第三章 时间响应分析.

合集下载

第三章系统的时间响应分析

第三章系统的时间响应分析

机械工程控制基础
第三章控制系统时间响应分析
输出的时间响应为:
K c(t ) (1 e K 1
T 1 假设增益 K 1
K 10
K 1 ( )t T
)
2t
c(t ) 0.5(1 e ) c(t ) 0.909(1 e
11t
)
机械工程控制基础
第三章控制系统时间响应分析
动态方框图: (单位负反馈系统)
Xi(s)
2 n s 2 2 n s
Xo(s)
机械工程控制基础
第三章控制系统时间响应分析
机械工程控制基础
第三章控制系统时间响应分析
1 1 at e sin t 2 2 ( s a)
机械工程控制基础
第三章控制系统时间响应分析
机械工程控制基础
机械工程控制基础
第三章控制系统时间响应分析
机械工程控制基础
第三章控制系统时间响应分析
机械工程控制基础
第三章控制系统时间响应分析
机械工程控制基础
第三章控制系统时间响应分析
例特征根值:
si j; j
系统的输出:
y1 (t ) e cost
y2 (t ) e sin t
欠阻尼二阶系统具有一对实部为负的共轭 复根,时间响应呈衰减振荡特性,故又称 为振荡环节。 系统闭环传递函数的一般形式为
C ( s) 2 2 R( s ) s 2 n s n
2 n
特征根为一对共轭复根
衰减系数 d 阻尼振荡频率
s1,2 n j n 1 2 j d



arccos
系统的响应由稳态分量和动态分量两部分 组成,稳态分量的值等于1,动态分量是 一个随时间t的增长而衰减的振荡过程。

机电传动控制第三章

机电传动控制第三章

当t=0时,初始斜率为
时间常数T是重要的特征参数,它反映了系统响应的快慢。T 越小,C(t)响应越快,达到稳态用的时间越短,即系统的惯 性越小。
通常工程中当响应曲线达到并保持在稳态值的95%~98%时, 认为系统响应过程基本结束。从而惯性环节的过渡过程时间 为3T~4T。
第三章 线性系统的时域分析 3、一阶系统的脉冲响应
第三章 线性系统的时域分析
规律
x (t)
1
1
eT
0
T
1
x (t) 1 e T 01
1
x0t1(t) t T Te T
x x (t) d (t)
0
dt 01
x x d
(t)
(t)
01
dt 0t
即:系统对输入信号导数的响应等于系统对该输入信号 响应的导数。
此规律是线性定常系统的重要特征,不适用于线性时变 系统及非线性系统。
当输入信号为理想单位脉冲函数时,Xi(s)=1,输入量的拉氏变换 于系统的传递函数相同,即
一阶系统单位脉冲响应的特点
xo(0)=1/T,随时间的推移,xo(t)指数衰减
当t=0时,初始斜率为
对于实际系统,通常应用具有较小脉冲宽度(脉冲宽度小于 0.1T)和有限幅值的脉冲代替理想脉冲信号。
同样满足上述规律,即T越大,响应越慢,无论哪种输入信号 都如此。
±2%或±5%)内所需的时间。
td、tr、tp、ts用来评定系统的快速性(灵敏性)。
Mp用来评定系统的相对平稳性。
第三章 线性系统的时域分析
结论 二阶系统的动态性能由ωn和ξ决定。
通常根据允许的最大超调量来确定ξ。一般选择在
0.4~0.8之间,然后再调整ωn以获得合适的瞬态响

控制工程基础3章

控制工程基础3章

零状态响应 随时间的推移(t → ∞)而衰减、趋于零。 (所有Re(si)<0时的自由响应。) t → ∞,仍然存在。 (稳定系统的强迫响应。)
↘强迫响应
Notes:
(1) 几个概念 系统的时间响应--输入一定时系统输出随时间的变化规律。 时域分析方法--直接求解微分方程和状态方程,求出时域响应来评价系 统的方法。 零输入响应--在没有输入(x(t)=0)时,仅由系统的初始状态引起的响应。 零状态响应--在初态为零时,仅由外部输入(激励)引起的响应。 暂态响应--是指随时间的增长而趋于零的那部分响应。 稳态响应--是指暂态消失后,余下的那部分响应。 (2) n 与 si ,既与系统的初态无关,更与系统的输入无关; 它们取决于系统的结构与参数这些固有特性。 (3) 传递函数定义指明系统初态为零,故初态决定的零输入响应为零;从而 对Y(s) = G(s)X(s)进行拉式逆变换 y(t)=L-1[Y(s)],就是系统的零状态响应。 (4) 对同一线性定常系统,若输入函数等于某函数的导函数x1(t) = x’(t) , 该输入函数的响应函数,也等于这一函数的响应函数的导函数 y1(t) = y’(t) 。
解I 另可求出 y * F k
1 1 n
2
cost 是满足微分方程(1)的特解。
令λ = ω / ωn,得到微分方程(1)的完全解为:
F 1 y yT y A1 sin nt A2 cos nt cos t (3) 2 k 1
第三章 时间响应分析
本章要点: 1、时间响应及其组成,以及一些基本概念; 2、一、二阶系统的典型信号激励的响应及其计算; 3、评价二阶系统的性能指标;
4、系统的零点对系统的影响。

机械工程控制基础-时间响应分析

机械工程控制基础-时间响应分析

工程控制基础
第三章 时间响应分析
二、二阶系统对典型输入信号的响应
1、二阶系统的单位脉冲响应
工程控制基础
第三章 时间响应分析
(t≥0)
d n 1 (2 有阻尼固有频率)
工程控制基础 0<ζ<1
第三章 时间响应分析
不同阻尼比时的单位脉冲响应情况
工程控制基础
第三章 时间响应分析
(t≥0)
工程控制基础
(3)
第三章 时间响应分析
(c)特征根的实部≤0
工程控制基础
第三章 时间响应分析
2)
Im[si]绝对值越大,则自由响应项振荡频率越高, 它影响着【系统响应的准确性】。
工程控制基础
第三章 时间响应分析
3.2 典型输入信号
在控制工程中,常用的输入信号有两大类:
•其一是系统正常工作时的输入信号;
•其二是外加的测试信号。
1)一阶系统的单位脉冲响应
➢ω(t)=
ω(tc()t)
1 T
初初始始斜斜率率==T1-T12
(t )
1 T
t
e T (t≥0)
0.368 1
T
0.135
1 T
1 0.018 T
0 T 2T 3T 4T
t
图3-2 一阶系统的 单位脉冲响应曲线
工程控制基础
第三章 时间响应分析
➢一阶系统的调整时间为4T
an
y(n)
(t)
a y(n1) n1
(t)
...
a1 y(t)
a0
y(t)
x(t)
工程控制基础
第三章 时间响应分析
输入引起的
n
n
y(t) A1iesit A2iesit B(t)

第3章 系统的时间响应分析

第3章 系统的时间响应分析

第3章 系统的时间响应分析在建立系统的数学模型(微分方程或传递函数)之后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,时间响应分析是重要的方法之一。

第3.1节 时间响应及其组成一、时间响应的概念所谓时间响应指系统在外加激励作用下,其输出量随时间变化的函数关系。

或者说 在输入作用下,系统的输出(响应)在时域的表现形式;在数学上,就是系统的动力学方程在一定初始条件下的解。

自变量为时间t ,因变量为输出()[()]o x t y t二、时间响应的组成分析:第一、二项是由微分方程的初始条件(即系统的初始状态)引起的自由振动,即自由响应。

ω。

应该说第三项的自第三项是由作用力引起的自由振动即自由响应,其振动频率均为nω与作用力频率ω无关,由响应并不完全自由。

因为它的幅值受到F的影响,当然,它的频率n自由即在此。

第四项是由作用力引起的强迫振动即强迫响应,其振动频率即为作用力频率ω。

因此系统的时间响应可从两方面分类:按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即在“无输入时的系统初态”为零而仅由输入引起的响应)Array所以我们的研究对象是:零状态响应。

另外还有两个需了解的概念:瞬态响应和稳态响应。

瞬态响应:系统在外加激励作用后,从初始状态到最终状态的响应过程称为瞬态响应。

反映了系统的快、稳特性。

稳态响应:时间趋于无穷大时,系统的输出状态为稳态响应。

反映系统的准确性。

三、系统方程的特征根影响系统自由响应的收敛性和振荡第3.2节 典型的输入信号由于系统的输入具有多样性,所以在分析和设计系统时,需要规定一些典型的输入信号,然后比较各系统对典型信号的时间响应。

不同系统或参数不同的同一系统对同一典型信号的时间响应不同,反映出各种系统动态特性的差异,从而可以定出相应的性能指标,对系统的性能予以评定。

尽管在实际中,输入信号很少是典型信号,但由于系统对典型信号的时间响应和对任意信号的时间响应之间存在一定的关系统,所以知道系统对典型信号的响应就可求出对任意输入的响应。

控制工程基础-第三章时间响应分析第一二节

控制工程基础-第三章时间响应分析第一二节

2020年11月4日星期三2时17分22秒
9
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析
上面分析的是一个特殊的简单的例子,主要目的是 为下面的一般情况的分析作引子。
对于一般情况(线性常微分方程的输入函数没有导 数项,只有一次项),设系统的动力学方程为:
an
y (n)
如图所示,质量为m与弹簧刚度为k的单自由度系统
在外力(即输入)Fcosωt的作用下,系统的动力学方程用
常微分方程表示为:
my(t) ky(t) F cost
由高等数学知识可知这一 非齐次常微分方程的完全解 由两部分组成:
y(t) y1(t) y2 (t)
式中:yl(t)是齐次微分方程的通解; y2(t)是其一个特解。
的关系和0型、I型、Ⅱ型系统的稳态偏差。 6、单位脉冲函数及单位脉冲响应函数的重要意义。
2020年11月4日星期三2时17分22秒
2
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析
时间响应及其组成的含义: 时间响应:是指系统的响应(输出)在时域里的表现形
式,或系统的动力学方程在一定初始条件下的解
将系数A、B代入整理得方程的最终解为:
自由响应 强迫响应
y(t) y(0n ) sinnt y(0) cosnt Fk 112 cosntFk 112cost
零输入响应
零状态响应
2020年11月4日星期三2时17分22秒
7
机械工程控制基础
昆明理工大学机电学院
➢ 3.1 时间响应及其组成
第三章 时间响应分析

3第三章 系统的时间响应分析

3第三章 系统的时间响应分析

( 2 1)nt
2 2 1
-1 0
1
2 t(sec) 2 t(sec) 2 t(sec)
2. 二阶系统的单位阶跃响应
xi (t) u(t)
L[u(t)] 1 s
X o (s)
G(s)
1 s
s2
n2 2n s
n2
1 s
xo(t)
n
2
1
s 2n
1
s (s n jd )(s n jd )
xi1 (t) xo2 (t) xi2 (t) xo1 (t)
实际中经常使用下述两类输入信号:系 统正常工作时的输入信号和外加测试信号;
输入信号即简单又不会因外加扰动而破坏 系统的正常运行,然而,这不一定能保证有 足够的能激励系统的信息,从而获得对系统 动态特性的全面了解;
测试信号在实验条件下用得很成功,但在 实际生产过程中对正常的生产运行干扰太大, 往往不能使用。
X
i
(s)
1 Ts
1
1 s
xo
t
L-1[
X
o
(s)]
L-1[
1 Ts
1
1 s
]
0T
1 et T
t(sec)
瞬态响应:et T
稳态响应: 1
3. 一阶系统单位斜坡响应
xo(t)
xi (t) r(t t
Xi (s) 1 s2
X
o
(s)
G(s)
X
i
(s)
G(s)
1 s2
xo
t
L-1[
X
o
(s)]
由Xo(s)=Xi(s)G(s) =Xi(s)W(s)
可得: xo(t)=xi(t)*w(t)

机械工程控制基础_第三章

机械工程控制基础_第三章
初始条件:设t 0时,y(t ) y(0),y(t ) y(0)
将初始条件带入(2)(3)可解得:
F 1 C1 ,C2 y(0) n k 1-(/n )2
y(0)
整理:
自由响应(通解)
y(t ) y(0) sin nt y(0) cos nt
积 分 关 系
3.3 一阶系统的时间响应分析
一阶系统:凡其动态过程可用一阶微分方程来表示的 控制系统称为一阶系统。 一般形式为:

Ty(t ) y(t ) u (t )

1 G(s) Ts 1
T 称为一阶系统的时间常数。
3.3.1 一阶系统的单位脉冲响应
输入为单位脉冲函数时,系统输出称为单位脉冲响应。
i 1 i 1
零输入响应
零状态响应
注意:
1)系统的阶次n和si取决于系统的固有特性,与系统的初态 无关;
y(t ) L1[G(s) X (s)] 所求得的输出是系统的零状态 2)由
响应,因在定义系统的传递函数时,已指明系统的初态为 零,故取决于系统的初态的零输入为0;
3)对于线性定常系统,若 (t )引起的输出为 (t ),则x ' (t )引起 x y 的输出为y ' (t )
Y ( s ) G ( s )U ( S ) 1 1 1 1 Ts Ts 1 T 1 T T 2 2 2 2 2 Ts 1 s s (Ts 1) s (Ts 1) s s (Ts 1) s s s 1 T
y(t ) L [Y (s)] t T Te
δ函数的重要性质

结论:系统在单位脉冲函数作用下,其响应函数等于 传递函数的拉氏逆变换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欠阻尼系统的单位脉冲响应曲线是减幅的正弦振荡曲线,且ξ愈小, 衰减愈慢,振荡频率愈大。故欠阻尼系统又称为二阶振荡系统,其幅值 n 衰减的快慢取决于 。
1 =0.1 0.8 0.3 0.6 0.5 0.4 0.7 0.2 0 0.9 -0.2 -0.4 -0.6 -0.8 0 5
10
15
3.4 二阶系统时间响应的性能指标
1 T
1 T
特点: 当T ↓,过渡过程持续时间变 短,表明系统惯性越小,系统的 快速性能越好。
0.368
0.2 0.1 0
0
2
4
6
8
10
4. 一阶系统的单位斜坡响应
输出信号拉氏变换为: X o ( s ) G ( s ) X i ( s )
时间响应为: x o (t ) L1 [ X o ( s )] L1 [ 单位斜坡响应曲线:
3.3.3 二阶系统的单位脉冲响应
Y( s2) k n X o (s) 2 2 1 s)s Ts s X 2( n n
(1)当0<ξ <1时: (2)当ξ=0时: (3)当ξ =1时: (4)当ξ >1时:
1 2 2 n 1 w(t ) L [ 2 ] n sin nt 2 s n
10 9 8 7 6 5 4 3 2 1 0 0 1 2 3
1 1 2 Ts 1 s
(t 0)
1 t ] t T Te T 2 s (Ts 1)
T=2s
T
xi (t ) t
xo (t ) t T Te
4 5 6 7 8
t
T 9 10
5. 一阶系统典型信号输入与输出的关系
(4)掌握二阶系统的定义和基本参数;掌握二阶系统单位脉冲响应曲 线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼比之 间的对应关系;掌握二阶系统性能指标的定义及其与系统特征参 数之间的关系; (5)掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误 差及稳态误差的求法;能够分析系统的输入、系统的结构和参数 以及干扰对系统偏差的影响。
X i s
+
-
n s ( s 2 n )
2
X 0 s
X i s
n 2 s 2 2 n s n
2
X 0 s
n为无阻尼固有频率 , 为阻尼比。
2.特征方程特征根 :
2 s 2 2n s n 0
s1, 2 n n 2 1

1.6
100% 1.2
1 0.8 0.6
1.4
M p
T:一阶系统的时间常数
2. 一阶系统的单位阶跃响应
输出信号拉氏变换为: X o ( s ) G ( s ) X i ( s )
1 1 时间响应为: x o (t ) L [ X o ( s)] L [
1 t ] 1 e T s (Ts 1)
1 1 Ts 1 s
1 2 xo (t ) 1 sin ( d t arctg ) 2 1
4、当ξ = 0 时
e nt
0
5
10
15
xo (t ) 1 cos nt
1.8
1.6
1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
= 0.1 0.3 0.5 0.7
n =1
t
3. 一阶系统的单位脉冲响应
1 Ts 1 1 1 tT 1 1 ] e 时间响应为: xo (t ) L [ X o (s)] L [ Ts 1 T
输出信号拉氏变换为: X o (s) G(s) X i (s)
(t 0)
单位脉冲响应曲线:
0.6 0.5 0.4 0.3
2、时间响应函数:时间响应(函数)等于传递函数与输入的拉氏变 换之积再取拉氏逆变换。
X o ( s ) G( s ) X i ( s )
两边取拉氏逆变换
xo (t ) L1[G(s) X i (s)]
3.1.2 典型输入信号
常用的输入信号:单位脉冲函数、单位阶跃函数、单位斜坡函数、 单位抛物线函数(单位加速度函数)、正弦函数和某些随机函数。 1.单位脉冲函数(δ 函数) (1)定义: (t ) 0 (2)L变换:
1
w(t )
n
e nt sin (n 1 2 )t
2 n 2 n t w(t ) L [ 2 ] te n 2 (s n )
n 2 w(t ) {exp[ ( 1) n t ] 2 2 1
exp[ ( 2 1) n t ]}
1 u (t ) r (t ) t
x or (t ) 1 e
t
T
xou (t )
u (t ) (t )
输入:
输出:
单位脉冲 =
单位脉冲响应 =
1 tT x e o (t ) w(t ) T
d d 单位阶跃 = 单位斜坡 dt dt
d d 单位阶跃响应 = 单位斜 坡响应。 dt dt
]
15
e s2t e s1t 1 ( ) 2 s1 2 1 s2 曲线上升缓慢,没有超调。
n
3、当0<ξ <1时(欠阻尼)
2 n 1 1 X o ( s) G( s) 2 2 s s 2 n s n s
= 0.1 n=1
1
s 2 n 1 s ( s n j d )( s n j d )
对于任意线性系统而言,若输入A是输入B的导函数,则输入A所引 起的输出就是输入B所引起输出的导函数;同样地,若输入A是输入B的 积分,则输入A所引起的输出就是输入B所引起输出的积分。
3.3
二阶系统的时间响应
3.3.1 二阶系统的数学模型
二阶微分方程描述的系统称为二阶系统。其典型环节是振荡环节。 1.传递函数:
本章重点
(1)一阶系统的定义和基本参数,一阶系统的单位脉冲响应、单位阶 跃响应及单位斜坡响应曲线的基本形状及意义。 (2)二阶系统的定义和基本参数;二阶系统单位脉冲响应曲线、单位 阶跃响应曲线的基本形状及其与系统阻尼比之间的对应关系, 二阶系统性能指标的定义及其与系统特征参数之间的关系。 (3)系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差 的求法;系统的输入、系统的结构和参数以及干扰对系统偏差的 影响。
(t 0)
单位阶跃响应曲线:
1.2 1 0.8 0.6 0.4 0.2 0
特点:
1 et T
x
t T
T
0 2 4 6 8 10
(1)瞬态响应为 e T ,稳态值为1; (2)单调上升的指数曲线; (3)T表示系统输出以最大初速达到 稳态值所需的时间 xo(T)=0.632 (4)当T ↓,过渡过程持续时间变 短,表明系统惯性越小,系统的 快速性能越好。
(2)L变换:
0
X i L[ X i sin t ] 2 s 2
3.2 一阶系统的时间响应
1. 一阶系统的数学模型
一阶微分方程描述的系统称为一阶系统。其典型环节是惯性环节。 传递函数:
Xi ( s )
+ -
1 Ts
Xo ( s)
X i ( s)
1 T s +1
X o ( s)
X o (s) 1 G(s) X i ( s ) Ts 1
0.9 1.0 1.2
5 10 15
二阶系统的单位阶跃响应函数的过渡过程随着阻尼的减小,其振 荡特性表现得愈加强烈,但仍为衰减振荡,当 =0 时达到等幅振荡 . 在 =1 和 >1时,二阶系统的过渡过程具有单调上升的特性 .从过渡过 程的持续时间来看,在无振荡单调上升的曲线中,以 =1时的过渡过 程时间最短。工程上通常使 =0.4~0.8之间,其超调不大,过渡过程 较短。
本章难点
(1)二阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其 与系统阻尼比之间的对应关系;二阶系统性能指标的定义及其与 系统特征参数之间的关系; (2)系统的输入、系统的结构和参数以及干扰对系统偏差的影响。来自 3.1时间响应的概念
3.1.1 时间响应及其组成
1、时间响应:系统在输入信号的作用下,其输出随时间的变化过 程,即系统的时间响应。它由两部分组成: (1)瞬态响应:系统在某一输入信号作用下,系统的输出量从初始 状态到稳定状态的响应过程。 (2)稳态响应:时间t趋于无穷大时,系统的输出稳定状态。 时间响应就是系统微分方程的全解。包含通解和特解两个部 分。通解完全由初始条件引起的,工程上称为自由响应,特解只 由输入决定,工程上称为强迫响应。
1、上升时间tr:响应曲线从初态开始,第一次达到输出稳态值
所需的时间。
1.6
1.4 1.2 1 0.8 0.6 0.4
xo (tr ) 1
tg
tr
1
1
2
n
1 2
0.2
0
tr
5
10
15
当ω n一定,ξ ↑→tr↑;当ξ 一定, ω n↑→tr↓
2、峰值时间tp:响应曲线达到第一个峰值所需的时间。
(2)L变换:
t
1 L[ xi (t )] 2 s
4.单位加速度函数
(1)定义:
2 t xi (t ) 2 0
xi ( t )
t 0 t0
(2)L变换:
0
t
1 L[ xi (t )] 3 s
5.正弦函数 (1)定义:
sin t
t 0 t 0
t
X i sin t xi (t ) 0
相关文档
最新文档