高三牛顿运动定律试题精选及答案
高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高考物理牛顿运动定律题20套(带答案)及解析

高考物理牛顿运动定律题20套(带答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v0=10m/s的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x将发生变化.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m3.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m4.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++解得:F=14N所以物体B对地面的压力大小为14N5.某研究性学习小组利用图a所示的实验装置探究物块在恒力F作用下加速度与斜面倾角的关系。
高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m 【解析】 【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。
水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。
传送带BC 间距0.8L m =,以01/v m s =顺时针运转。
两个转动轮O 1、O 2的半径均为0.08r m =,半径O 1B 、O 2C 均与传送带上表面垂直。
用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。
已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。
高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案)一、高中物理精讲专题测试牛顿运动定律1. 如图,有一水平传送带以8m/s的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m , g 取10m/s2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1) a g 4m/s2(2) t 1s【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动•根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1 )物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得:mg ma代入数据得:a g 4m/s2(2 )设物体加速到与传送带共速时运动的位移为S o根据运动学公式可得:2as0 v22运动的位移:§ —8 4m2at,则有则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为2解得t 1s【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.2. 四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用. 一架质量m=2 kg的无人机,其动力系统所能提供的最大升力F=36N,运动过程中所受空气阻力大小恒为f=4 N. (g取10 m/s2)(1) 无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t=5s时离地面的高度h;(2) 当无人机悬停在距离地面高度H=100m处,由于动力设备故障,无人机突然失去升力而坠落•求无人机坠落到地面时的速度V;(3) 接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力•为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t i.5亦【答案】(1) 75m (2) 40m/s (3) 口s3【解析】【分析】【详解】(1 )由牛顿第二定律F- mg - f=ma代入数据解得a=6m/s2代入数据解得h=75m.(2)下落过程中mg- f=ma i 代入数据解得「:t「一落地时速度v2=2a i H,代入数据解得v=40m/s(3 )恢复升力后向下减速运动过程F-mg+f=ma2代入数据解得-「「亠2 2设恢复升力时的速度为V m,则有「丄''由V m=a i t l代入数据解得3. 如图所示,在光滑水平面上有一段质量不计,长为6m的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A、B,现同时对A、B两滑块施加方向相反,大小均为F=12N的水平拉力,并开始计时.已知A滑块的质量mA=2kg, B滑块的质量mB=4kg, A、B滑块与绸带之间的动摩擦因素均为卩=0.5 A、B两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A、B两滑块加速度的大小;(2)0到3s时间内,滑块与绸带摩擦产生的热量.【答案】⑴印1%2& 0・5%2 ;(2)30J【解析】【详解】(1)A滑块在绸带上水平向右滑动,受到的滑动摩擦力为f A ,水平运动,则竖直方向平衡:N A mg , f A N A ;解得:f A mg ①A滑块在绸带上水平向右滑动,0时刻的加速度为a!,由牛顿第二定律得: F f A m A a,――②B滑块和绸带一起向左滑动,0时刻的加速度为a2由牛顿第二定律得: F f B m B a2――③;2 2联立①②③解得:a 1m /s , a20.5m /s ;(2)A滑块经t滑离绸带,此时A、B滑块发生的位移分别为X i和X2Lx, x221 .2x, a,t22X2 a2t2代入数据解得:x, 2m , x2 1m, t 2s2秒时A滑块离开绸带,离开绸带后A在光滑水平面上运动,B和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:Q f A x1x2代入数据解得:Q 30J .4•滑雪者为什么能在软绵绵的雪地中高速奔驰呢?其原因是白雪内有很多小孔,小孔内充满空气•当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板与雪地间形成一个暂时的气垫”从而大大减小雪地对滑雪板的摩擦•然而当滑雪板对雪地速度较小时,与雪地接触时间超过某一值就会陷下去,使得它们间的摩擦力增大•假设滑雪者的速度超过 4 m/s 时,滑雪板与雪地间的动摩擦因数就会由0.25变为烬=0.125 .一滑雪者从倾角为0= 37°勺坡顶A由静止开始自由下滑,滑至坡底B(B处为一光滑小圆弧)后又滑上一段水平雪地,最后停在C处,如图所示•不计空气阻力,坡长为 1 = 26 m, g取10 m/s2, sin37 = 0.6, cos 37 = 0.8.求:(1) 滑雪者从静止开始到动摩擦因数发生变化经历的时间;(2) 滑雪者到达B处的速度;(3) 滑雪者在水平雪地上运动的最大距离.【答案】1s 卜护詞99.2m【解析】【分析】由牛顿第二定律分别求出动摩擦因数恒变化前后的加速度,再由运动学知识可求解速度位移和时间.【详解】m^s[n ff-/Zjm^cos 0(1)由牛顿第二定律得滑雪者在斜坡的加速度:a仁甜=4m/s2解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1sII⑵由静止到动摩擦因素发生变化的位移:x i=,a i t2=2mt? - 0动摩擦因数变化后,由牛顿第二定律得加速度:a2= =5m/s2m由V B2-v2=2a2(L-x i)解得滑雪者到达B处时的速度:V B=16m/s⑶设滑雪者速度由V B=16m/s减速到v i=4m/s期间运动的位移为X3,则由动能定理有:—1 1-- j - ;解得X3=96m速度由V i=4m/s减速到零期间运动的位移为X4,则由动能定理有:1 ?-^m^x A= d-^nvl;解得x 4=3.2m所以滑雪者在水平雪地上运动的最大距离为X=X3+X4=96+ 3.2=99.2m5. 如图,竖直墙面粗糙,其上有质量分别为m A =1 kg、m B =0.5 kg的两个小滑块A和B, A在B的正上方,A、B相距h=2. 25 m, A始终受一大小F1=|0 N、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F2作用.同时由静止释放A和B,经时间t=0.5 s,A、B恰相遇•已知A、B与墙面间的动摩擦因数均为口=0.2,重力加速度大小g=10m/s2.求:(1) 滑块A的加速度大小a A;(2) 相遇前瞬间,恒力F2的功率P.2【答案】(1)a A 8m/s ;(2)P 【解析】【详解】(1)A、B受力如图所示:A、B分别向下、向上做匀加速直线运动, 水平方向:F N F l竖直方向:m A g f m A a A且:f F N 对A :联立以上各式并代入数据解得:a A1 (2 )对A由位移公式得:X A c21 2对B由位移公式得:x B a B t22由位移关系得:x B h x A由速度公式得B的速度:V B a B t 对B由牛顿第二定律得:F? m B g 恒力F2的功率:P F2V B联立解得:P= 50W 8m/s2 2mBaB 50W6. 如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角0=37°. 一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数尸0.3 •小球从静止开始沿杆向上运动,2s后小球刚好到达A点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N.已知g=10m/s2, sin37 =0.6, cos37°=0.8.求:(1) 小球在A点时的速度大小;(2) 小球运动到B点时对轨道作用力的大小及方向.【答案】(1)8m/s (2)12N【解析】【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:Fcos mgsin (Fsin mgcos ) ma代入数据得:a 4m/s2小球在A点时的速度v A at 8m/s⑵小球沿竖直圆轨道从A到B的过程,应用动能定理得:1 2 1 2FRsin37 mgR(1 cos37 ) mv B mv A2 2解得:V B 2m/s小球在B点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2V Bmg F N mR解得:F N=12N,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B对轨道的作用力大小为12N,方向竖直向下.7. 如图所示,传送带水平部分x ab=0.2m,斜面部分x b(=5.5m, bc 与水平方向夹角«=37 °,一个小物体A与传送带间的动摩擦因数尸0.25,传送带沿图示方向以速率v=3m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,经b点时速率不变.(取g=10m/s2, sin37 =0.6)求:(1) 物块从a 运动到 (2) 物块从b 运动到 【答案】(1) 0.4s ; 【解析】 【分析】根据牛顿第二定律求出在 ab 段做匀加速直线运动的加速度,结合运动学公式求出 运动时间•到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等 后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:mg ma 1解得:A 与皮带共速需要发生位移:xab代入数据解得:(2)到达b 点的速度:由牛顿第二定律得:b 的时间;c 的时间. (2) 1.25s .a i2.5m/s 2故根据运动学公式,物体 2v x 共2a9m 1.8m 0.2mA 从a 运动到b : t i0.4sV b ait i1m/s 3m/s代入数据解得:a 2 8m/s 2物块在斜面上与传送带共速的位移是:N 2mg sin 37 2ma 2mg cos37 且 f 2N 22设从共速到下滑至 c 的时间为t 3,由x bcs 共1 2vt 3 a 3t 3,得2t3is综上,物块从b 运动到c 的时间为:t2t3i.25s解得 v ' =0.6m/s即物块和木板最终以 0.6m/s 的速度匀速运动. (3)物块先相对木板向右运动,此过程中物块的加速度为 时间物块和木板具有相同的速度 v','对物块受力分析:va 1t 1解得:t ,2m/s 3解得 s=0.5m ;t i 后物块相对木板向左运动,这再经 仍为a i ,对木板:F- mg Ma 32 2v V b代入数据解得: 时间为: t2因为 g sin37 6m/s > g cos37 由牛顿第二定律得: mg sin37 f 2 ma 3N 2 mg cos37,且 f 2 N 2代入数据解得:a 3 4m/s 2 2a 20.5m 5.5ma 2Vb 381s 0.25s2m/s 2,物块继续加速下滑此过程中物块相对木板前进的距离:Wi2 2& 5s 后系统动量守恒,最终达到相同速度 v ;则 mv i MV 2 m M va i ,木板的加速度为 ,经t i对木板:F mg Ma 2由运动公式: v 0 a 2t 1 t 2时间滑落,此过程中板的加速度 a 3,物块的加速度9.水平面上固定着倾角 0 =37的斜面,将质量 m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
高考物理牛顿运动定律及其解题技巧及练习题(含答案)含解析

高考物理牛顿运动定律及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,倾角θ的足够长的斜面上,放着两个相距L 0、质量均为m 的滑块A 和B ,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ= 从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+ 解得:023sin L t g θ=2.如图所示,质量M=0.5kg 的长木板A 静止在粗糙的水平地面上,质量m=0.3kg 物块B(可视为质点)以大小v 0=6m/s 的速度从木板A 的左端水平向右滑动,若木板A 与地面间的动摩擦因数μ2=0.3,物块B 恰好能滑到木板A 的右端.已知物块B 与木板A 上表面间的动摩擦因数μ1=0.6.认为各接触面间的最大静摩擦力与滑动摩擦力大小相等,取g=10m/s 2.求:(1)木板A 的长度L ;(2)若把A 按放在光滑水平地面上,需要给B 一个多大的初速度,B 才能恰好滑到A 板的右端;(3)在(2)的过程中系统损失的总能量. 【答案】(1) 3m (2) 2.410/m s (3) 5.4J 【解析】 【详解】(1)A 、B 之间的滑动摩擦力大小为:11= 1.8f mg N μ= A 板与地面间的最大静摩擦力为:()22= 2.4f M m g N μ+= 由于12f f <,故A 静止不动B 向右做匀减速直线运动.到达A 的右端时速度为零,有:202v aL =11mg ma μ=解得木板A 的长度 3L m =(2)A 、B 系统水平方向动量守恒,取B v 为正方向,有 ()B mv m M v =+物块B 向右做匀减速直线运动22112B v v a s -=A 板匀加速直线运动 12mg Ma μ=2222v a s =位移关系12s s L -= 联立解得 2.410/B v m s = (3)系统损失的能量都转化为热能1Q mgL μ=解得 5.4Q J =3.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB 相切于A 点,B 为圆弧轨道的最高点,圆弧轨道半径R =1m ,细杆与水平面之间的夹角θ=37°.一个m =2kg 的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s 后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.4.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤5.如图甲所示,光滑水平面上有一质量为M = 1kg 的足够长木板。
高考物理牛顿运动定律试题(有答案和解析)

高考物理牛顿运动定律试题(有答案和解析)一、高中物理精讲专题测试牛顿运动定律1.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′,对物块受力分析:1mg ma μ=对木板:2F mg Ma μ+=由运动公式:021v v a t =-''11v a t ''= 解得:113t s = 2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+=解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ=由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t s = 故经过时间12310.91t t t s +=+=≈ 物块滑落.2.如图为高山滑雪赛道,赛道分为斜面与水平面两部分,其中斜面部分倾角为37°,斜面与水平面间可视为光滑连接。
某滑雪爱好者连滑雪板总质量为75kg (可视为质点)从赛道顶端静止开始沿直线下滑,到达斜面底端通过测速仪测得其速度为30m/s 。
然后在水平赛道上沿直线继续前进180m 静止。
假定滑雪者与斜面及水平赛道间动摩擦因数相同,滑雪者通过斜面与水平面连接处速度大小不变,重力加速度为g=10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)滑雪者与赛道间的动摩擦因数;(2)滑雪者在斜面赛道上受到的合外力;(3)滑雪者在斜面滑雪赛道上运动的时间及斜面赛道的长度【答案】(1)0.25(2)300N(3)7.5s,112.5m【解析】【分析】根据匀变速直线运动的速度位移公式求出匀减速直线运动的加速度大小,根据牛顿第二定律求出滑雪者与赛道间的动摩擦因数;根据滑雪者的受力求出在斜面滑道上所受的合外力;根据牛顿第二定律求出在斜面滑道上的加速度,结合速度时间公式求出运动的时间,根据速度位移公式求出斜面赛道的长度;解:(1)水平面匀减速v2=2a2s得a2=2.5m/s2由牛顿第二定律:μmg=ma2得:μ=0.25(2) 滑雪者在斜面赛道上受到的合外力F=mg sin37°-μmg cos37°=300N(3) 根据牛顿第二定律得在斜面滑道上的加速度由得:由v2=2as得3.素有“陆地冲浪”之称的滑板运动已深受广大青少年喜爱。
高考物理牛顿运动定律的应用题20套(带答案)

高考物理牛顿运动定律的应用题20套(带答案)一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,水平面与倾角θ=37°的斜面在B 处平滑相连,水平面上A 、B 两点间距离s 0=8 m .质量m =1 kg 的物体(可视为质点)在F =6.5 N 的水平拉力作用下由A 点从静止开始运动,到达B 点时立即撤去F ,物体将沿粗糙斜面继续上滑(物体经过B 处时速率保持不变).已知物体与水平面及斜面间的动摩擦因数μ均为0.25.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物体在水平面上运动的加速度大小a 1; (2)物体运动到B 处的速度大小v B ; (3)物体在斜面上运动的时间t .【答案】(1)4m/s 2 (2)8m/s (3)2.4s 【解析】 【分析】(1)在水平面上,根据牛顿第二定律求出加速度;(2)根据速度位移公式求出B 点的速度;(3)物体在斜面上先向上减速,再反向加速度,求出这两段的时间,即为物体在斜面上的总时间. 【详解】(1)在水平面上,根据牛顿第二定律得:1F mg ma μ-=代及数据解得:214/a m s =(2)根据运动学公式:2102B v a s =代入数据解得:8/B v m s =(3)物体在斜面上向上做匀减速直线运动过程中,根据牛顿第二定律得:23737mgsin mgcos ma μ︒+︒=①物体沿斜面向上运动的时间:22Bv t a =② 物体沿斜面向上运动的最大位移为:222212s a t = ③因3737mgsin mgcos μ︒>︒,物体运动到斜面最高点后将沿斜面向下做初速度为0的匀加速直线运动根据牛顿第二定律得:33737mgsin mgcos ma μ︒-︒=④ 物体沿斜面下滑的时间为:223312s a t =⑤ 物体在斜面上运动的时间:23t t t =+⑥联立方程①-⑥代入数据解得:()2312 2.4t t t s s =+=+≈ 【点睛】本题主要考查了牛顿第二定律及运动学基本公式的直接应用,注意第二问求的是在斜面上的总时间,不是上滑时间.3.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
高三牛顿运动定律试题及答案

高三牛顿运动定律试题精选及答案1 •如下图,在质量为心的无下底的木箱顶部用一轻弹簧悬挂质量为)的人B 两物体,箱子放 在水平地而上,平稳后剪断A. B 间的连线.A 将做简谐运动,当A 运动到最高点时,木箱对地而的压力 为(A)A. 川鹉B. (〃“一 m) gC. (m+ 沁 gD. (/no + 2m) g2•如下图,静止在光滑水平而上的物体A, —端靠着处于自然状态的弹簧•现对物体作用一水平恒力, 在禅簧被压缩到最短这一过程中,物体的速度和加速度变化的情形是(D )A. 速度增大,加速度增大B. 速度增大,加速度减小C ・速度先增大后减小,加速度先增大后减小 D.速度先增大后减小,加速度先减小后增大3•为了测得物块与斜面间的动摩擦因数,能够让一个质量为加的物块由静止开始沿斜面下滑,拍照此 下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下 图.闪光频率为每秒10次,依照照片测得物块相邻两位置间 AB=2.40cm, BC=7.30cm, CD= 12.20cm, DE=17.10cm.假设 〃二37。
,那么物块与斜而间的动摩擦因数为 _______ .(重 9. 8m/s 2, sin37°=0.6, cos37°=0. 8)答案:0. 125 (提示:由逐差法求得物块下滑的加速度为"二4.9加/€,由牛顿第二左律知</=?sin37° - “gcos37°,解得 P=0.125)4•如下图,一物体恰能在一个斜而体上沿斜而匀速下滑,设此过程中斜面受到水平地而的摩擦力为九6•如下图,质虽为加的物体放在倾角为"的光滑斜面上,随斜而体一起沿水平方向运动,要使物体相 关于斜而保持静止,斜而体的运动情形以及物体对斜而压力F 的大小是(C )A. 斜而体以某一加速度向右加速运动,F 小于mgB. 斜而体以某一加速度向右加速运动,F 不小于〃农假设沿斜而方向用力向下推此物体,使物体加速下滑,设此过程中斜而受到地而的摩擦力为更。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“牛顿运动定律”练习题1.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A )A .m 0gB .(m 0 - m )gC .(m 0 + m )gD .(m 0 + 2m )g2.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是(D )A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大3.为了测得物块与斜面间的动摩擦因数,可以让一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物块恰好开始下滑)照片如图所示.已知闪光频率为每秒10次,根据照片测得物块相邻两位置间的距离分别为AB =2.40cm ,BC =7.30cm ,CD =12.20cm ,DE =17.10cm .若此斜面的倾角θ=370,则物块与斜面间的动摩擦因数为 .(重力加速度g 取9.8m /s 2,sin 370=0.6,cos 370=0.8)答案:0.125 (提示:由逐差法求得物块下滑的加速度为a =4.9m /s 2,由牛顿第二定律知a =g sin 370–μg cos 370,解得μ=0.125)4.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,设此过程中斜面受到水平地面的摩擦力为f 1.若沿斜面方向用力向下推此物体,使物体加速下滑,设此过程中斜面受到地面的摩擦力为f 2。
则(D )A .f 1不为零且方向向右,f 2不为零且方向向右B .f 1为零,f 2不为零且方向向左C .f 1为零,f 2不为零且方向向右D .f 1为零,f 2为零5.如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是(A )6.如图所示,质量为m 的物体放在倾角为α的光滑斜面上,随斜面体一起沿水平方向运动,要使物体相对于斜面保持静止,斜面体的运动情况以及物体对斜面压力F 的大小是m B A m左 右 A B a A B b x O F x O F x O F x O FA B C D(C )A .斜面体以某一加速度向右加速运动,F 小于mgB .斜面体以某一加速度向右加速运动,F 不小于mgC .斜面体以某一加速度向左加速运动,F 大于mgD .斜面体以某一加速度向左加速运动,F 不大于mg 7.如图,质量都是m 的物体A 、B 用轻质弹簧相连,静置于水平地面上,此时弹簧压缩了Δl .如果再给A 一个竖直向下的力,使弹簧再压缩Δl ,形变始终在弹性限度内,稳定后,突然撤去竖直向下的力,在A 物体向上运动的过程中,下列说法中:①B 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;②B 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大;③A 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;④A 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大.其中正确的是(A )A .只有①③正确B .只有①④正确C .只有②③正确D .只有②④正确8.有一种大型游戏器械,它是一个圆筒型大型容器,筒壁竖直,游客进入容器后靠筒壁站立,当筒壁开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为(C )A .游客处于超重状态B .游客处于失重状态C .游客受到的摩擦力等于重力D .筒壁对游客的支持力等于重力 9.质量为m =20kg 的物体,在恒定的水平外力F 的作用下,沿水平面做直线运动.0~2.0s 内F 与运动方向相反,2.0~4.0s 内F 与运动方向相同,物体的速度—时间图象如图所示,已知g 取10m /s 2.求物体与水平面间的动摩擦因数.解:由图象可知:0~2.0s 内物体做匀减速直线运动,加速度大小为a 1=5m /s 2,由牛顿第二定律得:mf F a +=1 (4分)2~4s 内物体做匀加速直线运动,加速度大小为a 2=1m /s 2,由牛顿第二定律得:mf F a -=2 又f =μmg由以上各式解得:μ=0.210.我国铁路上火车经过多次提速,火车的运行速度较大,而车轮与铁轨间的动摩擦因数又不大,所以飞驰的火车在发生险情紧急刹车后,到完全停下的制动距离是很大的.据实际测定,在某一直线路段,某列火车车速为86.4km /h 时,制动距离为960m .(设火车刹车时受到的阻力不变)(1)求紧急刹车时火车的加速度大小.(2)在同一路段,该列火车的行车速度提高到108km /h时,制动距离变为多少?解:(1)设列车在紧急刹车过程中做匀减速直线运动,初速度为v 1=86.4km /h =24m /s ,末速度v =0,位移s =960m ,紧急刹车时加速度为a .由速度——位移公式得 -1212as v =代入数据得 a =-0.3m /s 2A B v /m •s -1 2 4 -2 10O t /s m α所以火车加速度大小为0.3m /s 2.(2)火车初速度 v 2=108km /h =30m /s-2222as v =代入数据得制动距离 s =1.5×103m11.为了测定小木板和斜面间的动摩擦因数,某同学设计了如下的实验.在小木板上固定一个弹簧测力计(质量不计),弹簧测力计下端吊一个光滑小球,将木板连同小球一起放在斜面上,如图所示.用手固定住木板时,弹簧测力计的示数为F 1,放手后木板沿斜面下滑,稳定时弹簧测力计的示数为F 2,测得斜面倾角为θ,由测得的数据可求出木板与斜面间的动摩擦因数是多少?解:用手固定住木板时,对小球有 F 1=mgsin θ木板沿斜面下滑时,对小球有 mgsin θ-F 2=ma木板与小球一起下滑有共同的加速度,对整体有(M +m )gsin θ-F f =(M +m )aF f =μ(M +m )gcos θ 联立①②③④式得:θμtan 12F F = 12.如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两端皆有一与传送带等高的光滑水平面,一物体以恒定的速度v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是(CD )A .物体从右端滑到左端所须的时间一定大于物体从左端滑到右端的时间B .若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C .若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D .若v 2<v 1,物体从右端滑上传送带又回到右端.在此过程中物体先做减速运动,再做加速运动13.四个质量、形状相同的斜面体放在粗糙的水平面上,另有四个质量相同的小物体放在斜面顶端,由于小物体与斜面间的摩擦力不同,第一个物体匀加速下滑,第二个物体匀速下滑,第三个物体匀减速下滑,第四个物体静止在斜面上,如图所示,四个斜面均保持不动,下滑过程中斜面对地面压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是(C )A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 414.如图所示,一弹簧的下端固定在地面上,一质量为0.05kg 的木块B 固定在弹簧的上端,一质量为0.05kg 的木块A 置于木块B 上,A 、B两木块静止时,弹簧的压缩量为2cm ;再在木块A 上施一向下的力F ,当木块A 下移4cm 时,木块A 和B 静止,弹簧仍在弹性限度内,g 取10m/s 2.撤去力F 的瞬间,关于B 对A 的作用力的大小,下列说法正确的是(C )θ 右 v 1 v 2 左 v 2 v v v A BA .2.5NB .0.5NC .1.5ND .1N15.举重运动是力量和技巧充分结合的体育项目.就“抓举”而言,其技术动作可分为预备、提杠铃、发力、下蹲支撑、起立、放下杠铃等六个步骤,如图所示表示了其中的几个状态.在“发力”阶段,运动员对杠铃施加恒力作用,使杠铃竖直向上加速运动;然后运动员停止发力,杠铃继续向上运动,当运动员处于“下蹲支撑”处时,杠铃的速度恰好为零.从运动员开始“发力”到“下蹲支撑”处的整个过程历时0.8s ,杠铃升高0.6m ,该杠铃的质量为150kg .求运动员发力时,对杠铃的作用力大小.(g 取10m /s 2)解:设杠铃在题述过程中的最大速度为v m ,则有t v h m 21=,解得v m =1.5m /s 杠铃匀减速运动的时间为: s g v t m 15.0==' 杠铃匀加速运动的加速度为:2/3.2s m t t v a m ='-= 根据牛顿第二定律有:F - mg = ma解得F =1845N16.如图所示,质量为m 的小球用水平弹簧系住,并用倾角为300的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(C )A .0B .大小为g ,方向竖直向下C .大小为g 332,方向垂直木板向下 D .大小为g 33,方向水平向右 17.如图所示,质量相同的木块M 、N 用轻弹簧连结并置于光滑水平面上,开始弹簧处于自然伸长状态,木块M 、N 静止.现用水平恒力F 推木块M ,用a M 、a N 分别表示木块M 、N 瞬时加速度的大小,用v M 、v N 分别表示木块M 、N 瞬时速度,则弹簧第一次被压缩到最短的过程中(A )A .M 、N 加速度相同时,速度v M >v NB .M 、N 加速度相同时,速度v M =v NC .M 、N 速度相同时,加速度a M >a ND .M 、N 速度相同时,加速度a M =a N18.将金属块用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板安有压力传感器,箱可以沿竖直轨道运动.当箱以a =2.0m /s 2的加速度做竖直向上的匀减速运动时,上顶板的传感器显示的压力为6.0N ,下顶板的传感器显示的压力为10.0N ,g 取10m /s 2.(1)若上顶板的传感器的示数是下顶板的传感器示数的一半,试判断箱的运动情况;(2)要使上顶板传感器的示数为0,箱沿竖直方向的运动可能是怎样的?1发力 2下蹲支撑 3起立AB 300 F N M解:设金属块的质量为m ,根据牛顿第二定律有:mg +F 上-F 下=ma解得m =0.5kg(1)由于上挡板仍有压力,说明弹簧的长度没有变化,因此弹簧的弹力仍为10.0N ,,可见上顶板的压力为5N ,设此时加速度为a 1,根据牛顿第二定律有121ma F F mg =-+下下 解得 a 1=0,即此时箱静止或做匀速直线运动.(2)要使上挡板没有压力,弹簧的长度只能等于或小于目前的长度,即下顶板的压力只能等于或大于10.0N ,设此时金属块的加速度为a 2,应满足:ma 2≥10.0N-mg解得a 2≥10m /s 2,即只要箱的加速度向上、等于或大于10m /s 2(可以向上做加速运动,也可以向下做减速运动),上顶板传感器的示数均为零.19.一小圆盘静止在桌布上,位于一方桌的水平桌面的中央.桌布的一边与桌的AB 边重合,如图所示.已知盘与桌布间的动摩擦因数为 μ1,盘与桌面间的动摩擦因数为 μ2.现突然以恒定加速度a 将桌布抽离桌面,加速度方向是水平的且垂直于AB 边.若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)解:对盘在桌布上有 μ1mg = ma 1 ①在桌面上有μ2mg = ma 2 ②υ12 =2a 1s 1 ③ υ12 =2a 2s 2 ④ 盘没有从桌面上掉下的条件是s 2≤─ 12l - s 1 ⑤ 对桌布 s = ─ 12 at 2 ⑥ 对盘 s 1 = ─ 12a 1t 2 ⑦ 而 s = ─ 12l + s 1 ⑧ 由以上各式解得a ≥( μ1 + 2 μ2) μ1g / μ2 ⑨ 20.如图,一个盛水的容器底部有一小孔.静止时用手指堵住小孔不让它漏水,假设容 在下述几种运动过程中始终保持平动,且忽略空气阻力,则 (D )A .容器自由下落时,小孔向下漏水B .将容器竖直向上抛出,容器向上运动时,小孔向下漏水;容器向下运动时,小孔不向下漏水C .将容器水平抛出,容器在运动中小孔向下漏水D .将容器斜向上抛出,容器在运动中小孔不向下漏水21.如图所示,质量为M 的木板上放着一个质量为m 的木块,木块与木板间的动摩擦因数为 μ1,木板与水平地面间的动摩擦因数为 μ2,,加在木板上的力 F 为多大时,才能将木板从木块下抽出?(F >( μ1+ μ2)(M +m )g 22.如图所示,A 、B 的质量分别为m A =0.2kg ,m B =0.4kg ,盘C 的 质量m C =0.6kg ,现悬挂于天花板O 处,处于静止状态.当用火柴烧断O 处的细线瞬间,木块A 的加速度a A = 0 ,木块B 对盘C 的压力N BC = 1.2 N .(取g =10m/s 2)23.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连的物块A 、B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板。