与切点的关系可知,切线OA、OB、OC在同一平面上,且与球面的切点A、B、C重合。

由此可得,AB ⊥ BC。

二、圆柱的解题技巧圆柱是另一个常见的立体几何曲面,解题时需要注意以下几个方面:1. 利用圆柱的性质:圆柱的底面是一个圆,圆柱的侧面是由平行于底面的直线和底面上的圆所组成的。

在解题过程中,我们可以利用这些性质来求解问题。

例题:已知圆柱的底面半径为r,高度为h。

高中数学立体几何题解题方法

高中数学立体几何题解题方法

高中数学立体几何题解题方法立体几何是高中数学中的一个重要内容,也是让很多学生头疼的难点。

在解立体几何题时,我们需要灵活运用各种几何定理和方法,合理利用图形的性质,从而找到解题的突破口。

本文将以一些常见的立体几何题型为例,介绍解题方法和技巧,帮助高中学生更好地应对这一部分的考试。

一、平面与立体图形的相交关系在解立体几何题时,我们经常会遇到平面与立体图形相交的情况。

这类题目的考点主要是理解和应用平面截立体图形的性质。

例如下面这道题:【例题】如图所示,正方体ABCD-A1B1C1D1的棱长为2,点P在棱AA1上,且满足AP:PA1=2:1,平面P与正方体的交线与平面BCD1所围成的立体图形的表面积为多少?【解析】首先,我们可以通过观察得知,平面P与正方体的交线与平面BCD1所围成的立体图形是一个四棱锥。

接下来,我们需要确定这个四棱锥的底面和高。

由于平面P与正方体的交线与底面BCD1相交于一条直线,而且AP:PA1=2:1,所以这条直线被分成了3等分,即BP:PA1=1:2。

由此可以得出BP=2,PA1=1。

由于正方体的棱长为2,所以BP的长度为2,即正方形BCDP的边长为2。

而四棱锥的高等于AP的长度,所以四棱锥的高为2。

根据四棱锥的底面和高,我们可以计算出四棱锥的表面积。

四棱锥的底面是一个正方形,边长为2,所以底面积为2²=4。

四棱锥的侧面是四个等边三角形,边长为2,高为2,所以每个三角形的面积为√3,四个三角形的总面积为4√3。

因此,平面P与正方体的交线与平面BCD1所围成的立体图形的表面积为4+4√3。

通过这道题,我们可以看出,解决平面与立体图形相交的问题,关键在于确定交线所围成的图形的形状和大小,然后利用几何定理计算出相应的面积或体积。

二、立体图形的体积计算在解立体几何题时,计算立体图形的体积是一个常见的考点。

对于不同的立体图形,我们需要运用不同的计算公式。

下面是一道与球体体积计算相关的题目:【例题】一个半径为5cm的球体,被一个平面截下一个球冠,球冠的高度为3cm。

浅析高中数学中的立体几何解题技巧

浅析高中数学中的立体几何解题技巧

浅析高中数学中的立体几何解题技巧数学是需要极强的逻辑思维和空间能力一门学科,需要教师着重培养学生各方面的能力,尤其立体几何对学生空间能力的要求极高,这就要求教师在教学时一定要注重培养学生的空间能力,并将初中数学与高中数学衔接起来,从而帮助学生更好地学习数学知识。

本文主要探究高中数学中立体几何的解题技巧,以期能够让学生更好地学习几何知识,提高学习效率。

一、掌握基础知识数学是一门环环相扣的学科,每一个知识点都有它存在的意义,只有将这些知识点完美地串联起来,才能够更好地学习并理解数学知识。

关于立体几何,学生在初中时就对其有了一定的了解,并且也具备了一定的空间能力。

这就要求学生要时常复习自己曾经学过的知识点,温故而知新,一些旧的相关知识点能帮助学生在学习新知识时减少一些外界阻力,因此,教师需要将初中的知识点与高中的知识点有效地衔接起来,帮助学生弥补之前没有学会的知识点,也能够使本身就会这些知识的学生得到再次的复习巩固。

由此可见,在数学教学过程中,温习旧的知识是十分重要的,它不但能填补学生的知识漏洞,使学生拥有更加扎实的数学基础,同时也能减轻教师在上课时的压力,使课堂进行得更加顺畅,从而大大提高教师的教学效率与学生的学习效率。

例如,在学习球的表面积和体积的求法时,学生在学习立体几何之前已经学习过圆的相关知识了,所以教师可以在进行球的讲解时,让学生回忆圆的表面积求法,帮助学生将之前的知识与新知识结合起来,从而使学生能够快速地理解立体几何知识,提高学生的学习效率。

二、学会自主思考和错题整理与初中数学知识相比,高中数学知识提升了一个层次,难度更大。

只靠教师的讲解是远远不够的。

因此,教师应该采取措施,运用多种方法激发学生的学习兴趣,使学生迅速融入高中数学课堂。

例如,教师可以在为学生讲解立体几何的主要知识后让学生分组学习、共同探索,通过互相帮助,解决自身与他人在立体几何知识中存在的一些问题,并对自己不能解决的问题有简单的了解,然后教师再对学生存在问题的内容进行着重讲解。

高二数学立体几何大题的八大解题技巧

高二数学立体几何大题的八大解题技巧

高二数学立体几何大题的八大解题技巧引言立体几何是高中数学中较为抽象和复杂的一个分支,对于很多学生来说,解决立体几何的大题可能会显得有些困难。

然而,只要我们掌握一些解题技巧,并进行适当的练习,就能够更加游刃有余地解决这类问题。

本文将介绍八大解题技巧,帮助高二学生在数学考试中取得好成绩。

技巧一:构造合理的立体模型对于立体几何问题,构造一个合理的三维模型是非常重要的。

通过绘制图形,我们可以更清晰地理解问题,有助于推导出解题方法。

例如,当我们遇到一个求体积的问题时,可以根据题目中的条件,构造一个与实际物体相似的模型,并确定其几何关系。

这样一来,在计算体积时,我们可以很容易地将问题转化为计算几何体的体积。

技巧二:利用平行关系简化解题在立体几何问题中,平行关系是经常出现的。

我们可以利用平行性质简化解题过程。

例如,当我们遇到一道求两条直线之间的距离的问题时,如果题目中给出的条件中存在两条平行线,我们可以通过利用平行关系,使用相似三角形等方法,直接求出距离,而不需要进一步计算。

技巧三:灵活应用平行截面法平行截面法是解决某些立体几何问题的重要方法。

它利用了不同截面的面积比例以及平行线与截面的关系,帮助我们求解立体几何问题。

当我们遇到一个立体几何问题时,可以尝试引入平行截面,通过计算各截面的面积比例、长度比例等,推导出所需的结果。

技巧四:加长或减短前提条件有时候,我们遇到的立体几何问题可能较为复杂,不容易解决。

这时,我们可以尝试通过增加或减少一些前提条件,简化问题,使其能够更容易解决。

例如,当我们遇到一个立体几何问题需要计算某个长度时,有时我们可以通过修改前提条件,使其成为一个相似三角形问题,从而更容易求解目标长度。

技巧五:利用相似关系求解相似关系在立体几何问题中有着广泛的应用。

通过找到合适的相似三角形或相似立体,我们可以快速求解问题。

当我们遇到一个立体几何问题时,可以尝试寻找相似的几何形状,并利用相似关系设置等式,求解出所需的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学立体几何解题技巧
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合
1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一
个平面;
(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

(6)经过平面外一点只有一个平面和已知平面平行。

以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

解答题分步骤解决可多得分
01、合理安排,保持清醒。

数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。

然后带齐用具,提前半小时到考场。

02、通览全卷,摸透题情。

刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。

这样能提醒自己先易后难,也可防止漏做题。

03、解答题规范有序。

一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多则材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知
识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

相关文档
最新文档