高中物理牛顿运动定律练习题及答案含解析

合集下载

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。

高考物理牛顿运动定律题20套(带答案)及解析

高考物理牛顿运动定律题20套(带答案)及解析

高考物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。

已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。

求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。

【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++解得:F=14N所以物体B对地面的压力大小为14N5.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。

高中物理牛顿运动定律题20套(带答案)及解析

高中物理牛顿运动定律题20套(带答案)及解析

高中物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。

水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。

传送带BC 间距0.8L m =,以01/v m s =顺时针运转。

两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。

用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。

高考物理最新力学知识点之牛顿运动定律专项训练及解析答案

高考物理最新力学知识点之牛顿运动定律专项训练及解析答案

高考物理最新力学知识点之牛顿运动定律专项训练及解析答案一、选择题1.如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( )A .2L v v gμ+ B .L vC .2L gμ D .2L v2.如图所示,质量为2 kg 的物体A 静止在竖直的轻弹簧上面。

质量为3 kg 的物体B 用轻质细线悬挂,A 、B 接触但无挤压。

某时刻将细线剪断,则细线剪断瞬间,B 对A 的压力大小为(g =10 m/s 2)A .12 NB .22 NC .25 ND .30N3.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图所示.取g =10m/s 2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为( )A .0.2,6NB .0.1,6NC .0.2,8ND .0.1,8N4.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J5.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A .甲球质量大于乙球B .m 1/m 2=v 2/v 1C .释放瞬间甲球的加速度较大D .t 0时间内,两球下落的高度相等6.关于一对平衡力、作用力和反作用力,下列叙述正确的是( ) A .平衡力应是分别作用在两个不同物体上的力B .平衡力可以是同一种性质的力,也可以是不同性质的力C .作用力和反作用力可以不是同一种性质的力D .作用力施加之后才会产生反作用力,即反作用力总比作用力落后一些7.如图所示,质量为10kg 的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F =20N 的作用,则物体的加速度为( )A .0B .2m/s 2,水平向右C .4m/s 2,水平向右D .2m/s 2,水平向左8.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A .B .C .D .9.一物体放置在粗糙水平面上,处于静止状态,从0t =时刻起,用一水平向右的拉力F 作用在物块上,且F 的大小随时间从零均匀增大,则下列关于物块的加速度a 、摩擦力f F 、速度v 随F 的变化图象正确的是( )A .B .C .D .10.如图所示,有一根可绕端点B 在竖直平面内转动的光滑直杆AB ,一质量为m 的小圆环套在直杆上。

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。

2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。

位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析1.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。

【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。

2.如图所示,光滑水平面上放有质量均为m的滑块A和斜面体C,在C的斜面上又放有一质量也为m的滑块B,用力F推滑块A使三者无相对运动地向前加速运动,则各物体所受的合力()A.滑块A最大B.斜面体C最大C.同样大D.不能判断谁大谁小【答案】C【解析】由于三者无相对运动地向前共同加速运动,且质量均相同,根据牛顿第二定律F=ma可知,F均相同,故C正确。

【考点】牛顿第二定律3.一辆以12m/s的速度在水平路面上行驶的汽车,在关闭油门后刹车过程中以3m/s2的加速度做匀减速运动,那么汽车关闭油门后2s内的位移是多少米?关闭油门后5s内的位移是多少米?【答案】(1)18m(2)24m【解析】汽车停下来的时间为,汽车在关闭油门后2s内的位移是由于汽车在4s末停止运动,所以前4s的位移等于5s末的位移故有关闭油门后5s内的位移是【考点】考查了匀变速直线运动规律的应用4.一辆值勤的警车停在公路边,当警员发现在他前面9m处以7m/s的速度匀速向前行驶的货车有违章行为时,决定前去追赶,经3.0s,警车发动起来,以加速度a=2m/s2做匀加速运动.求:(1)警车发动后经多长时间能追上违章的货车,这时警车速度多大;(2)在警车追上货车之前,何时两车间的最大距离,最大距离是多少.【答案】(1)t=10s,20m/s(2)【解析】①得 t=10s v=at=20m/s②当两车速度相等时,两车间距最大【考点】追击相遇问题【名师】关键是抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远,(1)根据位移关系,结合运动学公式求出追及的时间,根据速度时间公式求出警车的速度.(2)当两车的速度相等时,相距最远,根据速度时间公式求出相距最远的时间,根据位移公式求出相距的最远距离5.(10分)如图所示,小球在较长的斜面顶端,以初速度v=2m/s,加速度a=2m/s2向下滑,在到达底端的前1s内,所滑过的距离为,其中L为斜面长,则(1)小球在斜面上滑行的时间为多少?(2)斜面的长度L是多少?【答案】(1)3s;(2)15m【解析】设小球在斜面上运动的总时间为t,则由题意和公式 x=vt+at2得:解上面两个方程得:t=3s;L=15m【考点】匀变速直线运动的规律6.(10分)一列车A的制动性能经测定:当它以标准速度V=20m/s在平直轨道上行驶时,制动后需tA =40s才停下。

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析

高一物理牛顿运动定律试题答案及解析1.如图甲所示,一个可视为质点的质量m=2kg的物块,在粗糙水平面上滑行,经过A点时物块=12m/s,同时对其施加一与运动方向相反的恒力F,此后物块速度随时间变化的规律如速度为v图乙所示,取g=10m/s2.求:(1)物块与水平面之间的动摩擦因数μ和所施加的恒力F大小;(2)从施加恒力F开始,物块再次回到A点时的速度大小.【答案】(1),(2)【解析】(1)从图象可知,0~2s内物体做匀减速直线运动,加速度大小为:根据牛顿第二定律可知:①2~4s内物体做反方向的匀加速直线运动,加速度大小为:根据牛顿第二定律可知:②联立①②两式得:,(2)由v﹣t图象可得匀减速阶段:反方向匀加速运动阶段:,解得:【考点】v-t图象、牛顿第二定律。

【名师】(1)根据图线的斜率求出匀减速运动的加速度大小和反向做匀加速直线运动的加速度大小,结合牛顿第二定律求出动摩擦因数和恒力F的大小;(2)根据图线与时间轴围成的面积求出匀减速运动的位移大小,结合速度位移公式求出返回A点的速度大小。

2.A.绳子张力可能不变B.绳子张力一定减小C.模型平面与水平面的夹角一定增大D.模型平面与水平面的夹角可能不变【答案】C【解析】以模型为研究对象分析受力,如下图所示:根据平衡条件有:G=Fcosθ,故可知,当F增大时,则cosθ减小,夹角增大,故选项C正确、D错误;而T=Gtanθ,可知绳子的拉力增大,所以选项AB错误;故选C.【考点】共点力的平衡3.如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接。

现将一滑块(可视为质点)从斜面上A 点由静止释放,最终停在水平面上的C 点。

已知A 点距水平面的高度h=0.8m ,B 点距C 点的距离L=2.0m 。

(滑块经过B 点时没有能量损失,g=10m/s 2),求: (1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;【答案】(1)4m/s (2)0.4【解析】(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B 点时速度最大为v m ,设滑块在斜面上运动的加速度大小为a 1 ,得滑块的加速度: 根据匀加速运动的速度位移关系有:,,(2)滑块在水平面上运动时的加速度大小为a 2 由牛顿第二定律有: 解得:答:(1)滑块在运动过程中的最大速度为4m/s ; (2)滑块与水平面间的动摩擦因数μ=0.4.4. 如图所示,半径R =0.8 m 的光滑1/4 圆弧轨道固定在水平地面上,O 为该圆弧的圆心,轨道上方的A 处有一个可视为质点的质量m =1 kg 的小物块,小物块由静止开始下落后恰好沿切线进入1/4 圆弧轨道.此后小物块将沿圆弧轨道下滑,已知AO 连线与水平方向的夹角θ=45°,在轨道末端C 点紧靠一质量M =3 kg 的长木板,木板上表面与圆弧轨道末端的切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3, g 取10 m/s 2.求:(1)小物块刚到达C 点时的速度大小;(2)小物块刚要到达圆弧轨道末端C 点时对轨道的压力大小; (3)要使小物块不滑出长木板,木板长度L 至少为多少? 【答案】(1)4m/s (2)50N ,方向竖直向下(3)4m 【解析】(1)小物块从A 到C ,根据机械能守恒有: mg×2R =mv ,解得v C =4m/s.(2)小物块刚要到C 点,由牛顿第二定律有: F N -mg =mv /R ,解得F N =50 N.由牛顿第三定律,小物块对C 点的压力F N ′=50 N ,方向竖直向下.(3)设小物块刚滑到木板右端时达到共同速度,大小为v ,小物块在长木板上滑行过程中,小物块与长木板的加速度分别为:a m =μmg/m ,a M =μmg/M v =v C -a m t v =a M t由能量守恒定律得:-μmgL =(M +m)v 2-mv 联立解得: L =4 m.【考点】机械能守恒定律、牛顿第二定律、能量守恒定律5. 频闪照相是研究物理过程的重要手段,如图所示是某同学研究一质量为m =0.5k g 的小滑块从光滑水平面滑上粗糙斜面并向上滑动时的频闪照片。

高中物理牛顿运动定律专题训练答案及解析

高中物理牛顿运动定律专题训练答案及解析

高中物理牛顿运动定律专题训练答案及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M 2kg的木板静止在光滑水平地面上,一质量m 1kg的滑块(可视为质点)以v o 3m/s的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2,重力加速度g 10m/s2,求:—►必ilm(1)木板与挡板碰撞前瞬间的速度v?(2)木板与挡板碰撞后滑块的位移s?(3)木板的长度L ?【答案】(1) 1m/s (2) 0.25m (3) 1.75m【解析】【详解】(1)滑块与小车动量守恒mv0 (m M)v可得v 1m/s1 2(2)木板静止后,滑块匀减速运动,根据动能TE理有:mgs 0 — mv2解得s 0.25m(3)从滑块滑上木板到共速时,由能量守恒得:1mv2 1(m M )v2mgs12 2故木板的长度L s 8 1.75m2.近年来,随着AI的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以V0=2m/s的恒定速率顺时针运行,传送带的长度为L=7.6m.机械手将质量为1kg的包裹A轻放在传送带的左端,经过4s包裹A离开传送带,与意外落在传送带右端质量为3kg的包裹B发生正碰,碰后包裹B在水平面上滑行0.32m后静止在分拣通道口,随即被机械手分拣.已知包裹A、B与水平面间的动摩擦因数均为0.1,取g=10m/s2.求:(1)包裹A与传送带间的动摩擦因数(2)两包裹碰撞过程中损失的机械能(3)包裹A是否会到达分拣通道口.【答案】⑴图=0.5(2) △Euogej (3)包裹A不会到达分拣通道口【解析】【详解】(1)假设包裹A经过t i时间速度达到v o,由运动学知识有v°-t i v o(t t/ L2包裹A在传送带上加速度的大小为a i,v o=a i t i包裹A的质量为m A,与传输带间的动摩榛因数为田,由牛顿运动定律有:(jm A g=m A a i解得:国=0.5(2)包裹A离开传送带时速度为vo,设第一次碰后包裹A与包裹B速度分别为VA和VB,由动量守恒定律有:m AVO= m AVA+ m BVB包裹B在水平面上滑行过程,由动能定理有:-Hm B gx=0-: m B v B2解得VA=-0.4m/s ,负号表示方向向左,大小为0.4m/s两包裹碰撞时损失的机械能:AE=-m A v o2-i m A v A2--m B v B22 2 2解得:AE=0.96J(3)第一次碰后包裹A返回传送带,在传送带作用下向左运动X A后速度减为零,由动能定理可知-国m A gx A=0- - m A v A2解得x A=0.016m<L,包裹A在传送带上会再次向右运动.设包裹A再次离开传送带的速度为VA'1 2pi m A gX A=—m A v A 2解得:VA '=0.4m/s设包裹A再次离开传送带后在水平面上滑行的距离为X A-22m A gx A' =02 m AVA2解得X A '=0.08mX =<0.32m包裹A静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.3.我国科技已经开启人工智能”时代,入工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s,最后再匀减速1s恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F i、F2和F3大小分别为20.8N、20.4N和18.4N,货物受到的阻力恒为其重力的0.02倍.g取10m/s2.计算:(1)货物的质量m;(2)货物上升过程中的最大动能日m及东东家阳台距地面的高度h.10【答案】(1) m=2kg (2)E km— mv 1J h=56m2【解析】【分析】【详解】(1)在货物匀速上升的过程中由平衡条件得F2= mg+ f其中f=0.02mg解得m= 2kg(2)设整个过程中的最大速度为v,在货物匀减速运动阶段由牛顿运动定律得mg+f -F3= ma3由运动学公式得0= v a3t3解得v 1m s最大动能E km 1mv21J,……,一 1减速阶段的位移x3 5 Vt3 0.5m匀速阶段的位移x2 vt2 53m2加速阶段,由牛顿运动TH律得F I -mg -f=ma1,由运动学公式得2a1X1 v ,解得x1=2.5m阳台距地面的高度h X I x2 x3 56m4.某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、R C置于水平导轨上,R C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度v°=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起.碰撞时间极短,滑块C脱离弹簧后滑上倾角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)滑块 A、B 碰撞时损失的机械能;
(2)滑块 C 在传送带上因摩擦产生的热量 Q;
(3)若每次实验开始时滑块 A 的初速度 v0 大小不相同,要使滑块 C 滑离传送带后总能落 至地面上的同一位置,则 v0 的取值范围是什么?(结果可用根号表示)
【答案】(1) E 9J
【解析】
(2) Q 8J (3) 3 2
由牛顿第二定律得:
解得:

(2)A、B 一起沿斜面下匀速下滑,以整体为研究对象,由滑动摩擦力公式和力的平衡条件
得:
解得:

6.某课外活动小组为了研究遥控玩具小车的启动性能,进行了如图所示的实验。将玩具小 车放在水平地面上,遥控使其从静止开始匀加速启动,经时间 t 关闭发动机,玩具小车滑 行一段距离后停下来,测得玩具小车从启动到停下来发生的总位移 x=6m。已知玩具小车的 质量 m=500g,匀加速过程中牵引力 F=3N,运动过程中受到的阻力恒为车重的 0.2 倍,重 力加速度为 g 取 10 m/s2,求 t 的值。

联立以上两式代入数据得 FN 3000N ③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为 3000N,方向竖直向下. (2)若滑上木板 A 时,木板不动,由受力分析得 μ1m1g⩽μ2(m1+2m2)g ④ 若滑上木板 B 时,木板 B 开始滑动,由受力分析得 μ1m1g>μ2(m1+m2)g ⑤ 联立④⑤式代入数据得 0.4<μ1⩽0.6 ⑥. (3)当 μ1=0.5 时,由⑥式可知,货物在木板 A 上滑动时,木板不动. 设货物在木板 A 上做减速运动时的加速度大小为 a1, 由牛顿第二定律得 μ1m1g⩽m1a1 ⑦ 设货物滑到木板 A 末端是的速度为 V1,由运动学公式得 V12−V02=−2a1L ⑧ 联立①⑦⑧式代入数据得 V1=4m/s⑨ 设在木板 A 上运动的时间为 t,由运动学公式得 V1=V0−a1t ⑩ 联立①⑦⑨⑩式代入数据得 t=0.4s
2.如图甲所示,一长木板静止在水平地面上,在 t 0 时刻,一小物块以一定速度从左端 滑上长木板,以后长木板运动 v t 图象如图所示 .已知小物块与长木板的质量均为 m 1kg ,小物块与长木板间及长木板与地面间均有摩擦,经 1s 后小物块与长木板相对静
止 g 10m / s2 ,求:
1 小物块与长木板间动摩擦因数的值; 2 在整个运动过程中,系统所产生的热量.
【答案】(1)0.7(2)40.5J 【解析】 【分析】
1 小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运
动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板 与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.
2 对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能
【答案】 t 1?s
【解析】
【详解】 设玩具小车受到的阻力为 f,在关闭发动机前后的加速度大小分别为 a1、a2,位移分别为 x1、x2,关闭发动机时的速度为 v。 关闭发动机之前,分别由牛顿第二定律和运动学规律:
F f ma1 f kmg
x1
1 2
a1t 2
v a1t
关闭发动机之后,分别由牛顿第二定律和运动学规律
(1)A 与斜面之间的动摩擦因数 μ1; (2)B 与斜面之间的动摩擦因数 μ2。
【答案】(1)
(
) (2)
(
)
【解析】 【分析】 物块 A 沿斜面加速下滑,由滑动摩擦力公式和力的平衡条件求解 A 与斜面之间的动摩擦因 数; A、B 一起沿斜面下匀速下滑,以整体为研究对象,由滑动摩擦力公式和力的平衡条件求 解 B 与斜面之间的动摩擦因数。 【详解】 (1)物块 A 沿斜面加速下滑, 由滑动摩擦力公式和力的平衡条件得:
题.
3.某种弹射装置的示意图如图所示,光滑的水平导轨 MN 右端 N 处于倾斜传送带理想连 接,传送带长度 L=15.0m,皮带以恒定速率 v=5m/s 顺时针转动,三个质量均为 m=1.0kg 的 滑块 A、B、C 置于水平导轨上,B、C 之间有一段轻弹簧刚好处于原长,滑块 B 与轻弹簧 连接,C 未连接弹簧,B、C 处于静止状态且离 N 点足够远,现让滑块 A 以初速度 v0=6m/s 沿 B、C 连线方向向 B 运动,A 与 B 碰撞后粘合在一起.碰撞时间极短,滑块 C 脱离弹簧 后滑上倾角 θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块 C 与 传送带之间的动摩擦因数 μ=0.8,重力加速度 g=10m/s2,sin37°=0.6,cos37°=0.8.
的作用下物块和板无法一起加速,经 t1=0.5s 时,物块的速度 v1,板的速度 v2
对物块: Ft1 mgt1 mv1
对木板: mgt1 Mv2
解得 v1=0.8m/s,v2=0.5m/s;
5.水平面上固定着倾角 θ=37°的斜面,将质量 m=lkg 的物块 A 从斜面上无初速度释放,其 加速度 a=3m/s2。经过一段时间,物块 A 与静止在斜面上的质量 M=2kg 的物块 B 发生完全 非弹性碰撞,之后一起沿斜面匀速下滑。已知重力加速度大小 g=10m/s2,sin37°=0.6, co37°=0.8,求
为 v1 ,选取向右为正方向,对 A、B 有: mv0 2mv1
碰撞时损失机械能
E
1 2
mv02
1 2
2m v12
解得: E 9J
(2)设 A、B 碰撞后,弹簧第一次恢复原长时 AB 的速度为 vB ,C 的速度为 vC
由动量守恒得: 2mv1 2mvB mvC
由机械能守恒得:
1 2
2m v12
对 A、B、C 和弹簧组成的系统从 AB 碰撞后到弹簧第一次恢复原长的过程中
系统动量守恒,则有: mvmax 2mvB1 mcC1
由机械能守恒得:
1 2
2m v12
1 2
2m vB21
1 2
mvC21
解得: vmax
3 2
vc1
3 2
397m / s
同理得: vmin
3 2
13m / s
所以 3 2
摩擦因数为 1,木板与地面间的动摩擦因数 =0.2.(最大静摩擦力与滑动摩擦力大小相
等,取 g="10" m/s2)
(1)求货物到达圆轨道末端时对轨道的压力.
(2)若货物滑上木板 4 时,木板不动,而滑上木板 B 时,木板 B 开始滑动,求 1 应满足
的条件.
(3)若 1=0.5,求货物滑到木板 A 末端时的速度和在木板 A 上运动的时间.
根据牛顿第二定律有:
代入数据得:F=5.6N (3)物体在 0~14s 内的位移大小在数值上为图像和时间轴包围的面积,则有:
【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况 分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活
处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.
f ma2 0 v2 2a 2x2 满足: x1 x2 x 联立以上各式并代入数据得: t 1s
7.如图所示,某货场而将质量为 m1="100" kg 的货物(可视为质点)从高处运送至地面, 为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶 端无初速滑下,轨道半径 R="1.8" m.地面上紧靠轨道次排放两声完全相同的木板 A、B, 长度均为 l=2m,质量均为 m2="100" kg,木板上表面与轨道末端相切.货物与木板间的动
加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出 C 相对于 传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定
律、能量守恒定律与运动学公式可以求出滑块 A 的最大速度和最小速度. (1)A 与 B 位于光滑的水平面上,系统在水平方向的动量守恒,设 A 与 B 碰撞后共同速度
【答案】(1) FN 3000N
(2)0.4<μ1<0.6 (3)t=0.4s 【解析】 【分析】 【详解】 (1)设货物滑到圆轨道末端是的速度为 V0,对货物的下滑过程中根据机械能守恒定律得,
mgR
1 2
m1 v02

设货物在轨道末端所受支持力的大小为 FN,
根据牛顿第二定律得
FN
m1g
m1
v02 R
3 13m/s v0 2
397m/s
试题分析:(1)A、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能
关系即可求出损失的机械能;(2)A、B 碰撞后与 C 作用的过程中 ABC 组成的系统动量守 恒,应用动量守恒定律与能量守恒定律可以求出 C 与 AB 分开后的速度,C 在传送带上做匀
13m
/
s
v0
3 2
397m / s
4.如图甲所示,光滑水平面上有一质量为 M = 1kg 的足够长木板。板左端有一质量为 m=
0.5kg 的物块(视为质点),物块与木板间的动摩擦因数为 =0.2。初始时物块与木板均处
于静止状态,已知 g = 10m/s2,物块与木板间的最大静摩擦力与滑动摩擦力相等。
量守恒求热量. 【详解】
1 长木板加速过程中,由牛顿第二定律,得
1mg 22mg ma1 ; vm a1t1 ;
木板和物块相对静止,共同减速过程中,由牛顿第二定律得
2 2mg 2ma2 ; 0 vm a2t2 ; 由图象可知, vm 2m / s , t1 1s , t2 0.8s 联立解得 1 0.7
2 小物块减速过程中,有:
1mg ma3 ;
vm v0 a3t1 ;
相关文档
最新文档