第十七届全国高中生物理竞赛复赛试题及答案

合集下载

高中生物理竞赛复赛试题及答案

高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。

假定空气和水蒸气均可以当作理想气体处理。

二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。

1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。

三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。

圆环处于超导状态,环内电流为100A 。

经过一年,经检测发现,圆环内电流的变化量小于610A -。

试估算该超导材料电阻率数量级的上限。

提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。

四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。

双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。

一般双星系统距离其他星体很远,可以当作孤立系统处理。

现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。

他们正绕两者连线的中点作圆周运动。

1. 试计算该双星系统的运动周期T 计算。

2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。

为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

第十七届全国中学生物理竞赛复赛试题+答案-推荐下载

第十七届全国中学生物理竞赛复赛试题+答案-推荐下载

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

物理竞赛复赛试题

物理竞赛复赛试题

物理竞赛复赛试题一、选择题(每题3分,共30分)1. 一个物体在水平面上以恒定速度运动,其动能的变化情况是:A. 逐渐增加B. 逐渐减少C. 不变D. 先增加后减少2. 根据牛顿第三定律,以下说法正确的是:A. 作用力和反作用力大小相等,方向相反B. 作用力和反作用力可以是不同性质的力C. 作用力和反作用力作用在同一个物体上D. 作用力和反作用力可以同时消失3. 一个理想气体在等压过程中,其温度和体积的关系是:A. 温度和体积成正比B. 温度和体积成反比C. 温度和体积无关D. 温度随体积的增加而减少4. 根据麦克斯韦方程组,以下描述正确的是:A. 电场总是由电荷产生B. 磁场可以由变化的电场产生C. 电场和磁场总是相互独立D. 电荷的存在必然伴随着磁场5. 一个物体从静止开始自由下落,其下落过程中的加速度是:A. 恒定的B. 逐渐增加C. 逐渐减少D. 先增加后减少6. 光的双缝干涉实验中,相邻明条纹之间的距离与以下哪个因素无关?A. 双缝间距B. 光的波长C. 观察屏与双缝的距离D. 光源的强度7. 根据热力学第一定律,以下说法正确的是:A. 能量可以在不同形式之间转换,但总量不变B. 能量守恒定律只适用于封闭系统C. 能量守恒定律不适用于开放系统D. 能量可以被创造或消失8. 一个物体在斜面上下滑,摩擦力对其做功的情况是:A. 总是做正功B. 总是做负功C. 有时做正功,有时做负功D. 从不对外做功9. 根据相对论,以下说法正确的是:A. 时间是绝对的B. 质量随着速度的增加而增加C. 长度随着速度的增加而增加D. 光速在所有惯性参考系中都是相同的10. 在电路中,欧姆定律描述的是:A. 电流与电压成正比,与电阻成反比B. 电流与电阻成正比,与电压成反比C. 电压与电流成正比,与电阻无关D. 电阻与电流成正比,与电压无关二、填空题(每题2分,共20分)11. 根据库仑定律,两个点电荷之间的力与它们的电荷量的乘积成正比,与它们之间的距离的________成反比。

第十七届全国中学生物理竞赛复赛试题+答案

第十七届全国中学生物理竞赛复赛试题+答案

第十七届全国中学生物理竞赛复赛试题一、在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度l=76cm,管内封闭有n=1.0×10-3mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1,普适气体常量R=8.31J·(mol·K)-1图1二、如图1所示,在真空中有一个折射率为n(n>n0,n0为真空的折射率),半径为r的质地均匀的小球,频率为ν的细激光束在真空中沿直线BC传播,直线BC与小球球心O的距离为l(l<r),光束于小球体表面的点C经折射进入小球(小球成为光传播的介质),并于小球表面的点D又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小.三、1995年,美国费米国家实验室CDF实验组和DO实验组在质子反质子对撞机TEVATRON的实验中,观察到了顶夸克,测得它的静止质量m1=1.75×1011eV/c2=3.1×10-25kg,寿命τ=0.4×10-24s,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为U(r)=-k(4as/3r),式中r是正、反顶夸克之间的距离,as=0.12是强相互作用耦合常数,k是与单位制有关的常数,在国际单位制中k=0.319×10-25J·m.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离r0.已知处于束缚态的正、反夸克粒子满足量子化条件,即2mv(r0/2)=n(h/2π),n=1,2,3……式中mv(r0/2)为一个粒子的动量mv与其轨道半径r0/2的乘积,n为量子数,h=6.63×10-34J·s为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T.你认为正、反顶夸克的这种束缚态能存在吗?四、宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为v0,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:(1)当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;(2)飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;(3)小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量.1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为E1.如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,已使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用E2表示,问E1/E2为多少?图2五、如图2所示,在真空中建立一坐标系,以水平向右为x轴正方向,竖直向下为y轴正方向,z轴垂直纸面向里.在0≤y≤L的区域内有匀强磁场,L=0.80m,磁场的磁感强度的方向沿z轴的正方向,其大小B=0.10T.今把一荷质比q/m=50C·kg-1的带正电质点在x=0,y=-0.20m,z=0处静止释放,将带电质点过原点的时刻定为t=0时刻,求带电质点在磁场中任一时刻t的位置坐标.并求它刚离开磁场时的位置和速度.(取重力加速度g=10m·s-2)六、普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A和包层B组成,B的折射率小于A的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A和包层B的分界面上发生多次全反射.现在利用普通光纤测量流体F的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O,经端面折射进入光纤,在光纤中传播.由点O出发的光束为圆锥形,已知其边缘光线和轴的夹角为α0,如图3甲所示.最后光从另一端面出射进入流体F.在距出射端面h1处放置一垂直于光纤轴的毛玻璃屏D,在D上出现一圆形光斑,测出其直径为d1,然后移动光屏D至距光纤出射端面h2处,再测出圆形光斑的直径d2,如图3乙所示.图31.若已知A和B的折射率分别为nA与nB,求被测流体F的折射率nF的表达式.2.若nA、nB和α0均为未知量,如何通过进一步的实验以测出nF的值?参考答案一、解:设玻璃管内空气柱的长度为h,大气压强为p0,管内空气的压强为p,水银密度为ρ,重力加速度为g,由图4知p+(l-h)ρg=p0,①根据题给的数据,可知p0=lρg,得p=ρgh,②若玻璃管的横截面积为S,则管内空气的体积为V=Sh,③由②、③式,得p=(V/S)ρg,④即管内空气的压强与其体积成正比,由克拉珀龙方程pV=nRT,得ρg(V2/S)=nRT,⑤由⑤式可知,随着温度降低,管内空气的体积变小,根据④式可知管内空气的压强也变小,压强随体积的变化关系为p-V图上过原点的直线,如图5所示.在管内气体的温度由T1降到T2的过程中,气体的体积由V1变到V2,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有图4 图5W=(1/2)ρg((V1/S)+(V2/S))(V1-V2)=ρg(V12-V22)/2S,⑥管内空气内能的变化为ΔU=nCV(T2-T1),⑦设Q为外界传给气体的热量,则由热力学第一定律W+Q=ΔU,有Q=ΔU-W,⑧由⑤、⑥、⑦、⑧式代入得Q=n(T2-T1)(CV+(1/2)R),⑨代入有关数据得Q=-0.247J,Q<0,表示管内空气放出热量,故空气放出的热量为Q′=-Q=0.247J.(10)二、解:在由直线BC与小球球心O所确定的平面中,激光光束两次折射的光路BCDE如图6所示,图中入射光线BC与出射光线DE的延长线交于点G,按照光的折射定律有图6n0sinα=nsinβ,①式中α与β分别是相应的入射角和折射角,由几何关系还可知sinα=l/r.②激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p和p′相等,即p=hν/c=p′,③式中c为真空中的光速,h为普朗克常量.因射入小球的光束中光子的动量p沿BC方向,射出小球的光束中光子的动量p′沿DE方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知2θ=2(α-β).④若取线段GN1的长度正比于光子动量p,GN2的长度正比于光子动量p′,则线段N1N2的长度正比于光子动量的改变量Δp,由几何关系得Δp=2psinθ=2(hν/c)sinθ,⑤△GN1N2为等腰三角形,其底边上的高GH与CD平行,故光子动量的改变量Δp的方向沿垂直CD的方向,且由G指向球心O.光子与小球作用的时间可认为是光束在小球内的传播时间,即Δt=2rcosβ/(cn0/n),⑥式中cn0/n是光在小球内的传播速率,按照牛顿第二定律,光子所受小球平均作用力的大小为f=Δp/Δt=n0hνsinθ/nrcosβ,⑦按照牛顿第三定律,光子对小球的平均作用力大小F=f,即F=n0hνsinθ/nrcosβ,⑧力的方向由点O指向点G.由①、②、④及⑧式,经过三角函数关系运算,最后可得F=(n0lhν/nr2)(1-).⑨三、解:1.相距为r的电量为Q1与Q2的两点电荷之间的库仑力FQ与电势能UQ公式为FQ=k(Q1Q2/r2),UQ=-k(Q1Q2/r),①现在已知正反顶夸克之间的强相互作用势能为U(r)=-k(4as/3r),根据直接类比可知,正反顶夸克之间的强相互作用力为F(r)=-k(4as/3r2),②设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v,因二者相距r0,二者所受的向心力均为F(r0),二者的运动方程均为m1v2/(r0/2)=k(4as/3r02).③由题给的量子化条件,粒子处于基态时,取量子数n=1,得2m1v(r0/2)=h/2π.④由③与④两式,解得r0=3h2/8π2m1ask,⑤代入数据得r0=1.4×10-17m.⑥2.由③、④两式,可得v=(π/h)(k4as/3),⑦由v和r0可算出正反顶夸克做匀速圆周运动的周期T为T=2π(r0/2)/v=h3/2π2m1(k4as/3)2,⑧代入数值得T=1.8×10-24s,⑨由此可知τ/T=0.22.(10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.四、解:1.设太阳的质量为M0,飞行器的质量为m,飞行器绕太阳做圆周运动的轨道半径为R.根据所设计的方案,可知飞行器是从其原来的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的,该椭圆既与飞行器原来的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短的时间内,由v0变为某一值u0.设飞行器椭圆轨道达小行星轨道到时的速度为u,因大小为u0和u的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律,得u0R=6uR,①由能量关系,有(1/2)mu02-G(M0m/R)=(1/2)mu2-G(M0m/6R),②由牛顿万有引力定律,有G(M0m/R2)=m(v02/R),或v0=.③解①、②、③式,得u0=v0,④u=v0.⑤设小行星绕太阳运动的速度为v,小行星的质量M,由牛顿万有引力定律,有GM0M/(6R)2=Mv2/6R,得v=v0,⑥可以看出v>u.⑦由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道外时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击.可以把小行星看做是相对静止的,飞行器以相对速度为v-u射向小行星,由于小行星的质量比飞行器的质量大得多,碰撞后,飞行器以同样的速率v-u弹离,即碰撞后,飞行器相对小行星的速度的大小为v-u,方向与小行星的速度的方向相同,故飞行器相对太阳的速度为u1=v+v-u=2v-u,或将⑤、⑥式代入得u1=(v0.⑧如果飞行器能从小行星的轨道上直接飞出太阳系,它应具有的最小速度为u2,则有(1/2)mu22-G(M0m/6R)=0,得u2=v0,⑨可以看出u1=v0=u2.(10)飞行器被小行星撞击后具有的速度足以保证它能飞出太阳系.2.为使飞行器能进入椭圆轨道,发动机应使飞行器的速度由v0增加到u0,飞行器从发动机取得的能量E1=(1/2)mu02-(1/2)mv02=(1/2)m(12/7)v02-(1/2)mv02=(5/14)mv02.(11)若飞行器从其圆周轨道上直接飞出太阳系,飞行器应具有的最小速度为u3,则有(1/2)mu32-G(M0m/R)=0,由此得u3=v0.(12)飞行器的速度由v0增加到u3,应从发动机获取的能量为E2=(1/2)mu32-(1/2)mv02=(1/2)mv02,(13)所以E1/E2=(5/14)mv22/(1/2)mv22=0.71.(14)五、解法一:带电质点静止释放时,受重力作用做自由落体运动,当它到达坐标原点时,速度为v1==2.0m·s-1,①方向竖直向下.带电质点进入磁场后,除受重力作用外,还受到洛伦兹力作用,质点速度的大小和方向都将变化,洛伦兹力的大小和方向亦随之变化.我们可以设想,在带电质点到达原点时,给质点附加上沿x轴正方向和负方向两个大小都是v0的初速度,由于这两个方向相反的速度的合速度为零,因而不影响带电质点以后的运动.在t=0时刻,带电质点因具有沿x轴正方向的初速度v0而受洛伦兹力f1的作用,即f1=qv0B,②其方向与重力的方向相反.适当选择v0的大小,使f1等于重力,即qv0B=mg,③v0=g/(q/m)B=2.0m·s-1,④只要带电质点保持④式决定的v0沿x轴正方向运动,f1与重力的合力永远等于零.但此时,位于坐标原点的带电质点还具有竖直向下的速度v1和沿x轴负方向的速度v0,二者的合成速度大小为v==2.8m·s-1,⑤方向指向左下方,设它与x轴的负方向的夹角为α,如图7所示,则tgα=v1/v0=1,α=π/4,⑥图7因而带电质点从t=0时刻起的运动可以看做是速率为v0,沿x轴的正方向的匀速直线运动和在xOy平面内速率为v的匀速圆周运动的合成.圆周半径为R=mv/qB=0.56m.⑦带电质点进入磁场瞬间所对应的圆周运动的圆心O′位于垂直于质点此时速度v的直线上,由图7可知,其坐标为xO′=Rsinα=0.40m,⑧yO′=Rcosα=0.40m.圆周运动的角速度为ω=v/R=5.0rad·s-1.⑨由图7可知,在带电质点离开磁场区域前的任何时刻t,质点位置的坐标为x=v0t-[Rsin(ωt+α)-xO′],(10)y=yO′-Rcos(ωt+α),(11)式中v0、R、ω、α、xO′、yO′已分别由④、⑦、⑨、⑥、⑧各式给出.带电质点到达磁场区域下边界时,y=L=0.80m,代入(11)式,再代入有关数值,解得t=0.31s,(12)将(12)式代入(10)式,再代入有关数值,得x=0.63m,(13)所以带电质点离开磁场下边界时的位置的坐标为x=0.63m,y=0.80m,z=0.(14)带电质点在磁场内的运动可分解成一个速率为v的匀速圆周运动和一个速率为v0的沿x轴正方向的匀速直线运动,任何时刻t,带电质点的速度v′便是匀速圆周运动速度v与匀速直线运动的速度v0的合速度.若圆周运动的速度在x方向和y方向的分量为vx′、vy′,则质点合速度在x方向的分速度分别为vx′=vx+v0,(15)vy′=vy.(16)虽然=v,v由⑤式决定,其大小是恒定不变的,v0由④式决定,也是恒定不变的,但在质点运动过程中因v的方向不断变化,它在x方向和y方向的分量vx和vy都随时间变化,因此vx′和vy′也随时间变化,取决于所考察时刻质点做圆周运动速度的方向,由于圆周运动的圆心的y坐标恰为磁场区域宽度的一半,由对称性可知,带电质点离开磁场下边缘时,圆周运动的速度方向应指向右下方,与x轴正方向夹角α′=π/4,故代入数值得vx=vcosα′=2.0m·s-1,vy=vsinα′=2.0m·s-1,将以上两式及⑤式代入(15)、(16)式,便得带电质点刚离开磁场区域时的速度分量,它们分别为vx′=4.0m·s-1,(17)vy′=2.0m·s-1,(18)速度大小为v′==4.5m·s-1,(19)设v′的方向与x轴的夹角为β,如图8所示,则tgβ=vy′/vx′=1/2,得β=27°.(20)图8解法二:若以带电质点到达坐标原点O的时刻作为起始时刻(t=0),则质点的初速度为v1==2.0m·s-1,①方向沿y轴正方向.进入磁场区后,带电质点将受到洛伦兹力作用,洛伦兹力在x方向的分力取决于质点在y方向的分速度,因此质点动量在x方向的分量的增量为mΔvx=qvyBΔt=qΔyB,②Δy是带电质点在Δt时间内沿y方向的位移,质点在磁场中运动的整个过程中,此式对每一段Δt时间都成立,所以在t=0到t=t时间内x方向的分量的改变为mvx-mv0x=qB(y-y0),因初始时刻(t=0),带电质点在x轴方向的动量mv0x为零,其位置在原点,y0=0,因而得mvx=qyB,即vx=(qB/m)y.③当带电质点具有x方向的速度后,便立即受到沿y负方向的洛伦兹力的作用.根据牛顿第二定律,在y方向上有加速度ay,则may=mg-qvxB,④将③式代入④式,得may=-[(qB)2/m](y-(m2/q2B2)g),⑤令y′=y-D,⑥式中D=m2g/(qB)2=g/(q/m)2B2=0.40m,⑦即在y方向作用于带电质点的合力Fy=-ky′,其中k=q2B2/m,Fy是准弹性力,在Fy作用下,带电质点在y′方向的运动是简谐运动,其振动的圆频率为ω==5.0rad·s-1,⑧y′随时间变化的规律为y′=Acos(ωt+φ0),⑨或y=Acos(ωt+φ0)+D,(10)图9A与φ0是待求的常量,质点的简谐运动可以用参考圆来描写,以所考察的简谐运动的振幅A为半径作一圆,过圆心O1作一直角坐标x′O1y′.若有质点M沿此圆周做匀速率圆周运动,运动的角速度等于所考察简谐运动的角频率ω,且按逆时针方向转动,在t=0时刻,点M的在圆周上的位置恰使连线O1M与y′轴的夹角等于⑨式中的常量φ0,则在任意时刻t,点O1与点M的连线与y′轴的夹角等于ωt+φ0,于是连线O1M在y′轴上的投影即为⑨式所示的简谐运动,将x′轴平行下移D=0.40m,连线O1M在y轴的投影即如(10)式所示(参看图9所示),点M做圆周运动的速度大小v=Aω,方向与O1M垂直,速度v的y分量就是带电质点沿y轴做简谐运动的速度,即vy=-Aωsin(ωt+φ0),(11)(10)和(11)两式中的A和φ0可由下面的方法求得:因为已知在t=0时,带电质点位于y=0处,速度vy=v1,把这个条件代入(10)式与(11)式,得Acosφ0+D=0,v1=-Aωsinφ0.解上面两式,结合①、⑧式,注意到振幅A总是正的,故得φ0=5π/4,(12)A=0.56m.(13)把(10)式代入③式,便得带电质点沿x轴运动的速度为vx=ωD+Aωcos(ωt+φ0),(14)(14)式表示带电质点在x方向上的速度是由两个速度合成的,即沿x方向的匀速运动速度ωD和x方向的简谐运动速度Aωcos(ωt+φ0)的合成,带电质点沿x方向的简谐运动匀速运动的位移为x′=ωDt.(15)由沿x方向的简谐振动速度Aωcos(ωt+φ0)可知,沿x方向振动位移的振幅等于速度的最大值与角频率的比值(参看图8),即等于A.由参考圆方法可知,沿x方向的振动的位移x″具有如下的形式,即Acos(ωt+φ0-(π/2))=Asin(ωt+φ0),它可能是x″=Asin(ωt+φ0),亦可能是x″-b=Asin(ωt+φ0).在本题中,t=0时刻,x应为零,故前一表示不符合题意.后一表示式中,b应取的值为b=-Asinφ0,故有x″=-Asinφ0+Asin(ωt+φ0).(16)带电质点在x方向的合位移x=x′+x″,由(15)、(16)式,得x=ωDt-Asinφ0+Asin(ωt+φ0).(17)(17)、(10)、(14)和(11)式分别给出了带电质点在离开磁场区域前任何时刻t的位置坐标和速度的x分量和y分量,式中常量ω、A、φ0、D已分别由⑧、(13)、(12)和⑦式给出.当带电质点达到磁场的下边界时,有y=L=0.80m,(18)将与(10)式有关的数据代入,可解得t=0.31s,(19)代入(17)式,得x≈0.63m,(20)将(19)式分别代入(14)、(11)式,得vx=4.0m·s-1,vy=2.0m·s-1,速度大小为v==4.5m·s-1,(21)速度方向为α=arctg(vy/vx)=27°.(22)图10六、1.由于光纤内所有光线都从轴上的点O出发,在光纤中传播的光线都与轴相交,位于通过轴的纵剖面内,图10为纵剖面内的光路图,设由点O发出的与轴的夹角为α的光线,射至A、B分界面的入射角为i,反射角也为i.该光线在光纤中多次反射时的入射角均为i,射至出射端面时的入射角为α.若该光线折射后的折射角为θ,则由几何关系和折射定律可得i+α=90°,①nAsinα=nFsinθ.②当i大于全反射临界角iC时将发生全反射,没有光能损失,相应的光线将以不变的光强射向出射端面,而i<iC的光线则因在发生反射时有部分光线通过折射进入B,反射光强随着反射次数的增大而越来越弱,以致在未到达出射端面之前就已经衰减为零了.因而能射向出射端面的光线的i的数值一定大于或等于iC,iC的值由下式决定,即nAsiniC=nB,③与iC对应的α值为αC=90°-iC,④当α0>αC时,即sinα0>sinαC=cosiC=时,或nAsinα0>时,由点O发出的光束中,只有α≤αC的光线才满足i≥iC的条件,才能射向端面,此时出射端面处α的最大值为αmax=αC=90°-iC.⑤若α0<αC,即nAsinα0<时,则由点O发出的光线都能满足i>iC的条件,因而都能射向端面,此时出射端面处α的最大值为αmax=α0.⑥端面处入射角α最大时,折射角θ也达最大值,设为θmax,由②式可知nFsinθmax=nAsinαmax.⑦由⑥、⑦式可得,当α0<αC时,有nF=nAsinα0/sinθmax,⑧当α0≥αC时,由③至⑦式可得,nF=nAcosiC/sinθmax=/sinθmax,⑨θmax的数值可由图11上的几何关系求得sinθmax=((d2-d1)/2)/.(10)图11于是当α0<αC时,nF的表达式应为nF=nAsinα0(/((d2-d1)/2),(11)当α0≥αC时,有nF=(/((d2-d1)/2).(12)2.可将输出端介质改为空气,光源保持不变,按同样手续再做一次测量,可测得h1′、h2′、d1′、d2′,这里打撇的量与前面未打撇的量意义相同.已知空气的折射率等于1,故有当α0<αC时,有1=nAsinα0/((d2′-d1′)/2),(13)当α0≥αC时,有1=(/((d2′-d1′)/2),(14)将(11)、(12)两式分别与(13)、(14)式相除,均得nF=((d2′-d1′)/(d2-d1))(/).(15)此结果适用于α0为任何值的情况.。

第17届全国中学生物理竞赛预赛试卷含答案

第17届全国中学生物理竞赛预赛试卷含答案

第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。

一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。

与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。

图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。

2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。

二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。

一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。

将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。

物块在桌面上运动时,绳将缠绕在立柱上。

已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚 3.0 cm ,折射率 1.5n =。

第17届全国中学生物理竞赛预赛试卷含答案

第17届全国中学生物理竞赛预赛试卷含答案

第十七届全国中学生物理竞赛预赛试题全卷共八题,总分为140分。

一、(10分)1.(5分)1978年在湖北省随县发掘了一座战国早期(距今大约2400多年前)曾国国君的墓葬——曾侯乙墓,出土的众多墓葬品中被称为中国古代文明辉煌的象征的是一组青铜铸造的编钟乐器(共64件),敲击每个编钟时,能发出音域宽广、频率准确的不同音调。

与铸造的普通圆钟不同,圆钟的横截面呈圆形,每个编钟的横截面均呈杏仁状。

图预17-1-1为圆钟截面的,图预17-1-2为编钟的截面,分别敲击两个钟的A 、B 、C 和D 、E 、F 三个部位,则圆钟可发出________个基频的音调,编钟可发出________个基频的音调。

2.(5分)我国在1999年11月20日用新型运载火箭成功地发射了一艘实验航天飞行器,它被命名为___________号,它的目的是为____________________作准备。

二、(15分)一半径为 1.00m R =的水平光滑圆桌面,圆心为O ,有一竖直的立柱固定在桌面上的圆心附近,立柱与桌面的交线是一条凸的平滑的封闭曲线C ,如图预17-2所示。

一根不可伸长的柔软的细轻绳,一端固定在封闭曲线上的某一点,另一端系一质量为27.510kg m =⨯-的小物块。

将小物块放在桌面上并把绳拉直,再给小物块一个方向与绳垂直、大小为0 4.0m/s v =的初速度。

物块在桌面上运动时,绳将缠绕在立柱上。

已知当绳的张力为0 2.0N T =时,绳即断开,在绳断开前物块始终在桌面上运动.1.问绳刚要断开时,绳的伸直部分的长度为多少?2.若绳刚要断开时,桌面圆心O 到绳的伸直部分与封闭曲线的接触点的连线正好与绳的伸直部分垂直,问物块的落地点到桌面圆心O 的水平距离为多少?已知桌面高度0.80m H =.物块在桌面上运动时未与立柱相碰.取重力加速度大小为210m/s .2000年三、(15分)有一水平放置的平行平面玻璃板H ,厚 3.0 cm ,折射率 1.5n =。

最新武汉第17届全国中学生物理竞赛决赛试题及答案资料

最新武汉第17届全国中学生物理竞赛决赛试题及答案资料

第十七届全国中学生物理竞赛决 赛 试 题一、(30分)近来一种新型的定点起重设备“平衡吊”被广泛应用于几十到几百千克工件的频繁吊运,其结构的示意图如图决17-1所示。

平衡吊主要由传动、杆系、回转座和立柱组成。

杆系是由ABD 、DEF 、BC 、CE 四杆铰接组成的四连杆机构,DECB 在任何情况下都是一个平行四边形。

杆系的A 处是一水平的转轴,通过电机可控制转轴,使之固定的竖直槽内的不同位置,从而调节挂在绞接于F 处吊钩上的重物的高度。

杆ABD 可绕转轴A 在竖直平面内无摩擦地转动。

杆系的C 点是能在光滑的水平槽上滑动的铰链,杆BC 和EC 都可绕C 点在竖直平面内转动。

绕铰链转动的摩擦均忽略不计。

下面用l 1表示AD 的长度,l 2表示AB 的长度,l 3表示DF 的长度,l 4表示BC 的长度。

(1)若将各杆都视为轻质(无自重)刚体,且无图中配重物时,试论证l 1、l 2、l 3、l 4应满足什么关系才能使平衡吊的吊钩(包括所吊的重物)位于同一水平面上的不同位置时平衡吊都能处于平衡状态。

(2)若考虑各杆的自重,为使平衡吊的吊钩(包括所吊的重物)位于同一水平面上不同位置时平衡吊都能处于平衡状态,必须在杆ABD 的另一端P 处加上配重物,P 点距A 轴的距离为l P 。

设配重物受到的重力大小为GP ,杆的AD 段、DF 段、BC 段、CE 段受到的重力的大小分别为G 1、G 3、G 4和G 5,不计杆的AP 段所受的重力。

问当杆长l 1、l 2、l 3、l 4和l P 已知,且取l 1= l 3、l 2=l 4时配重的大小G P 为多少?二、(共30分)太阳风是从太阳大气外层(称为日冕)不断向星际空间发射的稳定的、由相同数目的质子和电子构成的带电粒子流,它使太阳每年减少的质量相对于太阳质量M S 可忽略不计。

观测表明,太阳风的速度的大小v 随着与太阳中心的距离r 的增加而增大。

现提出一简单的模型来解释太阳风的速度变化的机制:假定日冕中的大量电子可视为理想气体;日冕中的电子气是等温(温度为T )的、各向同性的,以球对称的速率v (r )(太阳风的速率)向外膨胀;太阳风中质子的定向运动速度比电子的小得多,太阳风的速度其实是电子定向运动的速度,太阳风可解释为日冕中的电子气向外的等温膨胀。

第17届全国中学生物理竞赛复赛题参考解答

第17届全国中学生物理竞赛复赛题参考解答

1第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管内空气柱的长度为h ,大气压强为0p ,管内空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知0()p l h g p ρ+-= (1)根据题给的数据,可知0p l g ρ=,得p gh ρ= (2)若玻璃管的横截面积为S ,则管内空气的体积为V Sh = (3)由(2)、(3)式得V p g S ρ= (4) 即管内空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管内空气的体积变小,根据(4)式可知管内空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管内气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)1管内空气内能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9) 代入有关数据得0.247J Q =-0Q <表示管内空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10)评分标准:本题20分(1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。

二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1)式中α与β分别是相应的入射角和折射角,由几何关系还可知sin l rα= (2)1激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p c ν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4) 若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球内的传播时间,即02cos /r t cn nβ∆= (6) 式中0/cn n 是光在小球内的传播速率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七届全国中学生物理竞赛复赛试题题 号 一 二 三 四 五 六 总 计全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管空气的温度缓慢地降低10℃,问在此过程中管空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。

二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。

频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEVATRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J sh =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量. 1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。

六、(25分)普通光纤是一种可传输光的圆柱形细丝,由具有圆形截面的纤芯A 和包层B 组成,B 的折射率小于A 的折射率,光纤的端面和圆柱体的轴垂直,由一端面射入的光在很长的光纤中传播时,在纤芯A 和包层B 的分界面上发生多次全反射.现在利用普通光纤测量流体F 的折射率.实验方法如下:让光纤的一端(出射端)浸在流体F 中.令与光纤轴平行的单色平行光束经凸透镜折射后会聚光纤入射端面的中心O ,经端面折射进入光纤,在光纤中传播.由点O 出发的光束为圆锥形,已知其边缘光线和轴的夹角为0α,如图复17-6-1所示.最后光从另一端面出射进入流体F .在距出射端面1h 处放置一垂直于光纤轴的毛玻璃屏D ,在D 上出现一圆形光斑,测出其直径为1d ,然后移动光屏D 至距光纤出射端面2h 处,再测出圆形光斑的直径2d ,如图复17-6-2所示.1.若已知A 和B 的折射率分别为A n 与B n ,求被测流体F 的折射率F n 的表达式.2.若A n 、B n 和0α均为未知量,如何通过进一步的实验以测出F n 的值?第十七届全国中学生物理竞赛复赛题参考解答一、参考解答设玻璃管空气柱的长度为h ,大气压强为0p ,管空气的压强为p ,水银密度为ρ,重力加速度为g ,由图复解17-1-1可知 0()p l h g p ρ+-= (1) 根据题给的数据,可知0p l g ρ=,得p gh ρ= (2) 若玻璃管的横截面积为S ,则管空气的体积为V Sh = (3)由(2)、(3)式得Vp g Sρ= (4)即管空气的压强与其体积成正比,由克拉珀龙方程pV nRT =得 2V g nRT Sρ= (5)由(5)式可知,随着温度降低,管空气的体积变小,根据(4)式可知管空气的压强也变小,压强随体积的变化关系为p V -图上过原点的直线,如图复解17-1-2所示.在管气体的温度由1T 降到2T 的过程中,气体的体积由1V 变到2V ,体积缩小,外界对气体做正功,功的数值可用图中划有斜线的梯形面积来表示,即有221212121()22V V V W g V V g S S S V ρρ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭- (6)管空气能的变化V 21()U nC T T ∆=- (7) 设Q 为外界传给气体的热量,则由热力学第一定律W Q U +=∆,有Q U W =∆- (8) 由(5)、(6)、(7)、(8)式代入得V 211()2Q n T T C R ⎛⎫=-+ ⎪⎝⎭ (9)代入有关数据得0.247J Q =-0Q <表示管空气放出热量,故空气放出的热量为0.247J Q Q '=-= (10) 评分标准:本题20分 (1)式1分,(4)式5分,(6)式7分,(7)式1分,(8)式2分,(9)式1分,(10)式3分。

二、参考解答在由直线BC 与小球球心O 所确定的平面中,激光光束两次折射的光路BCDE 如图复解17-2所示,图中入射光线BC 与出射光线DE 的延长线交于G ,按照光的折射定律有0sin sin n n αβ= (1) 式中α与β分别是相应的入射角和折射角,由几何关系还可知sin lrα=(2) 激光光束经两次折射,频率ν保持不变,故在两次折射前后,光束中一个光子的动量的大小p 和p '相等,即h p p cν'=- (3) 式中c 为真空中的光速,h 为普朗克常量.因射入小球的光束中光子的动量p 沿BC 方向,射出小球的光束中光子的动量p '沿DE 方向,光子动量的方向由于光束的折射而偏转了一个角度2θ,由图中几何关系可知22()θαβ=- (4)若取线段1GN 的长度正比于光子动量p ,2GN 的长度正比于光子动量p ',则线段12N N 的长度正比于光子动量的改变量p ∆,由几何关系得 2sin 2sin h p p cνθθ∆== (5) 12GN N ∆为等腰三角形,其底边上的高GH 与CD 平行,故光子动量的改变量p ∆的方向沿垂直CD 的方向,且由G 指向球心O .光子与小球作用的时间可认为是光束在小球的传播时间,即02cos /r t cn nβ∆=(6)式中0/cn n 是光在小球的传播速率。

按照牛顿第二定律,光子所受小球的平均作用力的大小为 0sin cos n h p f t nr νθβ∆==∆ (7) 按照牛顿第三定律,光子对小球的平均作用力大小F f =,即 0sin cos n h F nr νθβ=(8)力的方向由点O 指向点G .由(1)、(2)、(4)及(8)式,经过三角函数关系运算,最后可得021n lh F nrν⎡=⎢⎢⎣ (9) 评分标准:本题20分(1)式1分,(5)式8分,(6)式4分,(8)式3分,得到(9)式再给4分。

三、参考解答1.相距为r 的电量为1Q 与2Q 的两点电荷之间的库仑力Q F 与电势能Q U 公式为122Q QQ Q F k r = 12Q QQ Q U k r =- (1) 现在已知正反顶夸克之间的强相互作用势能为4()3S aU r k r=-根据直接类比可知,正反顶夸克之间的强相互作用力为24()3Sa F r k r=- (2)设正反顶夸克绕其连线的中点做匀速圆周运动的速率为v ,因二者相距0r ,二者所受的向心力均为0()F r ,二者的运动方程均为22004/23t S a m v k r r = (3) 由题给的量子化条件,粒子处于基态时,取量子数1n =,得0222t r hm v π⎛⎫- ⎪⎝⎭(4)由(3)、(4)两式解得20238S t h r m a kπ= (5)代入数值得170 1.410m r =⨯- (6)2. 由(3)与(4)两式得 43S a v kh π⎛⎫=⎪⎝⎭(7)由v 和0r 可算出正反顶夸克做匀速圆周运动的周期T30222(/2)2(4/3)t S r h T v m k a ππ== (8) 代入数值得241.810s T =⨯- (9) 由此可得 /0.2T τ= (10)因正反顶夸克的寿命只有它们组成的束缚系统的周期的1/5,故正反顶夸克的束缚态通常是不存在的.评分标准:本题25分1. 15分。

(2)式4分,(5)式9分,求得(6)式再给2分。

2. 10分。

(8)式3分。

(9)式1分,正确求得(10)式并由此指出正反顶夸克不能形成束缚态给6分。

相关文档
最新文档