高等数学(同济五版)第九章-重积分-练习题册

合集下载

高等数学 课件 PPT 第九章 重积分

高等数学 课件 PPT 第九章  重积分
分析
若函数ρ(x,y)=常数,则薄片的质量可用公式 质量=面密度×面积 来计算.现在面密度ρ(x,y)是变化的,故不能用上述公式来求. 这时仍可采用处理曲顶柱体体积的方法来求薄片的质量.分为下列 几个步骤:
一、二重积分的概念
(1)分割将D分成n个小闭区域Δσ1,Δσ2,…,Δσn(小区域 的面积也用这些符号表示),第i个小块的质量记为 ΔMi(i=1,2,…,n),则平面薄片的质量
于是
一、在直角坐标系下计算二重积分
图 9-11
一、在直角坐标系下计算二重积分
【例3】
计算
,D是由抛物线y2=2x与直线y=x-4所
围成的区域.
解 画出积分区域D的草图如图9-12所示.若先对x积分,
则有
一、在直角坐标系下计算二重积分
图 9-12
一、在直角坐标系下计算二重积分
若先对y积分,则需将D分为两个区域D1和D2, 于是
一、在直角坐标系下计算二重积分
【例1】
试将
化为两种不同次序的累次积分,其中
D是由y=x,y=2-x和x轴所围成的区域.
解 积分区域D如图9-9所示.首先说明如何用“穿线法”
确定累次积分的上、下限.如果先积x后积y,即选择Y型积
分区域,将区域D投影到y轴,得区间[0,1],0与1就是对y
积分的下限与上限,即0≤y≤1,在[0,1]上任意取一点y,
二、二重积分的性质
二重积分与定积分有类似的性质.假设 下面所出现的积分是存在的.
二、二重积分的性质
性质1
设c1,c2为常数,则
性质2
若闭区域D分为两个闭区域D1与D2,则
二、二重积分的性质
性质3
(σ为D的面积).
性质4

第九章 重积分(二重和三重)高数课件

第九章 重积分(二重和三重)高数课件

其中Ω 其中Ω 所围立体. 所围立体
z
π
4
0≤r ≤ R Ω: 0 ≤ ϕ ≤ π 4 0 ≤ θ ≤ 2π

r=R
∫∫∫Ω
3. 三重积分的计算
(1) 投影法 (“先单后重”) 先单后重” 先单后重
z = z2 (x, y)
z
z = z1(x, y)
= ∫∫ dxdy∫
D
z2 ( x, y)
z1( x, y)
f (x, y, z)d z
关键:正确的判断上、下曲面 关键:正确的判断上、下曲面; 找对投影区域. 找对投影区域
2011-2012学年高等数学第二学期期 中考试说明
• 题型: 题型: 个小题); 个小题); 一、填空题(5个小题);二、选择题( 5个小题);三、 填空题( 个小题);二 选择题( 个小题);三 计算题( 个小题);四 计算题( 个小题);五 个小题); 个小题); 计算题( 5个小题);四、计算题( 5个小题);五、计 算与解答题( 个小题);六 证明题( 个小题 个小题); 个小题)。 算与解答题( 2个小题);六、证明题( 1个小题)。 • 考试时间: 考试时间: 2012年5月4日(第10周周五)下午 :00-6:00 年 月 日 周周五) 周周五 下午4: - : • 考试地点: 考试地点: 化学工程与工艺6班 制药工程 化学工程与工艺 班、制药工程1—2班: 24-303 班 生物工程1—2班:24-305 班 生物工程

2 h
h
x
o
y
例. 计算三重积分
其中Ω 其中Ω为由
柱面 x2 + y2 = 2x 及平面 z = 0, z = a (a > 0), y = 0 所围 成半圆柱体. 成半圆柱体

同济高数:9-5

同济高数:9-5
值隐函数01的某邻域内唯一确定arctanlndxdyarctanln公式法620直接法720arctanlndxdy公式法直接法820求导得式两边关于xxxx直接法920直接法求导得关于求导得对方程两边关于同理求导得对原方程两边关于用全微分两边微分得dzxyyzdxdzdydx同理得形式不变性dy全微分与偏导数1320内偏导数连续某邻域偏导数且某邻域内有连续的隐函数的求导公式1620满足
∂z = − F x = − x 2 x , 公式法 Fz ∂x 2 − zz − 4 2 ∂ z (2 − z ) + x2⋅ x (2 − z ) + x 2 (2 − z)2 + x 2 − z ∂x = ∂ z= . 2 3 (2 −2 − z )2 (2 − z ) x2 ( z) ∂
直接法
∂v = − ∂(F,G) / ∂(F,G) , ∂v = − ∂(F,G) / ∂(F,G) . ∂x ∂(u, x) ∂(u,v) ∂y ∂(u, y) ∂(u,v)
14/20
1) u0 = u( x0 , y0 ) 、v 0 = v ( x0 , y0 ); 2) 在 ( x 0 , y0 ) 某邻域内有连续的偏导 数,且 ∂u = − ∂(F,G) / ∂(F,G) , ∂u = − ∂(F,G) / ∂(F,G) , ∂( y,v) ∂(u,v) ∂x ∂(x,v) ∂(u,v)情形
TH2: F ( x , y , u, v )、 G ( x , y , u, v ) 在 P0 ( x 0 , y0 , u0 , v 0 ) 设 某邻域 内偏导数连续 , 且 F ( P0 ) = G ( P0 ) = 0 , 在 P0 F ( x, y, u, v ) = 0 ∂( F,G ) Fu Fv = J= ≠ 0. 则 ∂( u, v ) Gu Gv G( x, y, u, v ) = 0 在 P0 某邻域内唯一确定单值 u( x, y )、v ( x, y ), 满足: 满足:

同济大学《高等数学第五版》习题答案

同济大学《高等数学第五版》习题答案

习题1−11. 设A =(−∞, −5)∪(5, +∞), B =[−10, 3), 写出A ∪B , A ∩B , A \B 及A \(A \B )的表达式. 解 A ∪B =(−∞, 3)∪(5, +∞),A ∩B =[−10, −5),A \B =(−∞, −10)∪(5, +∞),A \(A \B )=[−10, −5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ∩B )C =A C ∪B C .证明 因为x ∈(A ∩B )C ⇔x ∉A ∩B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ∪B C ,所以 (A ∩B )C =A C ∪B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ∪B )=f (A )∪f (B );(2)f (A ∩B )⊂f (A )∩f (B ).证明 因为y ∈f (A ∪B )⇔∃x ∈A ∪B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈ f (A )∪f (B ),所以 f (A ∪B )=f (A )∪f (B ).(2)因为y ∈f (A ∩B )⇒ ∃x ∈A ∩B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )∩f (B ), 所以 f (A ∩B )⊂f (A )∩f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使, , 其中I X I f g =D Y I g f =D X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f −1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f −1(f (A ))⊃A ;(2)当f 是单射时, 有f −1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f −1(y )=x ∈f −1(f (A )),所以 f −1(f (A ))⊃A .(2)由(1)知f −1(f (A ))⊃A .另一方面, 对于任意的x ∈f −1(f (A ))⇒存在y ∈f (A ), 使f −1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f −1(f (A ))⊂A . 因此f −1(f (A ))=A .6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32−>x . 函数的定义域为) ,32[∞+−. (2)211xy −=; 解 由1−x 2≠0得x ≠±1. 函数的定义域为(−∞, −1)∪(−1, 1)∪(1, +∞).(3)211x xy −−=; 解 由x ≠0且1−x 2≥0得函数的定义域D =[−1, 0)∪(0, 1].(4)241x y −=; 解 由4−x 2>0得 |x |<2. 函数的定义域为(−2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12−+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅). (7) y =arcsin(x −3);解 由|x −3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+−=; 解 由3−x ≥0且x ≠0得函数的定义域D =(−∞, 0)∪(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(−1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(−∞, 0)∪(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f −=,31)(−=x x x g .(4)f (x )=1, g (x )=sec 2x −tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=−x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ−, ϕ(−2), 并作出函数y =ϕ(x )的图形. 解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=−=−ππϕ, 0)2(=−ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y −=1, (−∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(−∞, 1), 有1−x 1>0, 1−x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<−−−=−−−=−x x x x x x x x y y , 所以函数xx y −=1在区间(−∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+−=+−+=−x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(−l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(−l , 0)内也单调增加.证明 对于∀x 1, x 2∈(−l , 0)且x 1<x 2, 有−x 1, −x 2∈(0, l )且−x 1>−x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (−x 2)<f (−x 1), − f (x 2)<−f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(−l , 0), 有f (x 1)< f (x 2), 所以f (x )在(−l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(−l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (−x )=f (−x )+g (−x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (−x )=f (−x )+g (−x )=−f (x )−g (x )=−F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (−x )=f (−x )⋅g (−x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (−x )=f (−x )⋅g (−x )=[−f (x )][−g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (−x )=f (−x )⋅g (−x )=f (x )[−g (x )]=−f (x )⋅g (x )=−F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1−x 2);(2)y =3x 2−x 3;(3)2211x xy +−=; (4)y =x (x −1)(x +1);(5)y =sin x −cos x +1;(6)2x x a a y −+=. 解 (1)因为f (−x )=(−x )2[1−(−x )2]=x 2(1−x 2)=f (x ), 所以f (x )是偶函数.(2)由f (−x )=3(−x )2−(−x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+−=−+−−=−, 所以f (x )是偶函数. (4)因为f (−x )=(−x )(−x −1)(−x +1)=−x (x +1)(x −1)=−f (x ), 所以f (x )是奇函数.(5)由f (−x )=sin(−x )−cos(−x )+1=−sin x −cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=−−−−−, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x −2);(2)y =cos 4x ;(3)y =1+sin πx ;(4)y =x cos x ;(5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π.(2)是周期函数, 周期为2π=l . (3)是周期函数, 周期为l =2.(4)不是周期函数.(5)是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;(2)xx y +−=11; (3)dcx b ax y ++=(ad −bc ≠0); (4) y =2sin3x ;(5) y =1+ln(x +2);(6)122+=x xy . 解 (1)由31+=x y 得x =y 3−1, 所以31+=x y 的反函数为y =x 3−1.(2)由x x y +−=11得yy x +−=11, 所以x x y +−=11的反函数为x x y +−=11. (3)由d cx b ax y ++=得a cy b dy x −+−=, 所以d cx b ax y ++=的反函数为acx b dx y −+−=. (4)由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin 3x 的反函数为2arcsin 31x y =. (5)由y =1+ln(x +2)得x =e y −1−2, 所以y =1+ln(x +2)的反函数为y =e x −1−2.(6)由122+=x x y 得y y x −=1log 2, 所以122+=x x y 的反函数为xx y −=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即−M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界−M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 −M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; (2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2;(4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=−1.解 (1)y =sin 2x , 41)21(6sin 221===πy ,3)3(sin 222===πy . (2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)21x y +=, 21121=+=y , 52122=+=y .(4), , .2x e y =1201==e y e e y ==212 (5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(−1)=e −2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);(2) f (sin x );(3) f (x +a )(a >0);(4)f (x +a )+f (x −a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[−1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得−a ≤x ≤1−a , 所以函数f (x +a )的定义域为[−a , 1−a ].(4)由0≤x +a ≤1且0≤x −a ≤1得: 当210≤<a 时, a ≤x ≤1−a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1−a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>−=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>−=<=010 00 1)]([x x x x g f ., 即()⎪⎩⎪⎨⎧>=<==−1|| 1|| e 1|| ][101)(x e x x e e x f g x f ()⎪⎩⎪⎨⎧>=<=−1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40°(图1−37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1−37解 D 40sin hDC Ab ==, 又从0)]40cot 2([21S h BC BC h =⋅++D 得h hS BC ⋅−=D 40cot 0, 所以 h hS L D D 40sin 40cos 20−+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅−h hS D 确定, 定义域为D 40cot 00S h <<. 20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0. 01(x 0−100)=90−75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90−(x −100)×0. 01=91−0. 01x .综合上述结果得到.⎪⎩⎪⎨⎧≥<<−≤≤=1600 751600100 01.0911000 90x x x x p(2).⎪⎩⎪⎨⎧≥<<−≤≤=−=1600 151600100 01.0311000 30)60(2x x x x x x x x p P (3) P =31×1000−0. 01×10002=21000(元).习题1−21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=; (2)nx n n 1)1(−=; (3)212nx n +=; (4)11+−=n n x n ; (5) x n =n (−1)n .解 (1)当n →∞时, n n x 21=→0, 021lim =∞→n n .(2)当n →∞时, n x nn 1)1(−=→0, 01)1(lim =−∞→nn n . (3)当n →∞时, 212n x n +=→2,2)12(lim 2=+∞→nn . (4)当n →∞时, 12111+−=+−=n n n x n →0,111lim =+−∞→n n n . (5)当n →∞时, x n =n (−1)n 没有极限. 2. 设数列{x n }的一般项nn x n 2cos π=. 问=? 求出N , 使当n >N 时, x n n x ∞→lim n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 . 0lim =∞→n n x n n n x n 1|2cos ||0|≤=−π. ∀ε >0, 要使|x n −0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n −0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ; (2)231213lim =++∞→n n n ;(3)1lim 22=+∞→na n n (4). 19 999.0lim =⋅⋅⋅∞→ 个n n (1)分析 要使ε<=−221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<−|01|2n, 所以01lim 2=∞→n n . (2)分析 要使ε<<+=−++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃41[ε=N , 当n >N 时, 有ε<−++231213|n n , 所以231213lim =++∞→n n n . (3)分析 要使ε<<++=−+=−+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<−+|1|22n a n , 所以1lim 22=+∞→n a n n . (4)分析 要使|0.99 ⋅ ⋅ ⋅ 9−1|ε<=−1101n , 只须1101−n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9−1|<ε , 所以. 19 999.0lim =⋅⋅⋅∞→ n 个n 4. , 证明. 并举例说明: 如果数列{|x a u n n =∞→lim ||||lim a u n n =∞→n |}有极限, 但数列{x n }未必有极限.证明 因为, 所以∀ε>0, ∃N ∈N , 当n >N 时, 有, 从而 a u n n =∞→lim ε<−||a u n ||u n |−|a ||≤|u n −a |<ε .这就证明了|. |||lim a u n n =∞→ 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如, 但不存在. 1|)1(|lim =−∞→n n n n )1(lim −∞→ 5. 设数列{x n }有界, 又, 证明: . 0lim =∞→n n y 0lim =∞→n n n y x 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又, 所以∀ε>0, ∃N ∈N , 当n >N 时, 有0lim =∞→n n y M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=−MM y M y x y x n n n n n |||||0|,所以.0lim =∞→n n n y x 6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k −a |<ε ;∃K 2,当2k +1>2K 2+1时, 有| x 2k +1−a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n −a |<ε . 因此x n →a (n →∞).习题1−31. 根据函数极限的定义证明: (1);8)13(lim 3=−→x x (2);12)25(lim 2=+→x x (3)424lim22−=+−−→x x x ; (4)21241lim321=+−−→x x x . 证明 (1)分析 |(3x −1)−8|=|3x −9|=3|x −3|, 要使|(3x −1)−8|<ε , 只须ε31|3|<−x .证明 因为∀ε >0, ∃εδ31=, 当0<|x −3|<δ时, 有|(3x −1)−8|<ε , 所以.8)13(lim 3=−→x x (2)分析 |(5x +2)−12|=|5x −10|=5|x −2|, 要使|(5x +2)−12|<ε , 只须ε51|2|<−x .证明 因为∀ε >0, ∃εδ51=, 当0<|x −2|<δ时, 有|(5x +2)−12|<ε , 所以.12)25(lim 2=+→x x (3)分析 |)2(||2|244)4(2422−−=+=+++=−−+−x x x x x x x , 要使ε<−−+−)4(242x x , 只须ε<−−|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x −(−2)|<δ时, 有ε<−−+−)4(242x x , 所以424lim 22−=+−−→x x x .(4)分析|)21(|2|221|212413−−=−−=−+−x x x x , 要使ε<−+−212413x x , 只须ε21|)21(|<−−x . 证明 因为∀ε >0, ∃εδ21=, 当δ<−−<|)21(|0x 时, 有ε<−+−212413x x , 所以21241lim321=+−−→x x x . 2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析333333||21212121x x x x x x =−+=−+, 要使ε<−+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<−+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=−, 要使ε<−0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<−0sin xx, 所以0sin lim=+∞→x xx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x −2|<δ时, |y −4|<0. 001?解 由于x →2, |x −2|→0, 不妨设|x −2|<1, 即1<x <3. 要使|x 2−4|=|x +2||x −2|<5|x −2|<0. 001, 只要0002.05001.0|2|=<−x , 取δ=0. 0002, 则当0<|x −2|<δ时, 就有|x 2−4|<0. 001. 4. 当x →∞时, 13122→+−=x x y , 问X 等于多少, 使当|x |>X 时, |y −1|<0.01?解 要使01.034131222<+=−+−x x x , 只397301.04||=−>x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(xxx f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===−−−→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,,)(lim )(lim 0x f x f x x +→→=−所以极限存在.)(lim 0x f x → 因为1lim ||lim )(lim 00−=−==−−−→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xx x x x x x x ϕ, ,)(lim )(lim 0x x x x ϕϕ+→→≠−所以极限不存在.)(lim 0x x ϕ→ 7. 证明: 若x →+∞及x →−∞时, 函数f (x )的极限都存在且都等于A , 则.A x f x =∞→)(lim证明 因为, , 所以∀ε>0,A x f x =−∞→)(lim A x f x =+∞→)(lim ∃X 1>0, 使当x <−X 1时, 有|f (x )−A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )−A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )−A |<ε , 即.A x f x =∞→)(lim 8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x −x 0|<δ 时, 有|f (x )−A |<ε .因此当x 0−δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )−A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0−0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0−δ1<x <x 0时, 有| f (x )−A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )−A |<ε .取δ=min{δ1, δ2}, 则当0<|x −x 0|<δ 时, 有x 0−δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )−A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )−A |<ε =1. 所以 |f (x )|=|f (x )−A +A |≤|f (x )−A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1−41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+−=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2−=+−=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x −3|<δ时, 有εδ=<−=+−=|3|39||2x x x y ,所以当x →3时392+−=x x y 为无穷小.(2)当x ≠0时|0|1sin |||||−≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x −0|<δ时, 有εδ=<−≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104证明 分析2||11221||−≥+=+=x x x x y , 要使|y |>M , 只须M x >−2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x −0|<δ时, 有M xx>+21, 所以当x →0时, 函数xxy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<−<x 时, |y |>104.4. 求下列极限并说明理由: (1)xx n 12lim+∞→;(2)xx x −−→11lim 20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=−−1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=−−→x x x .5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(−∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(−∞, +∞)内无界.这是因为∀M >0, 在(−∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如022cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1−51. 计算下列极限: (1)35lim 22−+→x x x ;解 9325235lim 222−=−+=−+→x x x .(2)13lim 223+−→x x x ;解 01)3(3)3(13lim 22223=+−=+−→x x x . (3)112lim 221−+−→x x x x ;解 02011lim )1)(1()1(lim 112lim121221==+−=+−−=−+−→→→x x x x x x x x x x x .(4)xx xx x x 2324lim 2230++−→;解 2123124lim 2324lim 202230=++−=++−→→x x x x x x x x x x .(5)hx h x h 220)(lim−+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=−++=−+→→→.(6))112(lim 2xx x +−∞→; 解 21lim 1lim 2)112(lim 22=+−=+−∞→∞→∞→x x x x x x x . (7)121lim22−−−∞→x x x x ; 解 2111211lim 121lim 2222=−−−=−−−∞→∞→x x x x x x x x .(8)13lim242−−+∞→x x x x x ; 解 013lim242=−−+∞→x x x x x (分子次数低于分母次数, 极限为零)或 012111lim13lim 4232242=−−+=−−+∞→∞→xx x x x x xx x x . (9)4586lim 224+−+−→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=−−=−−=−−−−=+−+−→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x −+∞→; 解 221)12(lim )11(lim )12)(11(lim 22=×=−⋅+=−+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=−−=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n −+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=−=−=−+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x −−−→; 解 112lim )1)(1()2)(1(lim )1)(1(31lim )1311(lim 212122131−=+++−=++−+−−=++−−++=−−−→→→→x x x x x x x x x x x x x x x x x x x .2. 计算下列极限: (1)2232)2(2lim −+→x x x x ; 解 因为01602)2(lim 2322==+−→x x x x , 所以∞=−+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3).)12(lim 3+−∞→x x x 解 (因为分子次数高于分母次数).∞=+−∞→)12(lim 3x x x 3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1−61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→x x x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4);x x x cot lim 0→ 解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0−→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===−=−→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===−→→→xx x x x x x x x x x .(6)nn n x2sin2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sinlim2sin 2lim . 2. 计算下列极限:(1)xx x 1)1(lim −→;解{}11)(10)1)(11)](1[lim )](1[lim )1(lim −−−→−−→→=−+=−+=−e x x x x x x x x x .(2)x x x 1)21(lim +→;解[]22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→→→.(3)x x xx 2)1(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim −∞→(k 为正整数). 解 k k x x kx x e xx −−−∞→∞→=−+=−))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I ′. 解4. 利用极限存在准则证明:(1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 且11lim =∞→n 1)11(lim =+∞→nn ,由极限存在准则I, 111lim =+∞→n n .(2)()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n n n n nn n n n n x x x x x x x x x x x x +++−−=++−+=−+=−+2)1)(2(22221,而x n −2<0, x n +1>0, 所以x n +1−x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1−|x |≥(1−|x |)n , 从而有 ||11||1x x x n +≤+≤−. 因为 ,1|)|1(lim |)|1(lim 0=+=−→→x x x x 根据夹逼准则, 有 11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]xx x 1111≤<−, 所以[]111≤<−x x x .又因为, 根据夹逼准则, 有11lim )1(lim 0==−++→→x x x []11lim 0=+→xx x .习题 1−71. 当x →0时, 2x −x 2 与x 2−x 3相比, 哪一个是高阶无穷小? 解 因为02lim 2lim 202320=−−=−−→→xx x x x x x x x ,所以当x →0时, x 2−x 3是高阶无穷小, 即x 2−x 3=o (2x −x 2).2. 当x →1时, 无穷小1−x 和(1)1−x 3, (2))1(212x −是否同阶?是否等价? 解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=−++−=−−→→→x x xx x x x x x x x ,所以当x →1时, 1−x 和1−x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=−−→→x x x x x , 所以当x →1时, 1−x 和)1(212x −是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x −.证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===−=−→→→→x xx x x x xx x x x x x ,所以当x →0时, 2~1sec 2x x −.4. 利用等价无穷小的性质, 求下列极限: (1)xxx 23tan lim0→;(2)mn x x x )(sin )sin(lim0→(n , m 为正整数);(3)xx x x 30sin sin tan lim −→;(4))1sin 1)(11(tan sin lim320−+−+−→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==−=−=−→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x −=⋅−−=−=−(x →0), 23232223231~11)1(11x x x x x ++++=−+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=−+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320−=⋅−=−+−+−→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim=αα, 所以α ~α ; (2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1−81. 研究下列函数的连续性, 并画出函数的图形:(1);⎩⎨⎧≤<−≤≤=21 210 )(2x x x x x f (2).⎩⎨⎧>≤≤−=1|| 111 )(x x x x f 解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, , 1lim )(lim 211==−−→→x x f x x 1)2(lim )(lim 11=−=++→→x x f x x 所以, 从而函数f (x )在x =1处是连续的.1)(lim 1=→x f x 综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =−1和x =1处的连续性.在x =−1处, 因为f (−1)=−1, , , 所以函数在x =−1处间断, 但右连续.)1(11lim )(lim 11−≠==−−−→−→f x f x x )1(1lim )(lim 11−=−==++−→−→f x x f x x 在x =1处, 因为f (1)=1, =f (1), =f (1), 所以函数在x =1处连续.1lim )(lim 11==−−→→x x f x x 11lim )(lim 11==++→→x x x f 综合上述讨论, 函数在(−∞, −1)和(−1, +∞)内连续, 在x =−1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+−−=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅); (3),1cos 2xy = x =0;(4), x =1.⎩⎨⎧>−≤−=1 311x x x x y 解 (1))1)(2()1)(1(23122−−−+=+−−=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+−−=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11−=−+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处,令y =−2, 则函数在x =1处成为连续的. (2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→xxx ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的; 令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为, 所以x =1是函数的第一类不可去间断点.0)1(lim )(lim 11=−=−−→→x x f x x 2)3(lim )(lim 11=−=++→→x x f x x 3. 讨论函数x x x x f n n n 2211lim )(+−=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>−=+−=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nnn . 在分段点x =−1处, 因为, , 所以x =−1为函数的第一类不可去间断点.1)(lim )(lim 11=−=−−−→−→x x f x x 1lim )(lim 11−==++−→−→x x f x x 在分段点x =1处, 因为, , 所以x =1为函数的第一类不可去间断点.1lim )(lim 11==−−→→x x f x x 1)(lim )(lim 11−=−=++→→x x f x x 4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以, 由极限的局部保号性定理,存在x 0)()(lim 00>=→x f x f x x 0的某一去心邻域, 使当x ∈时f (x )>0, 从而当x ∈U (x )(0x U D )(0x U D0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数在R 上处处不连续, 但|f (x )|=1在R 上处处连续.⎩⎨⎧∉∈−=Q Qx x x f 1 1)( 解(3)函数在R 上处处有定义, 它只在x =0处连续.⎩⎨⎧∉−∈=Q Qx x x x x f )(习题1−91. 求函数633)(223−+−−+=x x x x x x f 的连续区间, 并求极限, 及.)(lim 0x f x →)(lim 3x f x −→)(lim 2x f x → 解 )2)(3()1)(1)(3(633)(223−++−+=−+−−+=x x x x x x x x x x x f , 函数在(−∞, +∞)内除点x =2和x =−3外是连续的, 所以函数f (x )的连续区间为(−∞, −3)、(−3, 2)、(2, +∞). 在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =−3处,∞=−++−+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33−=−+−=−→−→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )}在点x 0也连续.证明 已知, .)()(lim 00x f x f x x =→)()(lim 00x g x g x x =→ 可以验证] |)()(|)()([21)(x g x f x g x f x −++=ϕ,] |)()(|)()([21)(x g x f x g x f x −−+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x −++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x −−+=ψ.因为] |)()(|)()(21lim )(lim 00x g x f x g x f x x x x x −++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→−++=] |)()(|)()([210000x g x f x g x f −++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+−→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0−+→; (5)145lim1−−−→x xx x ;(6)ax ax a x −−→sin sin lim; (7))(lim 22x x x x x −−++∞→.解 (1)因为函数52)(2+−=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅−==+−→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以142(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x . (4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++−+=−+→→→→x x x xx x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +−−−=+−−+−−−=−−−→→→ 214154454lim1=+−⋅=+−=→xx x .(6)ax ax a x ax ax a x a x −−+=−−→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =⋅+=−−⋅+=→→. (7))())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x −++−++−−+=−−++∞→+∞→1)1111(2lim)(2lim22=−++=−++=+∞→+∞→xx x x x x xx x .4. 求下列极限: (1)x x e 1lim ∞→;(2)xxx sin lnlim 0→; (3)2)11(lim xx x+∞→;(4);x x x 2cot 20)tan 31(lim +→ (5)21)63(lim −∞→++x x xx ;(6)xx x x x x −++−+→20sin 1sin 1tan 1lim.解 (1) 1lim 01lim1===∞→∞→e ee xxx x .(2) 01ln sin lim ln(sin lnlim 00===→→x xxx x x .(3) []e e xx xx xx ==+=+∞→∞→21212)11(lim 11(lim .(4) []33tan312cot 222)tan 31(lim )tan 31(lim ex x xx xx =+=+→→.(5)21633621)631()63(−+−⋅−+−+−+=++x x x x xx x . 因为。

高等数学9-1

高等数学9-1

∫∫ f ( x , y )dσ = ∫∫ f ( x , y )dσ + ∫∫ f ( x , y )dσ .
D
D1
- 11 -
D2
第一节
二重积分的概念与性质
的面积, 性质4 性质4 若 σ 为 D 的面积,
第 九 章 重 积 分 及 其 应 用
σ = ∫∫ 1 dσ = ∫∫ dσ .
D D
V = lim∑ f (ξk , ηk )σk
λ→0
k=1
n
平面薄片的质量: 平面薄片的质量
M = lim∑(ξk , ηk )σk
λ→0
k=1
-7-
n
第一节
二重积分的概念与性质
2 二重积分的定义及可积性 定义: 定义 设 f ( x, y)是定义在有界区域 D上的有界函数 , 上的有界函数
第 九 章 重 积 分 及 其 应 用

二重积分的几何意义 当被积函数大于零时,二重积分是柱体的体积. 当被积函数大于零时,二重积分是柱体的体积.
当被积函数小于零时, 当被积函数小于零时,二重积分是柱体的体积的 负值. 负值. - 10 -
第一节
二重积分的概念与性质
二 二重积分的性质
第 九 章 重 积 分 及 其 应 用
(二重积分与定积分有类似的性质) 二重积分与定积分有类似的性质) 性质1 性质1 当k为常数时, 为常数时,
1≤k≤n
(ξk ,ηk ) σk
x
M = lim∑(ξk , ηk )σk
λ→0
k=1
-6-
n
第一节
二重积分的概念与性质
两个问题的共性: 两个问题的共性: 共性
第 九 章 重 积 分 及 其 应 用

高等数学(同济五版)第九章 重积分 练习题册

高等数学(同济五版)第九章 重积分 练习题册

第九章 重 积 分第 一 节 作 业一、填空题:.)1(,)1,0(),0,1(),0,0(.4.),,(,.3.,4.2.1),,(),(),,(.122222212121⎰⎰⎰⎰=--=≤+=+<==DD d y x D y x D xoy d e y x D y x g g g g y x g z y x g z σρρσ可知由二重积分的几何意义为顶点的三角形区域是以设为质量可用二重积分表示则此薄板的其面密度为连续函数面内占有有界闭区域设一薄板在的值等于则是设区域重积分可表示为所围成立体的体积用二与柱面且适合在全平面上连续曲面二、选择题(单选):{}{}:,20,10:),(,)(,22,11:),(,)(132221322121则其中其中设≤≤≤≤=+=≤≤-≤≤-=+=⎰⎰⎰⎰y x y x D d y x I y x y x D d y x I D D σσ(A )I 1=2I 2; (B )I 1〈I 2; (C )I 1=I 2; (D )I 1=4I 2。

答:( )三、估计下列积分的值:⎰⎰≤+++=Dy x D d y x I .4:,)94(2222为闭区域其中σ第 二 节 作 业一、填空题:1. 设⎰⎰=≤≤-≤≤D yd x y x D ..11,10:2σ则⎰⎰⎰⎰-+-+=≤+a y ay D y xdx y x f dy d e y x D 202022)(22222)(.3.,1:.2分是为极坐标系下的二次积化则设σ二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+----=1010221010*********0102210102222.3)(;3)(;3)(;3)(:,3.1x x y x y dy y x dx D dy y x dx C dy y x dx B dy y x dx A I dx y x dy I 等于则交换积分次序后设 答:( ) ).(2)();()();(2)();()(:),0(,.22222222222a b a b a b a b D y xe e D e e C e e B e e A I b a b y x a D d e I ----<<≤+≤=⎰⎰+ππππσ等于是则为其中设答:( )三、试解下列各题:⎰⎰⎰⎰-≥-≤>==+==+DDdxdy y x f x y x y D y x f a a y a y a x y x y D dxdy y x .),(,1,1:),(.2.)0(3,,,,)(.12222化为二次积分试将上连续在设平行四边形区域所围成的由直线其中求)0.(.5.1,11.4.),(),(.322222222100)3(210312>=+==+++--+=⎰⎰⎰⎰⎰⎰-h h z y x z y x D dxdy yx y x dy y x f dx dy y x f dx I D x x 所围成的立体的体积与计算曲面区域所围成的在第一象限的是由圆求的积分次序改变二次积分四、若f(x)在[a,b]上连续且恒为正,证明:.)()(1)(2⎰⎰-≥ba b a a b dx x f dx x f第 三 节 作 业一、填空题:1. 半圆薄片x 2+y 2≤R 2, y ≥0, 面密度为1,它关于y 轴的转动惯量I= 。

高等数学下(同济大学第五版)课后习题答案解析

word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

高等数学习题9第九章重积分


重积分
六、交换 序

1
0
dx
1 2 x x 2 x
f ( x, y )dy 的积分次
x y 1

f ( x 2 y 2 )dxdy化为定积分
83
严谨 求实 勤奋 创新 七、求 z 的面积
重积分 八、设 f ( x), g ( x) 均在 [ a, b] 上连续,证明
x 2 y 2 被 z 2 2 x 割下部分
( x y)dxdy
D
3
xydxdy
D
D 由 y 2 x, y x 2 围成
D由y
1 , y x, y 2 围成 x
80
严谨 求实 勤奋 创新
重积分 6
x2 y2 z2 4 z dxdydz : 2 2 2 1 a b c
2


重积分 四、有一形为旋转抛物面 z x 2 y 2 的容 器,已盛有 8 (cm3 ) 的水,现又注入
z
x 2 y 2 所围立体的质量,已知
其点密度与该点到球心距离平方成正比 , 且球面上密度为 2
120 (cm3 ) 的水,问水面升高多少?
82
严谨 求实 勤奋 创新 五、设 f ( x) 连续,试将
3
x 2 y 2 1
( x
2
y 2 1)d __________ _
4
1 x y 2 4
2
f ( x, y)dxdy= f ( x, y)dxdy — f ( x, y)dxdy
x 2 y 2 1
x 2 y 2 4
是__________________的 二、计算下列重积分 1

高数下第九章例题及答案

复习三 重积分1.了解二重的几何意义, 会交换二次积分的次序.例1.设D 为闭圆域x 2+y 2≤R 2, 则Dσ⎰⎰= .解: 此积分表示以半径为R 的半球体的体积, 即33142233R R ππ⋅=.例2.改变二次积分⎰⎰210),(x dy y x f dx 的积分次序得( ).(A )⎰⎰100),(2dx y x f dy x ; (B )⎰⎰110),(y dx y x f dy ;(C )⎰⎰ydx y x f dy 010),(; (D )⎰⎰112),(x dx y x f dy .解: 积分区域为D ={(x , y )|0≤x ≤1, 0≤y ≤x 2}, 积分区域又可表示为 }1 ,10|) ,{(≤≤≤≤=x y y y x D , 所以⎰⎰⎰⎰=1101),(),(2yx dxy x f dy dy y x f dx .2.会利用直角坐标和极坐标计算二重积分, 会利用直角坐标、柱面坐标和球面坐标计算三重积分.例1.计算σd e x Dy ⎰⎰-22, 其中D 由x =0, y =1, y =x 围成.解: 因为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰--=1102222xy Dy dye dx x d e x σ, 计算无法进行.因为D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 所以⎰⎰⎰⎰⎰⎰----===1022103021222226131dy e y dy e y dx x dy ed exy y yy Dy σ)21(61|616161|6161101021021022222ee e dy e e y de y y y y y -=--=+-=-=----⎰⎰. 例2.计算⎰⎰=Ddxdy yyI sin , 其中D 由曲线x y =、直线y =x 围成.解: 积分区域可表示为D ={(x , y )|0≤y ≤1, y 2≤x ≤y }, 于是 ⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2ydyy dx y y dy dxdy y yI y y D=1-sin1.例3.将⎰⎰-12),(x x dyy x f dx 化成极坐标形式的二次积分 .解: 积分区域为}0 ,10|) ,{(2x x y x y x D -≤≤≤≤=, 在极坐标下}cos 0 ,20|),{(θπθθ≤≤≤≤=r r D , 所以⎰⎰⎰⎰=-θπθθθc o s20100)s i n ,c o s (),(2r d r r r f d dy y x f dx x x .例4.计算二重积分⎰⎰--Dy xdxdye 22,其中D 为x 2+y 2=1所围成的闭区域.解:⎰⎰⎰⎰⎰⎰-----===1210120222222dr e rdr erdr ed dxdy er r r Dy x ππθπee r πππ-=-=-10|2. 例5.计算三重积分⎰⎰⎰Ω+++3)1(z y x dxdydz , 其中Ω为平面x =0, y =0, z =0,x +y +z =1所围成的四面体. 解: 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1}, 于是⎰⎰⎰Ω+++3)1(z y x d x d y d z⎰⎰⎰---+++=yx xdz z y x dy dx 103101)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=1]8183)1(21[)852(l n 21-=.例6.计算三重积分dv y x ⎰⎰⎰Ω+)(22其中Ω为x 2+y 2=2z 及z =2所围成的闭区域.解: 在柱面坐标下积分区域可表示为 Ω: 0≤θ≤2π, 0≤r ≤2, 2212≤≤z r ,于是316)212(2)(22322122020222ππθπ=-=⋅=+⎰⎰⎰⎰⎰⎰⎰Ωdr r r rdz r dr d dv y x r.例7.计算三重积分dv z y x )(222++⎰⎰⎰Ω, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解: 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++⎰⎰⎰Ωθϕϕd d r dr s i n 4⋅=⎰⎰⎰Ω⎰⎰⎰=1420s i n dr r d d ππϕϕθπ54=.3.会计算立体的体积, 会计算曲面的面积, 会计算质心或形心.例1.求由抛物柱面z =2-x 2及椭圆抛物面z =x 2+2y 2所围成的立体的体积. 解: ππθπ=-=-=+--=⎰⎰⎰⎰104210220222]21[2)22()]2()2[(r r rdr r d dxdy y x x V D. 例2.求锥面22y x z +=被柱面z 2=2x 所割下的部分的曲面面积. 解: 曲面22y x z +=与z 2=2x 的交线在xOy 面上的投影为⎩⎨⎧==+0222z xy x .所求曲面在xOy 在上的投影区域为D ={(x , y )|x 2+y 2≤2x }. π22122=='+'+=⎰⎰⎰⎰DDy x dxdy dxdy z z A .例3.求由曲线ay =x 2, x +y =2a (a >0)所围成闭区域的形心. 解: 闭区域可表示为}21 ,2|),{(2x a y x aa x a y x D -≤≤≤≤-=.因为 3222121227)12(2a dx x a x a x dy xdxxdxdy aaxa xa aa D-=--==⎰⎰⎰⎰⎰---,324222212536)144(212a dx x a x ax a ydy dx ydxdy a a xa x a aa D =-+-==⎰⎰⎰⎰⎰---,22221229)12(2a dx x a x a dy dx dxdy aax a x aaaD=--==⎰⎰⎰⎰⎰---.所以a a a d x d yx d x d y x DD2129122723-=-==⎰⎰⎰⎰, aa adxdy ydxdyy DD282953623===⎰⎰⎰⎰.练习三1. 设区域D 为x 2+y 2≤a 2, 且π=--⎰⎰dxdy y x a D222, a =________.2. 设D 由y 2=x 及y =x -2所围成, 则⎰⎰=Dxyd I σ=( ).(A)⎰⎰+=422y y xydy dx I ; (B)⎰⎰-+=2122y y xydx dy I ;(C)⎰⎰⎰⎰--+=4121x x xxxydydx xydy dx I ; (D)⎰⎰-+=2122y y xydy dx I .3. 交换下列二次积分的顺序, 并画出积分区域草图. (1)⎰⎰--22),(0x a xa adyy x f dx ; (2)⎰⎰xe dy y xf dx ln 01),(; (3)⎰⎰---x x dy y x f dx 214262),(.4. 设D : |x |≤1, 0≤y ≤1, 则⎰⎰+Dyd y x σ)(3=________.5. 曲面x 2+y 2+z 2=R 2(z >0)和2R z =所围成的立体的体积可表为二重积分________.6. 计算二次积分⎰⎰+=131021x dy yxy dx I .7. 利用极坐标计算积分⎰⎰⎰⎰-+++=10212022222x x dy y x dx dy y x dx I .8. 计算二重积分⎰⎰+Ddxdy y x )(, 其中D : x 2+y 2≤2x .9. 计算二重积分⎰⎰+Dd y x σ)cos(, D 是以点(0, 0),(0, π), (π, π) 为顶点的三角形区域.10. 计算二重积分dxdy xy D⎰⎰2, 其中D 为直线y =x 和抛物线y =x 2所围成的平面区域.11. 计算二重积分σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )|a 2≤x 2+y 2≤b 2}.12. 计算二重积分⎰⎰+'Ddxdy y x f )(22, 其中D 为圆域: x 2+y 2≤R 2 .13. 求⎰⎰⎰Ω++=dv z y x I )(22,其中Ω是由曲线⎩⎨⎧==022x zy 绕z 轴旋转一周的曲面与平面z =4所围立体.14.计算⎰⎰⎰Ω+dVzx)(,其中Ω是由曲面22yxz+=与221yxz--=围成.15.求旋转椭球面2221449x y z++=所围成的旋转体的体积.16.求半圆域x2+y2≤a2,x≥0的形心.17.求圆锥面2z=+x2+y2=2x内部的曲面面积.。

高等数学课后习题答案第九章1

第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。

4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 重 积 分第 一 节 作 业一、填空题:.)1(,)1,0(),0,1(),0,0(.4.),,(,.3.,4.2.1),,(),(),,(.122222212121⎰⎰⎰⎰=--=≤+=+<==DDd y x D y x D xoy de y x D y x g g g g y x g z y x g z σρρσ可知由二重积分的几何意义为顶点的三角形区域是以设为质量可用二重积分表示则此薄板的其面密度为连续函数面内占有有界闭区域设一薄板在的值等于则是设区域重积分可表示为所围成立体的体积用二与柱面且适合在全平面上连续曲面二、选择题(单选):{}{}:,20,10:),(,)(,22,11:),(,)(132221322121则其中其中设≤≤≤≤=+=≤≤-≤≤-=+=⎰⎰⎰⎰y x y x D d y x I y x y x D d y x I D D σσ(A )I 1=2I 2; (B )I 1〈I 2; (C )I 1=I 2; (D )I 1=4I 2。

答:( ) 三、估计下列积分的值:⎰⎰≤+++=Dy x D d y x I .4:,)94(2222为闭区域其中σ第 二 节 作 业一、填空题:1. 设⎰⎰=≤≤-≤≤Dyd x y x D ..11,10:2σ则⎰⎰⎰⎰-+-+=≤+a yay Dy xdx y x f dy d e y x D 202022)(22222)(.3.,1:.2分是为极坐标系下的二次积化则设σ二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+----=110221010221010221010221102222.3)(;3)(;3)(;3)(:,3.1x x yxydy y x dx D dy y x dx C dy y x dx B dy y x dx A I dx y x dy I 等于则交换积分次序后设答:( )).(2)();()();(2)();()(:),0(,.22222222222a b a b a b a b Dy xe e D e e C e e B e e A I b a b y x a D d e I ----<<≤+≤=⎰⎰+ππππσ等于是则为其中设答:( )三、试解下列各题:⎰⎰⎰⎰-≥-≤>==+==+DDdxdy y x f x y x y D y x f a a y a y a x y x y D dxdy y x .),(,1,1:),(.2.)0(3,,,,)(.12222化为二次积分试将上连续在设平行四边形区域所围成的由直线其中求)0.(.5.1,11.4.),(),(.3222222221)3(21312>=+==+++--+=⎰⎰⎰⎰⎰⎰-h h z y x z y x D dxdy yx y x dy y x f dx dy y x f dx I Dx x 所围成的立体的体积与计算曲面区域所围成的在第一象限的是由圆求的积分次序改变二次积分四、若f(x)在[a,b]上连续且恒为正,证明:.)()(1)(2⎰⎰-≥babaa b dx x f dx x f第 三 节 作 业一、填空题:1. 半圆薄片x 2+y 2≤R 2, y ≥0, 面密度为1,它关于y 轴的转动惯量I= 。

2. 设f(t)为连续函数,则由平面z=0,柱面x 2+y 2=1和曲面z=[f(xy)]2所围成立体的体积 V= 。

二、选择题(单选):1. 两个半径为R 的直交圆柱面所围成的立体的表面积为:.16)(;4)(;8)(;4)(0222200022222222222222⎰⎰⎰⎰⎰⎰⎰⎰----------R x R R x R x R Rx R Rx R dy xR Rdx D dy xR Rdx C dy x R Rdx B dy x R R dx A答:( )2. 球面 x 2+y 2+z 2=a 2含在x 2+y 2=ax 内部的面积为:⎰⎰⎰⎰⎰⎰⎰⎰----Ra a a a rdr ra a d D rdr ra a d C rdr r a a d B rdr r a a d A 022cos 022cos 02220cos 02220cos 022.4)(;4)(;8)(;4)(ππθθπθπθθθθθ答:( ) 三、试解下列各题:1. 求曲面z 2=x 2+y 2包含在圆柱面x 2+y 2=2x 内的那部分面积。

2. 已知面密度为常量ρ的均匀矩形板的长和宽分别为b 和h ,计算此矩形板对于通过其形心且分别与一边平行的两轴的转动惯量。

2. 设有一等腰直角三形形薄片,腰长为a ,各点处面密度等于该点到直角顶点的距离的平方,求薄片的重心。

第 四 节 作 业一、填空题:.]3)([,1,10:.4.1132,10,1:.3.1)1cos(,1:.2.3,0,:.13222444444222222222222222222=+≤+≤≤Ω<+++<≤++≤≤++Ω=++++++≤++Ω=≤≤≤+Ω⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩdv y x tg e y x z dy z y x z y x z y x dv z y x z y x z c z b y a x dv h z a y x x 则设则有不等式由于设则若则若π二、选择题(单选):;)(;)(;)(;)(:,12,0,0,0.110210210111102102101010210⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--------Ω==++===Ωy yx xyx yx xdz dy dx D xdz dy dx C xdz dy dx B xdz dy dx A xdv I z y x z y x 为则所围成由设 答:( ).)(;21)(;21)(;21)(:,.22424242121e D e C e e B e e A I dy ye dx I xxy -+-=⎰⎰是则设答:()三、试解下列各题:⎰⎰⎰⎰⎰⎰⎰⎰⎰---+ΩΩ=++===Ω+++====Ω1101232..3.1,0,0,0,)1(.2.01,,.122222x y x yx dz z dy dx z y x z y x z y x dxdydzz x x y xy z dxdydz z xy 计算所围成的四面体为平面其中计算所围成的闭区域和与平面是由曲面其中计算第 五 节 作 业一、填空题: 1. 将积分⎰⎰⎰->+=220222)0(x x aa dz y x z dy dx I 化为柱面坐标系下的三次积分是。

.,)(,4,1,.2222222=++===+=Ω⎰⎰⎰ΩI dv z y x f I z z y x z 则坐标系下化为三次积分在球面将三重积分所围成由设二、选择题(单选):⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰------+ΩΩ=+≤≤++Ω=≥≤++Ωππππππππππππθθθθϕϕϕθϕϕϕθϕϕθϕϕϕθ201112011201011120111222222021320132012202012222.)(;)(;)(;)(,,2.2;cos sin )(;cos sin )(;sin )(;cos sin )(:,0,1.1222222r r rrr r rdz rdr d D dz rdr d C dz rdr d B dz rdr d A dv y x z z z y x dr r d d D dr r d d C dr r d d B dr r d d A zdv I z z y x 则为设为则为若答:( ).4)(;4)(;4)(;4)(:0,0,0,:,0,:.3121212122222222221⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩΩΩΩΩ====≥≥≥≤++Ω≥≤++Ωxyzdv xyzdv D zdv zdv C ydv ydv B xdv xdv A z y x R z y x z R z y x 则设空间区域答:( ) 三、试解下列各题: 1. 计算⎰⎰⎰Ω==+Ω+.22,)(2222所围成的闭区域及平面是由曲面其中z z y x dv y x.)3(;)2(;)1(.0,||,||)(.4.2,.3.0,0,0,11,.2222222222222轴的转动惯量求物体关于求物体的重心求其体积所围成和平面占有的闭区域是由曲面为常量密度一均匀物体之公共部分和为其中计算卦限内的闭区域所围成在第一及平面为柱面其中计算z z a y a x y x z Rz z y x R z y x dv z y x z z y x xydv ===+=≤++≤++Ω=====+Ω⎰⎰⎰⎰⎰⎰ΩΩρ.)(lim ,0)0(,1)0(',)(),0()()(.5502222222tt F f f u f t dv z y x f t F t t x y x +→≤++==>++=⎰⎰⎰求且为连续函数设第 九 章 综 合 作 业一、填空题(每小题4分,共20分):{}.,1)2()1(.5.,),,(,2,1,2.4.sin .3.,0,1|),(.2.,),(,),(.12222210221202⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ-=≤+-+-Ω=====+Ω==≥≤+===dv z y y x I dxdydz z y x f I z z z y x dy xxdy ydxdy y y x y x D I dy y x f dx I y x f yyDx x 则为设则下的三次积分化为柱面坐标系将所围成由设则设则改变积分次序将是连续函数设二、选择题(单选)(每小题4分,共20分):.)(;)(;)(;)(:,,,)sin(,)(,)ln(,1,21,0,0.1312231123321321321I I I D I I I C I I I B I I I A I I I dxdy Y x I dxdy y x I dxdy y x I y x y x y x D DDD<<<<<<<<+=+=+==+=+==⎰⎰⎰⎰⎰⎰间的大小关系为则所围成由设答:().),(),()(;),()(;),(),()(;),()(),(,),(.20182212121228262182212121228212262142⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰--+-++------+++---+---++=yy y y yyy y y yy x x dx y x f dy dx y x f dy D dx y x f dy C dx y x f dy dx y x f dy B dx y x f dy A dy y x f dx y x f 则二次积分是连续函数设 答( )3. 半径为R 和r(0<r<R)的两上圆所围成的均匀的圆环状薄片(设密度为ρ)对它的中心的转动惯量I 0=).(81)();(41)();(21)();()(44444444r R D r R C r R B r R A ----πρπρπρπρ答:( ).721)(;641)(;561)(;481)(,0,0,0,1.4222D C B A xyzdxdydz z y x z y x =====++Ω⎰⎰⎰Ω则限的部分所围空间区域在第一卦是由设答:( ) 三、计算⎰⎰-1122xy dy e x dx (10分)。

相关文档
最新文档