第13届全国中学生物理竞赛复赛试题及解答

合集下载

高中生物理竞赛复赛试题及答案

高中生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试题全卷共六题,总分为140分。

一、(20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。

平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。

若让其继续作等温膨胀,使体积再次加倍。

试计算此时:1.汽缸中气体的温度;2.汽缸中水蒸气的摩尔数;3.汽缸中气体的总压强。

假定空气和水蒸气均可以当作理想气体处理。

二、(25分)两个焦距分别是1f 和2f 的薄透镜1L 和2L ,相距为d ,被共轴地安置在光具座上。

1. 若要求入射光线和与之对应的出射光线相互平行,问该入射光线应满足什么条件?2. 根据所得结果,分别画出各种可能条件下的光路示意图。

三、(25分)用直径为1mm 的超导材料制成的导线做成一个半径为5cm 的圆环。

圆环处于超导状态,环内电流为100A 。

经过一年,经检测发现,圆环内电流的变化量小于610A -。

试估算该超导材料电阻率数量级的上限。

提示:半径为r 的圆环中通以电流I 后,圆环中心的磁感应强度为02I B rμ= ,式中B 、I 、r 各量均用国际单位,720410N A μπ=⨯⋅--。

四、(20分)经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形势和分布情况有了较深刻的认识。

双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。

一般双星系统距离其他星体很远,可以当作孤立系统处理。

现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M ,两者相距L 。

他们正绕两者连线的中点作圆周运动。

1. 试计算该双星系统的运动周期T 计算。

2. 若实验上观测到的运动周期为T 观测,且:1:1)T T N =>观测计算。

为了解释T 观测与T 计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质。

2023年全国中学生物理竞赛复赛试题及答案

2023年全国中学生物理竞赛复赛试题及答案

全国中学生物理竞赛复赛试卷姓名()总分()本卷共九题,满分160 分.计算题的解答应写出必要的文字说明、方程式和重要的演算环节.只写出最后结果的不能得分.有数字计算的题.答案中必须明确写出数值和单位.填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程.一、(15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们的悬挂点在不同的高度上,摆长依次减小.设重力加速度g = 9 . 80 m/ s2 ,1 .试设计一个包含十个单摆的蛇形摆(即求出每个摆的摆长),规定满足:( a )每个摆的摆长不小于0 . 450m ,不大于1.00m ; ( b )初始时将所有摆球由平衡点沿x 轴正方向移动相同的一个小位移xo ( xo <<0.45m ) ,然后同时释放,通过40s 后,所有的摆可以同时回到初始状态.2 .在上述情形中,从所有的摆球开始摆动起,到它们的速率初次所有为零所通过的时间为________________________________________.二、(20 分)距离我们为L 处有一恒星,其质量为M ,观测发现其位置呈周期性摆动,周期为T ,摆动范围的最大张角为△θ.假设该星体的周期性摆动是由于有一颗围绕它作圆周运动的行星引起的,试给出这颗行星的质量m所满足的方程.若L=10 光年,T =10 年,△θ= 3 毫角秒,M = Ms (Ms为太阳质量),则此行星的质量和它运动的轨道半径r各为多少?分别用太阳质量Ms 和国际单位AU (平均日地距离)作为单位,只保存一位有效数字.已知1 毫角秒=11000角秒,1角秒=13600度,1AU=1.5×108km,光速 c = 3.0×105km/s.三、(22 分)如图,一质量均匀分布的刚性螺旋环质量为m,半径为R ,螺距H =πR ,可绕竖直的对称轴OO′,无摩擦地转动,连接螺旋环与转轴的两支撑杆的质量可忽略不计.一质量也为m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动,一方面扶住小球使其静止于螺旋环上的某一点A ,这时螺旋环也处在静止状态.然后放开小球,让小球沿螺旋环下滑,螺旋环便绕转轴O O′,转动.求当小球下滑到离其初始位置沿竖直方向的距离为h 时,螺旋环转动的角速度和小球对螺旋环作用力的大小.四、( 12 分)如图所示,一质量为m、电荷量为 q ( q > 0 )的粒子作角速度为ω、半径为 R 的匀速圆周运动.一长直细导线位于圆周所在的平面内,离圆心的距离为d ( d > R ) ,在导线上通有随时间变化的电流I, t= 0 时刻,粒子速度的方向与导线平行,离导线的距离为d+ R .若粒子做圆周运动的向心力等于电流 i ,的磁场对粒子的作用力,试求出电流 i 随时间的变化规律.不考虑变化的磁场产生的感生电场及重力的影响.长直导线电流产生的磁感应强度表达式中的比例系数 k 已知.五、(20分)如图所示,两个固定的均匀带电球面,所带电荷量分别为+Q和-Q (Q >0) ,半径分别为R和R/2,小球面与大球面内切于C点,两球面球心O和O’的连线MN沿竖直方在MN与两球面的交点B、0和C 处各开有足够小的孔因小孔损失的电荷量忽略不计,有一质量为m,带电荷为q(q>0的质点自MN线上离B点距离为R的A点竖直上抛。

初中物理竞赛(复赛)试题及解答

初中物理竞赛(复赛)试题及解答

初中物理竞赛复赛试题说明:1、本试题共有五大题,答题时间为120分钟,试卷满分为150分。

2、答案及解答过程均写在答卷纸上。

其中第一大题~第二大题只要写出答案,不写解答过程;第三大题~第五大题要写出完整的解答过程。

一.选择题(以下每题只有一个选项符合题意,每小题4分,共32分)1.在下列四个事件中,经历时间最接近一秒钟的是( )A 人眨一下眼。

B 人在安静时呼吸一次。

C 人在感冒时打一个喷嚏。

D 人在做剧烈运动时(如快速蹬楼)脉博跳动一次。

2.手掌中托一小石块,将它竖直向上抛出,在小石块与手掌脱离时,则( )A 小石块不受任何力的作用。

B 小石块与手掌的运动速度相等。

C 小石块比手掌运动得快。

D 小石块速度继续增大,手掌速度将减小。

3.向如图1所示的玻璃瓶内注入水,然后将插有细玻璃管的软木塞塞紧玻璃瓶,玻璃瓶壁有A、B两个孔,也用软木塞子塞住。

瓶内液面如图1所示,现将A、B处的木塞同时拔去后,则下列说法中正确的是( )A A、B两孔中均无水射出。

图1B A 、B 两孔中均有水射出。

C A 孔中无水射出,B 孔中有水射出。

D A 孔中有水射出,B 孔中无水射出。

4.如图2所示,有三只底面积均为S 、水面高度相同,但形状不同的盛水容器a 、b 、c 。

现将三只相同的实心铝球分别放入容器a 、b 、c 中,铝球受到的浮力为F 。

设水对容器底部压强的增大值分别为△P 1、△P 2和△P 3,则下列说法中正确的是( ) A △P 1=△P 2=△P 3=F/S 。

B △P 1>F/S ,△P 2=F/S ,△P 3<F/S。

C △P 1=F/S ,△P 2<F/S ,△P 3>F/S 。

D △P 1<F/S ,△P 2>F/S ,△P 3<F/S.5.如图3所示,用一根电阻为6R 的粗细均匀的镍铬合金线做成一个环,在环上6个对称的点上,焊接6个不计电阻的导线,并与接线柱连接,现有一根不计电阻的导线将6个接线柱中的任意两个相连接,利用这种方法,可以在其它各接线柱之间的获得不同阻值(不含零电阻)的总个数和最大电阻值分别是( ) A 9种,最大为1.5R 。

13全国中学生物理竞赛复赛试卷及答案

13全国中学生物理竞赛复赛试卷及答案

第26届全国中学生物理竞赛复赛试卷一、填空(问答)题(每题5分,共25分)1.有人设想了一种静电场:电场的方向都垂直于纸面并指向纸里,电场强度的大小自左向右逐渐增大,如图所示。

这种分布的静电场是否可能存在?试述理由。

2.海尔-波普彗星轨道是长轴非常大的椭圆,近日点到太阳中心的距离为0.914天文单位(1天文单位等于地日间的平均距离),则其近日点速率的上限与地球公转(轨道可视为圆周)速率之比约为(保留2位有效数字) 。

3.用测电笔接触市电相线,即使赤脚站在地上也不会触电,原因是 ;另一方面,即使穿绝缘性能良好的电工鞋操作,测电笔仍会发亮,原因是 。

4.在图示的复杂网络中,所有电源的电动势均为E 0,所有电阻器的电阻值均为R 0,所有电容器的电容均为C 0,则图示电容器A 极板上的电荷量为 。

5.如图,给静止在水平粗糙地面上的木块一初速度,使之开始运动。

一学生利用角动量定理来考察此木块以后的运动过程:“把参考点设于如图所示的地面上一点O ,此时摩擦力f 的力矩为0,从而地面木块的角动量将守恒,这样木块将不减速而作匀速运动。

”请指出上述推理的错误,并给出正确的解释: 。

二、(20分)图示正方形轻质刚性水平桌面由四条完全相同的轻质细桌腿1、2、3、4支撑于桌角A 、B 、C 、D 处,桌腿竖直立在水平粗糙刚性地面上。

已知桌腿受力后将产生弹性微小形变。

现于桌面中心点O 至角A 的连线OA 上某点P 施加一竖直向下的力F ,令c OAOP,求桌面对桌腿1的压力F 1。

三、(15分)1.一质量为m 的小球与一劲度系数为k 的弹簧相连组成一体系,置于光滑水平桌面上,弹簧的另一端与固定墙面相连,小球做一维自由振动。

试问在一沿此弹簧长度方向以速度u 作匀速运动的参考系里观察,此体系的机械能是否守恒,并说明理由。

A。

2.若不考虑太阳和其他星体的作用,则地球-月球系统可看成孤立系统。

若把地球和月球都看作是质量均匀分布的球体,它们的质量分别为M 和m ,月心-地心间的距离为R ,万有引力恒量为G 。

最新杭州第13届全国中学生物理竞赛预赛、复赛、决赛竞赛题资料

最新杭州第13届全国中学生物理竞赛预赛、复赛、决赛竞赛题资料

精品文档第十三届全国中学生物理竞赛预 赛 试 题一、如图预13-1所示为两个均匀磁场区,分界面与纸面垂直,它们与纸面的交线a a '、b b '、c c '彼此平行,已知磁感应强度B 1的方向垂直纸面向外,B 2的方向垂直纸面向内,且B 2的大小为B 1的二倍,其它区域无磁场。

有一多边开口折线导体ABCDEF ,位于纸面内,其边长AB=BC=2l ;CD=DE=EF=l ,各边夹角皆为直角,当CD 边平行于a a '并匀速地沿垂直于a a '的方向向右运动时,试以CD 边进入a a '为原点,CD 边与a a '线的距离x 为横坐标,AF 间的电势差U AF (即U A -U F )为纵坐标,准确地画出U AF 随x 变化的图线(以刚开始有感应电动势时U AF 的值作为1个单位),本题不要求列和文字它的简化示意图如图预13-2通时,A 杆被往下压,通过铰链块B 1、B 2与制动轮D 断后,A 杆不再有向下的压力(A 力皆忽略不计),于是弹簧回缩,和O 2C 2现制动,至少需要M=1100间的摩擦系数40.0=μ制动办径d=0.400米,图示尺寸米,试求选用弹簧的倔强系数k 射出的光束截面积为A=1.001.大值为多少? 2.这束光垂直射到温度T 为上,如果有80%并人使其熔化成与光束等截面积的直圆柱孔,这需要多少时间?已知,对于波长为λ的光束,其每一个光子的动量为k=h /λ,式中h 为普朗克恒量,铁的有关参数为:热容量C=26.6焦/(摩·开),密度31090.7⨯=ρ千克/米3,熔点T m =1798开,熔解热41049.1⨯=m L 焦/摩,摩尔质量31056-⨯=μ千克。

精品文档四、一个密封的圆柱形气缸竖直放在水平桌面上,缸内有一与底面平行的可上下滑动的活塞将气缸隔为两部分,活塞导热性能良好,与气缸壁之间无摩擦、不漏气,活塞上方盛有1.5摩尔氢气,下方盛有1摩尔氧气,如图预13-3所示,它们的温度始终相同,已知在温度为320开时,氢气的体积是氧气的4倍,试求在温度是多少时氢气的体积是氧气的3倍。

2023年全国中学生物理竞赛复赛试题参考解答

2023年全国中学生物理竞赛复赛试题参考解答

全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。

所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。

以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。

同理可求得 max 62l R =(5)评分标准: 本题15分。

式(1)、(2)各4分, 式(4)2分, 式(5)5分。

二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。

设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。

全国高中生物理竞赛复赛试题含答案

全国高中生物理竞赛复赛试题含答案

全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。

一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。

【精选】第13届全国中学生物理竞赛预赛试题答案(全)

【精选】第13届全国中学生物理竞赛预赛试题答案(全)

第十三届全国中学生物理竞赛预赛试题参考答案及分标准一、参考解答:折线导体各线段,切割磁感应线时,在该线段中就会产生感应电动势,AF间电势差U AF的大小等于各段感应电动势的代数和的大小,当感应电动势的方向由F 至A时,U A>U F,U AF为正值。

按此分析计算,结果如图13-12所示。

各段相应的状况为:(1)0<x<l CD切割B1(2)l<x<2l CD,EF都切割B1(3)2l<x<3l CD切割B2,EF和AB都切割B1(4)3l<x<4l CD,EF,AB均切割B2(5)4l<x<6l CD,EF,AB均切割B2(6)6<x<7l EF,AB均切割B2(7)7l<x<8l AB切割B2(8)8l<x 折线导体全部移出磁场区,不再切割磁感应线。

评分标准:本题15分。

图13-12第1到第7题,每段中U AF的数值占1分,正负号占1分;第8段占1分。

二、参考解答:在制动轮转动的情况下,制动力矩是由制动块B1、B2对制动轮D的滑动摩擦力产生的。

设B1、B2对D的正压力分别为N1和N2,滑动摩擦力的就分别为μN1和μN2,如图13-13所示。

所以M=μN1·+μN2·①再对左、右两杆分别进行受力分析,并列出力矩平衡方程如下(图13-14),左杆(h1+h2)T=h1N1+μN1a ②右杆 h1N2=(h1+h2)T+μN2a③②、③两式中T为弹簧的弹力。

对弹簧来说,由胡克定律图13-13T=·△L=k(d+2a-L)①②③④解得④k=⑤代入数据得k≈1.24×104(牛/米) ⑥评分标准:本题15分。

①、②、③、④式和占3分,解出⑤式给1分,计算出⑥式再给2分。

若没写⑤式,而由①②③④解得⑥式的,则⑥式给3分。

三、参考解答:1.当光束垂直入射到一个平面上时,如果光束被完全反射,且反射光垂直于平面,则光子的动量改变达最大值:△k=k-(-k)=2k=2h/λ①此时该光束对被照射面的光压为最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三届全国中学生物理竞赛复赛试题1.如图所示,有一由匀质细导线弯成的半径为α的圆线和一内接等边三角形的电阻丝组成的电路(电路中各段的电阻值见图)。

在圆线圈平面内有垂直纸面向里的均匀磁场,磁感应强度B随时间t均匀减小,其变化率的大小为一已知常量k。

已知2r1=3r2。

求:图中AB两点的电势差UA-UB。

2.长度为4毫米的物体AB由图所示的光学系统成像,光学系统又一个直角棱镜、一个汇聚透镜和一个发散透镜组成,各有关参数和几何尺寸均标示于图上,求:像的位置;像的大小,并作图说明是实像还是虚像,是正立还是倒立的。

3.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳连接成菱形ABCD,静止放在水平光滑的桌面上。

若突然给质点A一个历时极短CA 方向的冲击,当冲击结束的时刻,质点A的速度为V,其他质点也获得一定的速度,∠BAD=2α(α<π/4)。

求此质点系统受冲击后所具有的总动量和总能量。

4.在一个半径为R的导体球外,有一个半径为r的细圆环,圆环的圆心与导体球心的连线长为a(a>R),且与环面垂直,如图所示。

已知环上均匀带电,总电量为q,试问:1.当导体球接地时,球上感应电荷总电量是多少?2.当导体球不接地而所带总电量为零时,它的电势如何?3.当导体球的电势为VO时,球球上总电荷又是多少?4.情况3与情况1相比,圆环受导体球的作用力改变量的大小和方向如何?5.情况2与情况1相比,圆环受导体球的作用力改变量的大小和方向如何?〔注〕已知:装置不变时,不同的静电平衡带电状态可以叠加,叠加后仍为静电平衡状态。

5、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计),直径为d=2.0米,球内充有压强P1.005×105帕的气体,该布料所能承受的最大不被撕破力为fm=8.5×103牛/米(即对于一块展平的一米宽的布料,沿布面而垂直于布料宽度方向所施加的力超过8.5×103牛时,布料将被撕破)。

开始时,气球被置于地面上,该处的大气压强为Pao=1.000×103帕,温度T=293开,假设空气的压强和温度均随高度而线性地变化,压强的变化为αp =-9.0帕/米,温度的变化为αT=-3.0×10-3开/米,问该气球上升到多高时将撕破?假设气球上升很缓慢,可以为球内温度随时与周围空气的温度保持一致,在考虑气球破裂时,可忽略气球周围各处和底部之间空气压强的差别。

6.有七个外形完全一样的电阻,已知其中6个的阻值相同,另一个的阻值不同,请按照下面提供的器材和操作限制,将那个限值不同的电阻找出,并指出它的阻值是偏大还是偏小,同时要求画出所用电路图,并对每步判断的根据予以论证。

提供的器材有:1电池;2一个仅能用来判断电流方向的电流表(量程足够),它的零刻度在刻度盘的中央,而且已知当指针向右偏时电流是由哪个接线柱流入电流表的;3导线若干操作限值:全部过程中电流表的使用不得超过三次。

第十三届全国物理竞赛复赛试题解答一、在各段电路上,感应电流的大小和方向如图复解13 - 1所示电流的分布,已考虑到电路的对称性,根据法拉第电磁感应定律和欧姆定律,对半径为α的圆电路,可得 π2a k = 21r 1I + 1r 1I ' 对等边三角形三个边组成的电路,可得332a k / 4 = 22r 2I + 22r 2I '对由弦AB 和弧AB 构成的回路,可得(π2a -332a / 4)k / 3 = 1r 1I - 2r 2I考虑到,流进B 点的电流之和等于流出B 点电流之和,有1I + 2I =1I ' + 2I ' 由含源电路欧姆定律可得A U -B U = π2a k /3 - 1I 1r由以上各式及题给出的 2r = 21r / 3可解得A U -B U = - 32a k / 32二、解法一:1、分析和等效处理根据棱镜玻璃的折射率,棱镜斜面上的全反射临界角为c α= arcsin ( 1 / n ) ≈ 42 注意到物长为4mm ,由光路可估算,进入棱镜的近轴光线在斜面上的入射角大多在45左右,大于临界角,发生全反射。

所以对这些光线而言,棱镜斜面可看成是反射镜。

本题光路可按反射镜成像的考虑方法,把光路“拉直”如图复解13 – 2 - 1所示。

现在,问题转化为正立物体经过一块垂直于光轴、厚度为6cm 的平玻璃板及其后的会聚透镜、发散透镜成像的问题。

2、求像的位置;厚平玻璃板将使物的近轴光线产生一个向右侧移动一定距离的像,它成为光学系统后面部分光路的物,故可称为侧移的物。

利用沿光轴的光线和与光轴成α角的光线来讨论就可求出这个移动的距离。

图复解13 - 111I图复解13 - 2 - 2图复解13 - 2 - 1设轴上的物点为B 。

由于厚平玻璃板的作用(即侧移的物点)为B ′(如图复解13 – 2 - 2所示)。

画出厚平玻璃板对光线的折射,由图可知 Δl = d (ctg α) 而 d = D (tg α- tg β) 所以 Δl = D (1 – tg α/ tg β) 当α为小角度时 tg β/ tg α≈sin β/ sin α= 1/n 故得 Δl = D (1 – 1 / n )= 2 cm这也就是物AB 与它通过厚玻璃板所成的像之间的距离。

这个像对透镜1L 来说就是物,而物距1u =〔 (6 – 2 )+ 6 + 10 〕cm = 20 cm可见,物正好在1L 的左方焦平面上,像距即为1v = ∞ 。

再考虑透镜2L ,这是平行光线入射情形,2u = ∞ 。

所以必须成像于这个发散透镜2L 左侧的焦平面上(虚像)2v = 2f = - 10 cm 整个光路的最后成像位置就是在2L 的左侧10 cm 处。

3、求像的大小和虚、实、正、倒情况:可用作图法求解,如图复解13 – 2 - 3所示(为了图示清楚图中把物高加大了)。

连接A '1O 并延长, 便得到发自A '的光线经1L 后的平行光线的方向。

过2L 的光心2O 作A '1O 的平行线,它与1L 交于C 点,则A 'C 即为从A '发出经过1L 折射后又通过2L 光心的光线。

反向延长C 2O 与2L 左侧焦平面的交点A ''就是A '由1L 与2L 所成的像点。

令2L 左侧焦面与光轴的交点为B ''。

B A ''''就是B A ''的像,这是一个正立的虚像。

由图可得B A '''' = 2f tg γB A '' = 1f tg γ而B A ''与AB 等高,所以像的大小为B A '''' = (2f / 1f )B A ''= 2 mm解法二:关于物体AB 经棱镜(折射,反射,折射)后,所成像的位置及大小可采用视深法处理。

如图复解13 – 2 - 4所示,AB 发出的、与PQ 面近乎垂直的小光束经PQ 面折射后成像于11B A 这是视深问题。

1A 、1B 与PQ 面的距离均为A 、B 与PQ 面的距离的n 倍,即11B C = n B C 1 11B A = AB (像与物的大小相同)11B A 经PR 面的反射成像于22B A ,大小不变,且B C n P C B C C C B C B C 1111121222+=+== 22B A 经QR 面后折射成像于B A '',大小不变,且B C 3' = n /)B C PQ (n /)B C n P C Q C (n /)B C C C (n /B C (11111222323+=++=+=图复解13 - 2 - 3A 2图复解13 - 2 - 4=(6 / 1. 5 + 6)cm = 10 cm由此即可求出这个像B A ''作为透镜1L 的物的物距,其它部分的求解同解法(一)。

三、由对称性可知,C 点的速度也必沿CA 方向,设其大小为C v 。

D 的速度可以分解为平行于v 和垂直于v 的分速度,其大小分别设为2D 1D v v 和。

同样,B 的速度也类似地分解为平行和垂直于v 的二个分速度 ,其大小设为2B 1B v v 和 ,如图复解13 - 3所示,根据对称性,必有2D 2B 1D 1B v v v v ==()()21由于绳子不可伸长,A 沿DA 的分速度和D 沿DA 的分速度 一定相等,C 沿CD 的分速度和D 沿CD 的分速度也相等,即α-α=αα+α=αsin v cos v cos v sin v cos v cos v 2D 1D C 2D 1D()()43 另一方面,设绳子AD 给质点D 的冲量的大小为1I ,绳子DC 给质点C 冲量大小为2I 。

注意到绳子DC 给质点D 的冲量的大小同样也是2I (各冲量的方向均沿绳子方向)。

由对称性还可以判定,绳子AB 给质点B 的冲量的大小也是1I ,绳子BC 给质点B 和C 的冲量的大小都是2I ,根据动量定理,可分别列出关于质点D 平行和垂直于v 的方向以及质点C 平行于v 方向的关系式如下:α=α+α=α-α=cos I 2mv sin I sin I mv cos I cos I mv 2C 212D 211D ()()()765由(3)~(7)式可解出本题所需的 2D 1D v v 和、C v)sin 21/(2cos v v )sin 21/(2sin v v )sin 21/(v v 2C 22D 21D α+α=α+α=α+= 据此结果和(1)、(2)式,此系统的总动量为)sin 21/(mv 4mv mv 2mv P 2C 1D α+=++= , 方向沿CA 方向。

此系统的总动能为()()α+=+++=+++=22C 22D 21D 22D C B A sin 21/mv 2v v 2v 2v m 21E E E E E四、1、见图复解13 – 4 。

导体是一个等势体,所以导体球接地(球V = 0 )时,对于球心点有球心V = 球V = 0 (1)图复解13 - 3另一方面,可以直接计算球心点的电势。

因为所有感应电荷都分布在球面上,它们到球心的距离都是R ,而圆环上电荷到球心的距离都是22a r +,所以球心V = K 感q / R + Kq /22a r +(2)式中感q 就是要求的感应电荷总量。

由(1)、(2)两式即得 感q = - Rq /22a r +(3)2、导体球不接地时,其电势可通过对球心的电势计算而求得:球V = 球心V = K 面q / R + K q 22a r + (4)式中面q 表示分布在球面上所有电荷的代数和,而导体球体内是不会有电荷分布的。

相关文档
最新文档