3-1系统时间响应的性能指标
自动控制原理(3-1)

动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;
3-1系统的时域性能指标

0 .0 5 y ( )
y ( )
或 0 .0 2 y ( )
y ( ) 2
tr td ts
t
稳态误差:系统稳定后实际输出与期望输出之间的差值。
16:13
10
小结
典型输入作用及其之间的关系 瞬态过程和稳态过程 系统响应的性能指标
16:13
11
16:13 7
⒊ 峰值时间 t p : y max 输出响应超过稳态值达到第 一个峰值ymax所需要的时间。y () ⒋ 最大超调量(简称超调量) % : 瞬态过程中输出响应的最大值 超过稳态值的百分数。
%
y max y ( ) y ( ) 100 %
y
0.05 y ( ) 或 0.02 y ( )
0
t
16:13
6
三、动态和稳态过程的性能指标
如果系统在阶跃输入下的动态性能满足要求,则在其他输入下 的动态性能也能令人满意,阶跃输入曲线如图所示: (一)动态性能 ⒈ 延迟时间 t d : 输出响应第一次达到稳态值 的50%所需的时间。
y ()
y
⒉ 上升时间:r t0t Nhomakorabeatd
tr
输出响应第一次达到稳态值y(∞)所需的时间。或指由稳态值 的10%上升到稳态值的90%所需的时间。
自动控制原理
自动化教研室
第三章 线性系统的时域分析
本章主要内容
1. 2. 3. 4. 5.
系统的时域性能指标 一阶系统的时域分析 二阶系统的时域分析 线性系统的稳定性分析 线性系统的稳态误差计算
16:13
2
3.1 线性系统的时域性能指标
time domain performance index
自动控制原理一阶系统时域分析

R(s)
1 s3
C
(s)
(
s)
R(s)
(1 Ts
) 1
1 s3
A s3
B s2
C s
D s 1
1 s3
T s2
T2 s
T2 s 1
T
T
c(t)
1
t
2
Tt
T
2 (1
1t
eT
)
2
(t 0)
e(t
)r(t)c(t)TtT2
(1
1
eT
t
)
上式表明,跟踪误差随时间推移而增大,直至无限大。因此,一阶系统不 能实现对加速度输入函数的跟踪。
第26页/共27页
感谢您的观看!
第27页/共27页
R(s) + E(s) 1 C(s)
-
Ts
R(s)
1
C(s)
Ts 1
(a)
微分方程: 闭环传递函数:
T dc(t) c(t) r(t) dt
(s) C(s) 1 R(s) Ts 1
(b) 标准形式
第18页/共27页
二、一阶系统单位阶跃响应
r(t) 1(t), R(s) 1 s
1
C(s)
1 Kh 100 / s 1 s / 100Kh
• 要求ts=0.1s,即3T=0.1s, 即
,得 1 0.1 100Kh 3
K h 0.3
• 解题关键:化闭环传递函数为标准形式。
第22页/共27页
二、一阶系统单位脉冲响应
r(t) (t) R(s) 1
C(s) (s)R(s) 1 1/T Ts 1 s 1/T
第15页/共27页
例题:加入给定值阶跃量为2.4,响应 曲线如图所示,求超调量。
软件系统响应时间的常见指标

软件系统响应时间的常见指标在评估软件系统的性能时,其中一个重要指标是响应时间。
软件系统的响应时间是指从用户请求发送到系统返回响应的时间间隔。
准确地衡量和监控响应时间对于确保用户满意度和系统效率至关重要。
以下是评估软件系统响应时间的常见指标:1. 平均响应时间(Average Response Time)平均响应时间是指系统处理用户请求并返回响应的平均时间。
它是所有请求的响应时间之和除以总请求数。
这个指标可以有效地衡量系统整体的性能表现。
2. 90th/95th/99th 响应时间(90th/95th/99th Percentile Response Time)这些指标是根据请求响应时间的百分位数计算的。
例如,90th响应时间表示90%的请求响应时间都小于等于该时间。
这些百分位数指标提供了系统响应时间分布的更详细信息,可以帮助识别系统中的性能瓶颈和潜在问题。
3. 峰值响应时间(Peak Response Time)峰值响应时间是在系统使用高峰期间测量的最长响应时间。
这个指标可以帮助判断系统在承受高负载时的表现。
4. 用户感知等待时间(Perceived Wait Time)用户感知等待时间是用户在发起请求后所感觉到的等待时间。
它通常比实际的系统响应时间长,因为它还考虑了用户在等待响应期间的主观感受。
减少用户感知等待时间可以提高系统的用户体验。
5. 平均事务响应时间(Average Transaction Response Time)平均事务响应时间是指完成一次完整事务所需的平均时间。
一个事务是指用户在系统中执行的一个操作序列。
通过衡量事务响应时间,可以评估系统在处理复杂操作时的性能。
请注意,这些指标只是衡量软件系统响应时间的常见方法。
根据具体的应用场景和需求,还可以使用其他指标和方法来评估和优化系统的性能。
自动控制原理第三章(胡寿松)

11
成都信息工程学院控制工程系
第一章 自动控制的一般概念
注意:
1.不同性质的控制系统,对稳定性、准 确性和快速性要求各有侧重。 2.系统的稳定性、准确性、快速性相互 制约,应根据实际需求合理选择。
12
成都信息工程学院控制工程系
第三章 线性系统的时域分析法
延迟时间td:响应曲线第一次到达终值一半所需的 时间。
调节时间ts:响应曲线开始进入并保持在误差带内所需的 最小时间,误差带通常取 5 % h ( )或 2 % h ( )
h(t)
1.0
误 差 带 5%或 2%
0.5
td
h()
0
tr tp ts
16
成都信息工程学院控制工程系
第三章 线性系统的时域分析法
超调量σ%:响应曲线超出稳态值的最大偏差与稳态值 之比。即:
快速性:输出量产生偏差时,系统消除这种偏差的快 慢程度。快速性表征系统的动态性能。一般用过渡过 程的时间来表示,如:上升时间、峰值时间、调节 时间等。
10
成都信息工程学院控制工程系
第一章 自动控制的一般概念
准确性:是衡量控制系统控制精度的重要标志。一般 用被控量的稳态值与期望值之间的误差(称为稳态误 差)表示。
成都信息工程学院控制工程系
3
第一章 自动控制的一般概念
⑴阶跃函数
Step Signal 5 4 3 2 1 0 -1 -1 0 1 2 3 4 t 5 r(t)
函数表达式:
当A=1时称为单位阶跃信号。
阶跃信号:含宽频带谐波分量,产生容易,是最常 用系统性能测试信号。
4
成都信息工程学院控制工程系
第一章 自动控制的一般概念
(自动控制原理)3一阶系统的时间响应及动态性能

06
结论
一阶系统的时间响应及动态性能总结
一阶系统的时间响应特性
一阶系统在输入信号的作用下,其输出量随时间变化的过程。通过分析一阶系统的传递函数,可以得出其时间响应的 特性,包括上升时间、峰值时间、调节时间和超调量等。
一阶系统的动态性能分析
动态性能是一阶系统对输入信号的响应能力,包括系统的稳定性、快速性和准确性等。通过分析一阶系统的开环和闭 环频率特性,可以得出其动态性能的特性,如相位裕度和幅值裕度等。
3
在实际应用中,可以通过实验或理论分析来获取 一阶系统的数学模型。
一阶系统的分类
01
根据时间常数T的大小,一阶系统可以分为快系统和 慢系统。
02
时间常数T较小的一阶系统称为快系统,其动态响应 速度较快。
03
时间常数T较大的一阶系统称为慢系统,其动态响应 速度较慢。
03
一阶系统的时间响应分析
时间响应的定义与计算
实例二:一阶系统的单位脉冲响应模拟
总结词:时间常数
详细描述:与单位阶跃响应类似,一阶系统的单位脉冲响应的时间常数也是系统的重要参数,它决定 了系统衰减到零所需的时间。时间常数越小,系统衰减到零所需的时间越短。
实例三:一阶系统的动态性能优化实例
总结词
PID控制器
详细描述
为了优化一阶系统的动态性能,可以采用PID控制器。PID控制器能够根据系统 的输入和输出信号调整系统的参数,从而改善系统的性能指标,如超调量、调 节时间和稳态误差等。
详细描述:由于一阶系统的单位阶跃响应具有快速跟踪 的特点,因此系统在稳态时不会产生静差,输出能够精 确地跟踪输入信号。
详细描述:一阶系统的单位阶跃响应的时间常数是系统 的重要参数,它决定了系统达到稳态值所需的时间。时 间常数越小,系统达到稳态值所需的时间越短。
胡寿松《自动控制原理》(第7版)笔记和课后习题(含考研真题)详解(第3~4章)【圣才出品】

第3章线性系统的时域分析法3.1复习笔记本章考点:二阶欠阻尼系统动态性能指标,系统稳定性分析(劳斯判据、赫尔维茨判据),稳态误差计算。
一、系统时间响应的性能指标1.典型输入信号控制系统中常用的一些基本输入信号如表3-1-1所示。
表3-1-1控制系统典型输入信号2.动态性能与稳态性能(1)动态性能指标t r——上升时间,h(t)从终值10%上升到终值90%所用的时间,有时也取t=0第一次上升到终值的时间(对有振荡的系统);t p——峰值时间,响应超过中值到达第一个峰值的时间;t s——调节时间,进入误差带且不超出误差带的最短时间;σ%——超调量,()()%100%()p c t c c σ-∞=⨯∞(2)稳态性能稳态误差e ss 是系统控制精度或抗扰动能力的一种度量,是指t→∞时,输出量与期望输出的偏差。
二、一阶系统的时域分析1.一阶系统的数学模型一阶系统的传递函数为:()1()1C s R s Ts +=2.一阶系统的时间响应一阶系统对典型输入信号的时间响应如表3-1-2所示。
表3-1-2一阶系统对典型输入信号的时间响应由表可知,线性定常系统的一个重要特性:系统对输入信号导数的响应,就等于系统对该输入信号响应的导数;或者,系统对输入信号积分的响应,就等于系统对该输入信号响应的积分,而积分常数由零输出初始条件确定。
三、二阶系统的时域分析1.二阶系统的数学模型二阶系统的传递函数的标准形式为:222()()()2n n n C s s R s s s ωζωωΦ++==其中,ωn 称为自然频率;ζ称为阻尼比。
2.欠阻尼二阶系统(重点)(1)当0<ζ<1时,为欠阻尼二阶系统,此时有一对共轭复根:21,2j 1n n s ζωωζ=-±-(2)单位阶跃响应()()d 211e sin 01n t c t t t ζωωβζ-=-+≥-式中,21arctanζβζ-=,或者β=arccosζ,21dn ωωζ=-各性能指标如下:t r =(π-β)/ωd2ππ1p d n t ωωζ==-2π1%e100%ζζσ--=⨯3.5(0.05)s nt ζω=∆=4.4(0.02)s nt ζω=∆=3.临界阻尼二阶系统(1)当ζ=1时,为临界阻尼二阶系统,此时s 1=s 2=-ωn 。
自动控制原理第三章

A=1,称单位斜坡函数,记为 t· 1(t)
f(t)
1 L[t 1( t )] 2 s
0 t
考查系统对匀速信号的跟踪能力
3. 抛物线函数(等加速度函数)
1 2 At t0 r (t ) 2 t0 0
f(t)
A=1,称单位抛物线函数,记为
1 2 t 1( t ) 2
线性定常系统的重要性质
1.当系统输入信号为原来输入信号的导数时,这时系 统的输出则为原来输出的导数。 C ( s) GB ( s) R( s) dr( t ) C1 ( s ) GB ( s ) L[ ] G B ( s ) sR( s ) sC ( s ) dt dc( t ) c1 (t ) dt 2. 在零初始条件下,当系统输入信号为原来输入信号 时间的积分时,系统的输出则为原来输出对时间的积分, 积分常数由零初始条件决定。 R( s ) 1 C 2 ( s ) GB ( s ) L[ r ( t )dt] GB ( s ) C ( s) s s y2 ( t ) y( t )dt
单位脉冲响应 [R(s)=1] h(t) 1 1/T C ( s) Ts 1 它恰是系统的闭环传函,这 0.368/T 时输出称为脉冲(冲激)响应 0.135/T 0.05/T 函数,以h(t)标志。 t 1 T 0 T 2T 3T h( t ) C脉冲 ( t ) e T 3.2.3
二阶系统有两个结构参数ξ (阻尼比)和n(无阻尼振荡频 率) 。二阶系统的性能分析和描述,都是用这两个参数表示的。
例如: RLC电路 R
L
r ( t)
C
c(t)
微分方程式为: d 2 c( t ) dc( t ) LC RC c( t ) r ( t ) 2 dt dt 2 n C ( s) 1 Φ( s ) 2 零初条件 2 2 2 R( s ) T s 2Ts 1 s 2n s n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c(t P ) c() 100% c ( )
振荡次数N :指c (t)穿越c (∞)水平线的次数的一半。 其中 σ ——平稳性; N——阻尼性。 ⑶ 稳态性能指标: 稳态误差ess :指响应的稳态值与期望值之差。系统控制精 度(准确性)或抗扰动能力的一种度量。
说明
1 、上升时间和峰值时间反映了系统的响应 速度;超调量反映了系统的阻尼程度;调节 时间同时反映系统响应速度和阻尼程度的综 合性指标。
典型输入信号
⒋ 抛物线函数(加速度函数)
0, t 0 x(t ) 1 2 Ct , t 0 2
x(t )
0
C=1时称为单位抛物线函数。
x(t )
t
⒌ 正弦函数
x(t ) ASint
0
t
典型输入信号 名 称 单位脉冲函数 时域表达式 δ (t) , t=0 复域表达式 1
整个调节过程分为两个阶段: • a.动态过程 反映系统的动态特性。输出量处于 激烈变化之中,其信息用动态性能描述。 • b.稳态过程 反映系统的稳态特性。输出量稳定 在新的平衡状态,并保持不变。提供有关稳态误 差的信息,由稳态性能描述。
三. 时域性能指标
⑴ 典型时间响应:零初始条件时,典型输入信号作用下 系统输出的过渡过程*。 *过渡过程:系统受到外作用时,控制过程不会立即发生, 而是有一定的延缓,这就使得被控量恢复到期望值或跟踪 输出量有一个时间过程。一般认为c(t) 进入±△(误差带) 后过渡过程结束。
单位阶跃函数 单位斜坡函数 单位加速度函数
正弦函数
1(t), t≥0 t, t2/2, t≥0 t≥0
1/s 1/s2 1/s3
Aω /(s2+ω 2)
A sinω t
分析系统特性究竟采用何种典型输入信 号,取决于实际系统最常见的工作状态。同 时往往选取最不利的信号作为系统的典型输 入信号。
二、系统响应过程
2 、除一、二阶系统外,精确确定这些指标 的解析式相当困难。
小结
• 理解系统的时间响应由动态过程和稳态过 程组成; • 掌握动态性能指标的定义。
当输入信号突然发生跳变时,这时输出量还处在原 有的平衡状态,这样就出现了偏差,这个偏差控制输 出量达到新的平衡,这就是一个调节过程。
r(t)
1
c(t)
1 2 1
实际
理想的 调节过程
0
t
0
t
理想的调节过程是:出现偏差后,执行机构突然 动作,使输出量立即达到新的平衡状态,调节过程瞬 时完成,即:c(t)≡r(t),实际上这是不可能的,因 为什么呢?对,惯性。所以当输出量发生跳变时,任 何实际系统从原平衡状态到达新的平衡状态都要经历 一个过渡过程,过渡过程的曲线形状随系统的不同而 有所差异,有的是单调增长到稳定值(曲线 1 ),有 的是衰减到稳定值(曲线2)。
3
第三章 时域分析法
第一节 系统时间响应 的性能指标
第一节 系统时间响应的性能指标
项目
教学目的
内容
了解系统的5个典型输入信号,了解系统时间 响应的两个过程,掌握系统时域响应的动态性能 指标。
教 学 重 点 系统时域响应的动态性能指标。
教学难点 动态性能指标的理解 及其处理
一 典型输入信号
为了能对不同的控制系统的性能用统一的标 准来恒量,通常需要选择几种典型的外作用。
上升时间 tr :指响应从0到第一次达到终值(稳态值)时所需 要的时间;
峰值时间 tp :指响应从0到达第一次峰值(最大值)时所 需要的时间;
调节时间 ts :即过渡过程时间。指响应到达并保持在终值 ±5%(△=0.05)或±2%(△=0.02)内所需要的最短时间。
超调量σ :指阶跃响应的最大值超出其稳态值的部分。
求c(t)与ai、bj、r(t)的关系(解析、几何)。
3
优点:时域分析是直接在时间域中 对系统进行分析的方法,从时域响应曲线 上能直接得到系统时间响应的全部信息, 具有直观和准确的优点。 缺点:难以判断系统结构和参数对 动态性能的影响,很难用于系统的设计。 对于高阶系统,系统分析的工作量将急剧 增加,不易确定其性能指标。必须借助计 算机实现。
•选取原则 (1)在现场及实验中容易产生 (2)系统在工程中经常遇到,并且是最不 利的外作用。 (3)数学表达式简单,便于理论分析。
典型输入信号
⒈ 脉冲函数 单位脉冲函数:
0 t 0 (t ) t 0
( (t )dt 1)
(t )
0
1
(t )
什么是时域分析? 指控制系统在典型输入信号作用下,根据 输出量的时域表达式(解析、几何),分析系 统的稳定性、动态性能和稳态性能。
已知系统微分方程形式的数学模型
dn d n1 d a0 n c(t ) a1 n1 c(t ) an1 c(t ) a n c(t ) dt dt dt dm d m1 d b0 m r (t ) b1 m1 r (t ) bm1 r (t ) bm r (t ) dt dt dt
第三章 时域分析法
第三章
线性系统的时域分析
本章重点、难点与考点
一、重点: 1、二阶系统时间响应及其动态性能指标计算 2、线性系统稳定的充要条件及稳定判据 3、稳态误差分析与计算
二、难点:高阶系统准确的时间响应表达式的求取 三、考点: 1、一阶系统单位阶跃响应、典型输出值 2、二阶系统动态性能分析与性能指标的计算 3、Routh判据判定系统稳定性 4、分析、计算稳态误差
t
0
t
理想单位脉冲函数
实际单位脉冲函数
典型输入信号
⒉ 阶跃函数
0, t 0 x(t ) A, t 0
x(t )
A
0
t
A:阶跃幅度,A=1称为单位阶跃函数,记为1(t)。 ⒊ 斜坡函数(速度函数)
0, t 0 x(t ) Bt, t 0
x(t )t0来自B=1时称为单位斜坡函数。
例如:单位阶跃输入信号作用下,反馈系统的过渡过程为:
r(t) 1 0 a 单位阶跃信号 t 1 0.5 0 td tr tp ts t c(t) 2Δ
(误差带2△一般取0.02或0.05)
b 、单位阶跃信号作用下 反馈系统的过渡过程曲线
⑵ 动态性能指标:
延迟时间 td :指响应从0到第一次达到终值(稳态值)的 一半时所需 要的时间;