稍复杂的方程3

合集下载

方程——解稍复杂的方程(教案)人教版五年级上册数学

方程——解稍复杂的方程(教案)人教版五年级上册数学

方程——解稍复杂的方程(教案)人教版五年级上册数学我今天要上的课程是人教版五年级上册数学的方程——解稍复杂的方程。

一、教学内容:今天我们将要学习的是解稍复杂的方程,具体来说是第三章第二节的内容。

我们将通过例题和练习来掌握解一元一次方程的方法,学会如何将实际问题转化为方程,并能够熟练地解出方程的解。

二、教学目标:通过本节课的学习,我希望学生们能够掌握解一元一次方程的基本方法,能够将实际问题转化为方程,并能够熟练地解出方程的解。

三、教学难点与重点:本节课的重点是让学生掌握解一元一次方程的基本方法,难点是让学生能够将实际问题转化为方程,并能够熟练地解出方程的解。

四、教具与学具准备:我已经准备好了PPT和一些实际的例子,以及学生们需要写的练习题。

五、教学过程:我会通过一个实际的例子来引入本节课的内容,让学生们了解到我们为什么要学习解方程。

然后,我会通过PPT来讲解解一元一次方程的基本方法,并配合一些实际的例子来进行讲解。

在讲解的过程中,我会让学生们进行随堂练习,以加深他们对知识的理解。

我会布置一些作业,以便学生们能够巩固所学的内容。

六、板书设计:我会设计一些简洁的板书,以便学生们能够清晰地了解解一元一次方程的步骤。

七、作业设计:1. 请解下列方程:2x+3=7;3x4=1;5x+2=17。

答案:x=2;x=1.6;x=3。

2. 小明的妈妈买了5斤苹果和3斤香蕉,一共花了42元。

苹果每斤6元,香蕉每斤x元。

请列出方程,并解出x的值。

答案:56+3x=42,x=4。

八、课后反思及拓展延伸:通过本节课的学习,我发现学生们在将实际问题转化为方程方面还存在一些困难,我在课后会加强这方面的训练。

同时,我也会鼓励学生们在课后多做一些类似的练习,以巩固所学的内容。

对于学有余力的学生,我可以引导他们学习一些更高级的方程,如二元一次方程等。

重点和难点解析:一、教学内容的选取和安排:在教学内容的选取和安排上,我选择了人教版五年级上册数学的方程——解稍复杂的方程作为教学内容。

稍复杂的方程(例3)课件PPT

稍复杂的方程(例3)课件PPT
稍复杂的方程通常包含多个未知 数、多种运算符号和复杂的计算 过程,需要运用代数知识和技巧 进行求解。
教学目标
掌握稍复杂方程的解题步骤和方法
01
通过本节课的学习,学生应掌握解稍复杂方程的基本步骤,包
括去分母、去括号、移项、合并同类项等。
理解方程的根与解的概念
02
学生应理解方程的根与解的概念,知道如何判断一个数是否是
示例
对于方程 (2x + y = 5),我们已知 (x = 2),将其代入原方程得到 (4 + y = 5),从而解出 (y = 1)。
参数法
总结词
通过引入参数来表示未知数,建立参数与已知数之间的关系,从而求解未知数的方法。
详细描述
参数法是通过引入参数来表示未知数,然后建立参数与已知数之间的关系式,最后求解该 关系式得到未知数的值。这种方法通常用于解决含有较多未知数的复杂问题。
及时反馈
建议学生在遇到问题时及时向老师 或同学请教,以便及时解决疑惑。
下节课预告
下节课将讲解一元二次方程的解 法,包括配方法、公式法和因式
分解法等。
还会介绍一元二次方程在实际问 题中的应用,如计算利润、面积
等。
学生需要提前预习相关知识,准 备好相关的学习资料。
THANKS FOR WATCHING
方程的变形
强调了方程变形在解方程 过程中的重要性,以及如 何正确变形。
方程的分类
讲解了简单的一元一次方 程、一元二次方程和分式 方程的解法。
对学生的建议与指导
多做练习
建议学生多做一些练习题,以巩 固所学知识和提高解题能力。
独立思考
鼓励学生独立思考,不要依赖答案 或参考书,培养自主解决问题的能 力。

第5单元----⑧稍复杂方程解决问题3

第5单元----⑧稍复杂方程解决问题3
填空
(1)男同学人数是女同学的3倍。 如果女同学有x人,则男同学有( 3x )人, 一共有几人,怎么列式( x+3x )。 男同学比女同学多几人,怎么列式

3x-x

2.红色的玻璃球颗数是蓝色玻璃球的2.5倍。 如果设蓝色玻璃球有x颗,则红色玻璃球有 ( 2.5x )颗。 一共有几颗玻璃球,怎么列式( 2.5x+x ) 红色玻璃球比蓝色玻璃球多几个,怎么列式 ( 2.5x-x)
3.故事书的本数比科技书的3倍少5本。 如果科技书有x本,那么故事书有( 3x-5 )本。 一共有( 4x-5 )本。
例1、地球的表面积为5.1亿平方千米,其中 海洋面积约为陆地面积的2.4倍,陆地面积 和海洋面积分别是多少亿平方千米?(方程解)
陆地面积+海洋面积=总面积5.1亿平方千米 解:设陆地面积是x亿平方千米, 则海洋面积就是2.4x亿平方千米 x+ 2.4x=5.1 3.4x=5.1 x=5.1÷3.4 x=1.5 海洋面积:1.5×2.4=3.6(亿平方千米) 答:陆地面积是1.5亿万平方千米, 海洋面积是3.6亿万平方千米。 。
动脑筋:果园里有果树共96棵,其中梨树是 桃树的2倍,橘树是桃树的3倍。这三种树 各有多少棵?
桃树+梨树+橘树=总数96棵 解:设桃树是x棵,那么梨树就是2x棵, 橘树就是3x棵。 x+2x+3x=96 6x=96 x=96÷6 x=16 梨树:16×2=32(棵) 橘树:16×3=48(棵) 答:桃树16棵,梨树32棵,橘树48棵。
2.妈妈今年比小明大24岁,并且妈妈4岁 解:设小明x 岁,则妈妈就3x岁。 3x-x=24 2x=24 x=24÷2 x=12 妈妈岁数:12×3=36(岁) 答:今年小明12岁,妈妈36岁。

稍复杂方程例3

稍复杂方程例3
列方程解已知两个倍数关系求两个 数的应用题时,要注意以下三点: 第一,题里有两个未知数,可以先选择 一个设为x,另一个未知数用含有x的式 子表示,列出方程; 第二,解方程,求出x后,再求另一个 未知数; 第三,通过列式计算,检验两个得数的 和及倍数关系是否符合已知条件。
1、王新买了一本书和一支钢笔共用去 16元,一本书的价钱刚好是一支钢笔 的4倍,一本书和一支钢笔各多少钱?
对应练习
2、一套衣服,裤子的价格比上衣便宜12 元,上衣的价格是裤子的2倍,
裤子和上衣分别多少元?
上衣的价格-裤子的价格=相差价格
3、甲车每小时比乙车每小时少行10km,
乙车的速度是甲车的1.2倍,
甲车的速度是多少?
乙车的速度-甲车的速度=相差速度 解:设甲车的速度是xkm。 1.2x-x=10 (1.2-1)x=10 0.2x=10 答:甲车的 0.2x÷0.2=10÷0.2 速度是50km。 X=50
本,一共花了0.48 元,
练习本的单价是铅笔的 2 倍,
铅笔和练习本的单价各是多少钱?
学习列方程解答差倍的应用题 补充例2 学校参加科技组的男生比女生多9人, 其中男生人数是女生的2.5倍。 参加科技组男、女生各有多少人。
对应练习
1、小明收集的邮票比小红多60枚, 小明收集的是小红的3倍,
小明和小红收集的邮票各是多少枚? 小明收集的枚数-小红收集的枚数=相差枚数
列方程解答和倍或差倍 的应用题
学会分析“已知有两个数的 和或差,和两个数的倍数关系, 求两数各是多少”的应用题,正 确地列出方程解答。
一、复习准备 填空
(1)孩子年龄为x岁,来自妈妈的年龄是孩子年龄的3倍,
妈妈年龄为( 3x )岁,
妈妈和孩子一共( x+3x )岁,

稍复杂的方程(例3)

稍复杂的方程(例3)
苹果的质量+橘子的质量=苹果和橘子共有的质量
3χ +χ=348
(3+1)χ=348
4χ=348
4χ÷4=348÷4
χ=87 87×3=261(岁)
答:苹果的质量是261千克,橘子的质量是87千克。
养殖场白兔比黑兔少16只,黑兔是白兔的3倍, 白兔和黑兔各多少只? 解:设白兔为χ 只,则黑兔为3χ只。 黑兔的只数 - 白兔的只数 = 相差数
解:设陆地面积是χ亿平方千米,则海洋面积是2.4χ亿平方千米。 陆地面积 + 海洋面积 = 地球表面积
乘法分配律 χ+2.4χ=5.1 (1+2.4)χ=5.1
3.4χ=5.1 3.4χ÷3.4=5.1÷3.4 χ=1.5 2.4×1.5=3.6(亿平方千米) 或5.1-1.5=3.6(亿平方千米)
2、 父亲的年龄是女儿的5倍,并且父亲 比女儿大32岁,父、女两人各多少岁?
解:设设女儿的年龄是X岁,则父亲的年龄是5χ岁
父亲的年龄─ 女儿的年龄=父亲比女儿大的年龄
5χ -χ=32
(5-1)χ=32
4χ=32
4χ÷4=32÷4
χ=8 8×5=40(岁)
答:女儿的年龄是8岁,父亲的年龄是40岁。
3、商店运来的苹果和橘子共348千克,已知苹 果的质量是橘子的3倍。运来的苹果和橘子各多 少千克? 解:设橘子的质量是X千克,则苹果的质量是3χ千克。
(1)地球的表面积包括( 海洋面积 )和 ( 陆地面积 )两个部分, 地球的表面积=(海洋面积 )+( 陆地面积 )
(2)、海洋面积约为陆地面积的2.4倍,如 果设陆地面积为x亿万平方千米,则海洋面积 为( 2.4X)亿平方千米,这样用含有字母的 式子表示地球的表面积是( X+2.4X ) 亿平方千米。

(小学数学五年级上册第四单元)稍复杂的方程(精选3篇)

(小学数学五年级上册第四单元)稍复杂的方程(精选3篇)

(小学数学五年级上册第四单元)稍复杂的方程(精选3篇)(小学数学五年级上册第四单元)稍复杂的方程篇1教学内容:教科书第70页的例3教学目标:1、解决实际问题中的有关和、差、倍的数量关系。

2、初步学会设计一个未知数,列方程解答含有两个未知数的实际问题。

3、培养学生学会比较、分析、并能应用已学知识解决实际问题的能力。

教学过程:一、复习1、4x+5=54 3×2.1+2x=13.4 0.3x÷2=9 4(x+8)=202、学校科技小组的男生是女生人数的4倍,设女生有x人,男生有()人,男女生共()人。

3、学校图书组有女生x人,男生为女生的2.5倍,男生有()人,男女同学共()人。

4、果园里有桃树45棵,杏树的棵数是桃树的3倍,两种树一共有多少棵?二、新授课教学教科书第70页的例3。

1、分析题目的已知条件和问题。

2、分析本题的数量关系。

请学生说出数量关系,教师板书。

陆地面积+ 海洋面积= 地球表面积教师:这道题目中有两个未知数,而这两个未知数之间存在着倍数关系。

我们在解题时,只要设其中的一个未知数为x,而另一个未知数就可以用这个未知数来表示,为了解方程方便,通常情况下,设一倍数为x。

3、列方程解应用题。

解:设陆地面积为x亿平方千米,海洋面积就为2.4x亿平方千米x + 2.4x = 5.1(1 + 2.4)x = 5.13.4x = 5.13.4x÷3.4 = 5.1÷3.4x=1.5提问:1.5表示什么?(1.5表示陆地面积是1.5亿平方千米)那海洋面积该怎样求呢?一种:5.1-1.5=3.6(亿平方千米)另一种:2.4 x=2.4×1.5=3.6(亿平方千米)答:陆地面积是1.5亿平方千米,海洋面积是3.6亿平方千米。

引导学生进行检验。

三、巩固练习1、甲乙两堆货物共重60吨,乙的重量甲的3倍,甲乙两堆货物各种多少吨?2、苹果重量是梨子重量的4倍,梨子比苹果少600千克,梨子和苹果各重多少千克?3、练习13 (4、6、7题用方程解)学生独立完成,教师评讲小结:今天你学了什么?有什么收获?(小组同学相互交流)四、作业:练习十三(5 —10题)(小学数学五年级上册第四单元)稍复杂的方程篇2教学内容:教科书69页例2教学目标:1、是学生感受数学与现实生活的联系。

《用方程解答含两个未知数的和倍(差倍)应用题》-----教学反思[修改版]

《用方程解答含两个未知数的和倍(差倍)应用题》-----教学反思[修改版]

第一篇:《用方程解答含两个未知数的和倍(差倍)应用题》-----教学反思《用方程解答含两个未知数的和倍(差倍)应用题》-----教学反思“稍复杂的方程(三)”是人教版数学五年级上册第70的内容。

过去,解方程的教学与列方程解应用题的教学是分开进行的,前者属于计算,后者属于应用。

而现在,在学习“稍复杂的方程”时,是由实际问题引入方程,使学生在现实背景下求解方程并检验。

教材这样的处理有助于学生理解解方程的过程,同时也有利于加强数学知识与现实世界的联系,有利于培养学生的数学应用意识。

正是由于这节课担负着教学列方程和教学解方程的双重任务,所以本节课对于学生要掌握的知识量来说是非常大的。

本节课我本着“数学来源于生活,又服务于生活”这一教学理念,从学生的实际出发,抓住了列方程和解方程这一双重任务。

整节课自始自终关注学生想要的数学(如:如何设未知数和如何找等量关系式等)来教学,使学生在轻松快乐的学习氛围中学习数学,从而把知识转化、内化为学生的智慧和品质。

具体来说,收获如下︰1、.尽自己所能帮助学生突破本课教学的重难点。

先来说本课教学的难点。

本课教学的难点是如何正确设未知数,找出等量关系列方程解决问题。

其实,这不仅是学生,就包括我们成人在内,在遇到列方程解应用题时都要认真考虑如何正确设未知数,找出等量关系列方程解决问题。

所以在这一环节,我有必要帮助学生一步步突破这种用方程解答含两个未知数的和倍(差倍)应用题的难点。

而在这一环节,我觉得我做得非常到位,我设计了一个“这道题中应该把谁设为未知数x,试着列出数量关系式并列出方程”这样一个问题,在合作中解决重难点,不足的地方老师补充。

因为他们知道怎样正确设未知数,就能找出等量关系列方程解决问题了。

本课教学的重点是让学生学会用方程解答含有两个未知数的和倍(差倍)实际问题。

可以说他涵盖了此种类型应用题的全部正确过程。

因为难点突破的比较实在可行,学生印象扎实,学生当然消化吸收得好。

11稍复杂的方程的解法

11稍复杂的方程的解法
方程的解。
2. 等式性质 等式性质1:在等式的两边同时 加上(或减去)同一个数,所得 的结果仍是等式。 等式性质2:在等式的两边同时 乘(或除以)同一个数(除数不 能是0),所得的结果仍是等式。
3.移项
把等式中的某一项从方程的一边 改变符号后移到方程的另一边,
叫做移项。
移项变号法则:移项过等号,一 定要变号。
例3.解方程:
(1)12+(5x-7)=70-8 (2)24-2(x-2)=70-6x
去括号之前一定要看清括号前面的符号,特别 是括号前面如果是“-”号时,不要忘记将括 号里面每一项都要变号。如果括号前面有系数 时,根据乘法分配律进行计算时,不要漏乘。
例4.解方程:
7 (1) x=14 10 3 1 (2) x- x=8 5 3
解方程的方法可以根据实际情况 采用不同的方法。
课堂练习
5 • (1) x=45 9
• (2)1.7x-0.2x=3
8 5 • (3) x- x=27 9 9
• (4)3.2×4+4x=48
课堂练习 1 2 • (5)7x+ = 5 3
• (6)72-4x=60 • (7)0.51x+0.6×4=7.5
第十一讲
稍复杂的方程的解法
1.等式及方程 像3+2=5,5x+3=4, 2 3x+2y=6, 3a =12等,这样的用 “=”连接,表示相等关系的式 子叫做等式。其中5x+3=4,3x 2 +2y= 6, =12这种含有未知数 3a 的等式叫做方程。
1.等式及方程 2 5x+3=4,3x+2y=6, 3a =12 在上面的方程中像5x+3=4这样的 方程,只含有一个未知数,并且未 知数的次数是1,系数不等于0的方 程叫做一元一次方程。使方程左右 两边的值相等的未知数的值,叫做
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大明小学“三三五式”课堂教学模式课案
课题
稍复杂的方程3
时间
11、12
年级
五年级
课型
新授课
备课教师
赵彩艳




A类:结合具体情境使学生掌握根据两积之和的数量关系列方程,会把小括号内的式子看作一个整体求解的思路和方法。
B类:使学生通过学习两积之和的数量关系,来理解两积之差、两商之和、两商之差的数量关系,培养举一反三的能力。
答:苹果总价钱是2.4.
教学过程设计
修改意见
四、巩固练习拓展延伸
1.林场种杨树350棵,比种松树的4倍少50棵,林场种松树多少棵?
2.爷爷今年76岁了,比孙子年龄的6倍还大4岁。孙子今年多少岁?
3.小王买了一支钢笔和一支圆珠笔,共花了7.86元,钢笔的价钱是圆珠笔价钱的2倍,钢笔和圆珠笔的价钱各是多少元?
C类:让学生经历算法多样化的过程,利用迁移类推的方法在解决问题的过程中体会数学与生活的密切联系。
学习重、难点
明确数量关系列方程解决问题。
教具
小白板
教学过程设计
修改意见
一、复习导入
列方程式应该注意什么?
二、自探合作解决问题
1、出示学路建议:
(1)、独立思考列出关系式。
(2)、列出算式并计算。
(3)、最后把算式整理在小白板上。
五、板书设计:
稍复杂的方程2
苹果的总价﹢梨的总价﹦总价钱
两种总价学路建议独学。
3、学生合作交流、整理在白板上。
三、交流展示质疑解惑
1、生列出关系式
苹果的总价﹢梨的总价﹦总价钱
两种总价的和×2﹦总价钱
2.列算式
2x﹢2.8×2﹦10.4
(2.8﹢x)×2﹦10.4
(2.8﹢x)×2÷2﹦10.4÷2 (把谁看成整体)
2.8﹣2.8﹢x﹦5.2﹣2.8
x﹦2.4
相关文档
最新文档