高中必修一基本初等函数的练习题及答案

合集下载

(完整版)必修一基本初等函数单元练习题(含答案),推荐文档

(完整版)必修一基本初等函数单元练习题(含答案),推荐文档

D. ∅
建议收藏下载本文,以便随时学习! 2、已知函数 f(x)的定义域为[-1,5],在同一坐标系下,函数 y=f(x)的图像与直线 x=1 的交点个
9.若函数 f(x)=
是奇函数,则 m 的值是( )
D.(-1,-∞)
数为( ).
A.0 个 B.1 个 C.2 个 D.0 个或 1 个均有可能
3 设函数
1
1
1
B.(2,1)∪(1,2) C.(2,1)∪(2,+∞) D.(0,2)∪(2,+∞)
A.(1),(4)
B. (2),(3)
C. (1)
D. (3)
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)
1 5.函数 f(x)=lnx-x的零点所在的区间是
A.(0,1)
B.(1,e) C.(e,3)
(2)当 A B B 时,有 A B ,所以 a 3 或 a 3 0 ,
解得 a 3 或 a 3
…………10 分
答:经过 8 秒后,汽车和自行车之间的距离最短,最短距离是 20 5 米. …12 分
21.解:(1)由题可知:
f f
(0) 0 (1) 2 25
a b
1 0
(2)函数 f (x) 在 (1,1) 上单调递增,
1 D.[7,1)
11.函数
f
(x)
2x x 2
x 2 ,0 x 3 6x,2 x 0
的值域是(

A. R
B. [1,)
C. [8,1]
D. [9,1]
1
1
12.定义在 R 的偶函数 f(x)在[0,+∞)上单调递减,且 f(2)=0,则满足 f(log4x)<0 的 x 的集合为( )

高一数学必修一基本初等函数高考真题(含详细答案)

高一数学必修一基本初等函数高考真题(含详细答案)

基本初等函数11.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .4 22.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+33.(2012年高考(重庆))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞44.(2012年高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+55.(2012年高考(四川))函数(0,1)x y a a a a =->≠的图象可能是66.(2012年高考(山东))函数1()ln(1)f x x =+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-77.(2012年高考(广东))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =88.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]1299.(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是1010.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题1111.(2012年高考(上海))方程03241=--+x x的解是_________.1212.(2012年高考(陕西))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____ 1313.(2012年高考(北京))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.1414.(2012年高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.1515.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.1616.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题1717.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题 1)【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2)(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B .y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3).(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)MN =-∞4)(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数xy 2log =为偶函数,且当0>x时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5)(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是[答案]C[解析]采用特殊值验证法.函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.6)(2012年高考(山东文))函数1()ln(1)f x x =++( ) A .[2,0)(0,2]- B .(1,0)(0,2]-C .[2,2]-D .(1,2]-解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7)(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D .y =:D.()()f x f x -===.8)(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9)(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是[答案]C[解析]采用排除法.函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.10)(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD【解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D.二、填空题11)(2012年高考(上海文))方程03241=--+x x的解是_________.[解析]0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .12)(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ³=íï<ïïïî,则((4))f f -=_____解析:41(4)()162f --==,((4))(16)4f f f -==13)(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.14)(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15)(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是___5___.16)(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ?[1,2]时,2-x ?[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x_s 12__。

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一第二章《基本初等函数Ⅰ》测试一、选择题: 1.若32a =,则33log 82log 6-用a的代数式可表示为( )()A a -2 ()B 3a -(1+a )2 ()C 5a -2 ()D 3a -a 22.下列函数中,值域为(0,)+∞的是( )()A 125xy -= ()B 11()3xy -= ()C y =()D y = 3. 设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是(4.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个()()A 新加坡(270万) ()B 香港(560万) ()C 瑞士(700万)()D 上海(1200万)5.已知函数l o g (2)a y a x =-在[0,1]上是x 的减函数,则a 的取值范围是 ( )()A (0,1) ()B (0,2) ()C (1,2) ()D [2,+∞)6.函数lg (1)(01)()1lg() (10)1x x f x x x-≤<⎧⎪=⎨-<<⎪+⎩,则它是( )()A 偶函数且有反函数 ()B 奇函数且有反函数 ()C 非奇非偶函数且有反函数 ()D 无反函数 二、填空题:7.函数()1log 15.0-=x y 的定义域是 .8.化简⨯53xx 35xx ×35xx = .9.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .10.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,且当01x << 上时,有()0f x >,则()f x 在(0,)+∞上的单调性是 . 三、解答题:(.解答应写出文字说明,证明过程或演算步骤.) 11.(Ⅰ)求x x x x f -+--=4lg 32)(的定义域; (Ⅱ)求212)(x x g -=的值域.12.若()1log 3,()2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.13.已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.14.已知函数()x f 满足()()()1,01log 12≠>--=-a a xx a a x f a , (Ⅰ)求()x f 的解析式并判断其单调性;(Ⅱ)对定义在()1,1-上的函数()x f ,若()()0112<-+-m f m f ,求m 的取值范围;(Ⅲ)当()2,∞-∈x 时,关于x 的不等式()04<-x f 恒成立,求a 的取值范围.参考答案(仅供参考):ABADCB , 7(1,2), 8、1, 9、C4,C2,C3,C1 10单调递减, 11.(Ⅰ){243}x x x ≤<≠且 (Ⅱ)(0,2] 12.f (x)-g(x)=log x 3x-log x 4=log x 43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x). 13解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3. 由{21043a b a b -+=-=得a =1,b =1.14. (Ⅰ) 21()()1xxa f x a a a =-- …………………2′证明在(1,1)-上单调递增 ……………………………………4′(Ⅱ)判断函数()f x为奇函数,22111111111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪-<-⎩…4′(Ⅲ)[2(1,2 ………………4′。

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。

2023年新版高一数学必修一基本初等函数高考真题含详细答案

2023年新版高一数学必修一基本初等函数高考真题含详细答案

基本初等函数1.(高考(安徽文))23log 9log 4⨯=( )A .14 B .12C .2D .4 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+3.(高考(重庆))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1) C .(-1,1) D .(,1)-∞4.(高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x x e e y --= D .31y x =+5.(高考(四川))函数(0,1)xy a a a a =->≠旳图象也许是6.(高考(山东))函数21()4ln(1)f x x x =+-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-7.(高考(广东))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .21y x =+8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A .(1,2)B .[1,2]C .[,)12D .(,]129.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是10.(高考(江西理))下列函数中,与函数3x( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题11.(高考(上海))方程03241=--+x x 旳解是_________.12.(高考(陕西))设函数发,0,()1(),0,2xx x f x x ,则((4))f f =_____13.(高考(北京))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m旳取值范围是________.14.(高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是______.16.(高考(江苏))函数x x f 6log 21)(-=旳定义域为____.三、解答题17.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.基本初等函数参照答案一、选择题1.【解析】选D 23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2.(高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数旳是( )A .()ln 2y x =+B .1y x =-+C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3..(高考(重庆文))设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为 ( )A .(1,)+∞ B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->因此1x <或3log 5x >;由()2g x <得322x -<即34x <因此3log 4x <故(,1)MN =-∞4.(高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数旳为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,因此在)2,1(上也为增函数,选B.5.(高考(四川文))函数(0,1)xy a a a a =->≠旳图象也许是[答案]C [解析]采用特殊值验证法. 函数(0,1)xy a a a a =->≠恒过(1,0),只有C 选项符合. 6. (高考(山东文))函数21()4ln(1)f x x x =-+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-解析:要使函数)(x f 故意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B. 7.(高考(广东文))(函数)下列函数为偶函数旳是( )A .sin y x =B .3y x =C .x y e =D .2ln 1y x =+解析:D.()()()22ln 1ln 1f x x x f x -=-+=+=.8.(高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-旳定义域;则AB =( )A.(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9.(高考(四川理))函数1(0,1)x y a a a a=->≠旳图象也许是[答案]C [解析]采用排除法. 函数(0,1)xy a a a a =->≠恒过(1,0),选项只有C 符合,故选C. 10.(高考(江西理))下列函数中,与函数3x定义域相似旳函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD 【解析】 函数3y x=旳定义域为()(),00,-∞+∞,而答案中只有sin xy x=旳定义域为()(),00,-∞+∞.故选D.二、填空题11.(高考(上海文))方程03241=--+x x 旳解是_________.[解析] 0322)2(2=-⋅-xx ,0)32)(12(=-+xx,32=x ,3log 2=x . 12.(高考(陕西文))设函数发,0,()1(),0,2x x x f x x ,则((4))f f =_____解析:41(4)()162f ,((4))(16)164f f f13.(高考(北京文))已知()(2)(3)f x m x m x m =-++,()22xg x =-.若,()0x R f x ∀∈<或()0g x <,则m 旳取值范围是________. 【解析】首先看()22xg x =-没有参数,从()22xg x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),因此舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,因此30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,因此4m >-,又0m <,故(4,0)m ∈-,综上,m 旳取值范围是(4,0)-.14.(高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴= 2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15.(高考(上海春))函数224log ([2,4])log y x x x=+∈旳最大值是___5___.16.(高考(江苏))函数xx f 6log 21)(-=旳定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 旳取值范围;(2)若)(x g 是以2为周期旳偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 旳反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x . 由1lg)1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 由于01>+x ,因此1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-== 由单调性可得]2lg ,0[∈y . 由于y x 103-=,因此所求反函数是xy 103-=,]2lg ,0[∈x。

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.方程的根的情况是()A.仅有一根B.有两个正根C.有一正根和一个负根D.有两个负根【答案】C【解析】主要考查指数函数、对数函数的图象和性质。

解:采用数形结合的办法,在同一坐标系中,画出的图象可知。

2.已知 .【答案】8【解析】主要考查指数函数、二次函数的性质。

利用换元法。

解:可化为,令,又因为所以,,,故。

3.若下列命题正确的个数为()A.0B.1C.2D.3【答案】B【解析】主要考查对数运算法则。

解:根据对数的运算性质易知只有④是正确的。

4.已知_____________【答案】【解析】主要考查对数运算。

解:5.已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x年的剩留量为y,则y 与x的函数关系是A.y=(0.9576)B.y=(0.9576)100xC.y=()x D.y=1-(0.0424)【答案】A【解析】设每年减少q%,因为镭经过100年,剩留原来质量的95.76%,所以=95.76%, q%=1-(0.9576),所以=(0.9576)。

故选A。

【考点】主要考查函数的概念、解析式,考查应用数学知识解决实际问题的能力。

点评:审清题意,构建函数解析式。

6.一个体户有一种货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,问这种货是月初售出好,还是月末售出好?【答案】当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【解析】解:设这种货的成本费为a元,则若月初售出,到月末共获利润为:y1=100+(a+100)×2.4%若月末售出,可获利y2=120-5=115(元)y 2-y1=0.024a-12.6=0.024(a-525)故当成本大于525元时,月末售出好;成本小于525元时,月初售出好.【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.已知偶函数在区间单调递减,则满足的x 取值范围是()A[-,) B (-,) C(,) D [,)【答案】B【解析】因为f(x)在区间单调递减的偶函数,所以等价于,所以不等式的解集为(-,).2.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D3.设,则的大小关系为()A.B.C.D.【答案】D【解析】因为,所以,选D.4.函数的单调增区间为;【答案】【解析】因为函数作图函数的图像,结合二次函数的图像的特点可知其单调增区间为。

5.里氏震级的计算公式为:其中是测震仪记录的地震曲线的最大振幅,为“标准地震”的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震的最大振幅的__________倍.【答案】6; 10000【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA0=lg1000-lg0.001=3-(-3)=6.设9级地震的最大的振幅是x,5级地震最大振幅是y, 9=lgx+3,5=lgy+3,解得x=106,y=102,∴=10000故答案为:6,100006.(12分)已知函数是定义在上的奇函数,且,(1)确定函数的解析式;(2)用定义证明在(-1 ,1)上是增函数;(3)解不等式【答案】解:(1);(2)证明:见解析;(3)。

【解析】本试题主要是考查了函数的奇偶性和单调性的运用,求解抽象不等式问题。

(1)依题意得,解方程组得到参数a,b的值。

得到第一问。

(2)任取,则利用变形定号,确定与0的大小关系来证明。

(3)在上是增函数,∴,解得解:(1)依题意得即得∴(2)证明:任取,则,又∴在上是增函数。

高中数学基本初等函数课后练习题(含答案)-精选教育文档

高中数学基本初等函数课后练习题(含答案)人教必修一第二章基本初等函数课后练习题(含答案)2.1 指数函数2.1.1 根式与分数指数幂1.27的平方根与立方根分别是()A.3 3,3 B.3 3,3C.3 3,3 D.3 3,32. 的运算结果是()A.2 B.-2C.2 D.不确定3.若a2-2a+1=a-1,则实数a的取值范围是() A.[1,+) B.(-,1)C.(1,+) D.(-,1]4.下列式子中,正确的是()A. =2B. =-4C. =-3D.=25.下列根式与分数指数幂的互化中,正确的是()A.-x= (x0)B. = (y0)C.= (x0)D.=- (x0)6.设a,bR,下列各式总能成立的是()A.( - )3=a-bB. =a2+b2C. -=a-bD. =a+b7.计算:+ (a0,n1,nN*).8.化简:6+4 2+6-4 2=__________.9.化简:++=()A.1 B.-1 C.3 D.-310.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求a-ba+b的值.2.1.2 指数幂的运算1.化简的结果是()A.35B.53C.3 D.52.计算[(-2)2] 的值为()A.2 B.-2C.22 D.-223.若(1-2x) 有意义,则x的取值范围是()A.xR B.xR,且x12C.x D.x124.设a0,计算( )2( )2的结果是()A.a8 B.a4C.a2 D.a5.的值为()A.103 B.3C.-13 D.66.计算:(-1.8)0+(1.5)-2 +=________.7.化简: .8.化简:ab3 ba3 a2b=__________.9.若x0,则(2x +3 )(2x -3 )-4x (x-x )=__________. 10.已知f(x)=ex-e-x,g(x)=ex+e-x(e=2.718…).(1)求[f(x)]2-[g(x)]2的值;(2)设f(x)f(y)=4,g(x)g(y)=8,求gx+ygx-y的值.2.1.3 指数函数及其图象1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=x(1)C.y=-4x D.y=ax+2(a0,且a1)2.y=2x+2-x的奇偶性为()A.奇函数B.偶函数C.既是偶函数又是奇函数D.既不是奇函数也不是偶函数3.函数f(x)=1-2x的定义域是()A.(-,0] B.[0,+)C.(-,0) D.(-,+)4.已知0<a<1,b<-1,则函数f(x)=ax+b的图象不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限5.如图K21所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,yR,A={x|y=2x-x2},B={y|y=3x(x0)},则A#B为()图K21A.{x|02}B.{x|12}C.{x|01或x2}D.{x|01或x2}6.函数y=a|x|(a1)的图象是()A B C D7.求函数y=16-4x的值域.8.已知f(x)是偶函数,且当x0时,f(x)=10x,则当x0时,f(x)=()A.10x B.10-xC.-10x D.-10-x9.对于函数f(x)定义域中任意的x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)f(x2);②f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1-1x10);⑤f(-x1)=1fx1.当f(x)=12x时,上述结论中,正确结论的序号是____________.10.(1)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围;(2)对于任意实数a,函数y=ax-3+3的图象恒过哪一点?2.1.4 指数函数的性质及其应用1.13 ,34,13-2的大小关系是()A.13 13-2B.13 -132C.13-234D.13-2132.若122a+1123-2a,则实数a的取值范围为() A.(1,+) B.12,+C.(-,1) D.-,123.下列选项中,函数y=|2x-2|的图象是()4.函数y=ax在[0,1]上的最大值与最小值之和为3,则函数y=3ax-1在[0,1]上的最大值为()A.6 B.1 C.3 D.325.(2019年四川泸州二模)已知在同一直角坐标系中,指数函数y=ax和y=bx的图象如图K22,则下列关系中正确的是()图K22A.a<b<1 B.b<a<1C.a>b>1 D.b>a>16.下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|7.已知函数f(x)=12xx4,fx+1 x<4,求f(3)的值.8.设函数f(x)=2-x, x-,1,x2,x[1,+.若f(x)4,则x的取值范围是________________.9.函数f(x)=的值域为__________.10.已知f(x)=10x-10-x10x+10-x.(1)判断函数f(x)的奇偶性;(2)证明f(x)是定义域内的增函数;(3)求f(x)的值域.2.2 对数函数2.2.1 对数与对数运算1.下列各组指数式与对数式互化,不正确的是()A.23=8与log28=3B.=13与log2713=-13C.(-2)5=-32与log-2(-32)=5D.100=1与lg1=02.已知函数f(x)=log2(x+1),若f(a)=1,则a=() A.0 B.1C.2 D.33.以下四个命题:①若logx3=3,则x=9;②若log4x=12,则x=2;③若=0,则x=3;④若=-3,则x=125.其中是真命题的个数是()A.1个 B.2个C.3个 D.4个4.方程=14的解是()A.x=19 B.x=33C.x=3 D.x=95.若f(ex)=x,则f(e)=()A.1 B.eeC.2e D.06.设集合P={3,log2a},Q={a,b},若PQ={0},则PQ =()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}7.求下列各式中x的取值范围:(1)log(x-1)(x+2);(2)log(x+3)(x+3).8.设f(x)=lgx,x0,10x,x0,则f[f(-2)]=__________. 9.已知=49(a0) ,则=__________.10.(1)若f(log2x)=x,求f12的值;(2)若log2[log3(log4x)]=0,log3[log4(log2y)]=0,求x+y的值.2.2.2 对数的性质及其应用1.计算log23log32的结果为()A.1 B.-1C.2 D.-22.(2019年陕西)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logablogcb=logcaB.logablogca=logcbC.logabc=logablogacD.loga(b+c)=logab+logac3.(2019年四川泸州一模)2lg2-lg125的值为()A.1 B.2C.3 D.44.lg12.5-lg58+lg0.5=()A.-1 B.1C.2 D.-25.若log513log36log6x=2,则x=()A.9 B.19C.25 D.1256.设2a=5b=m,且1a+1b=2,则m=()A.10 B.10C.20 D.1007.计算:lg2lg52+lg0.2lg40.8.已知lg2=a,lg3=b,用a,b表示log1245=______________.9.已知log83=p,log35=q,以含p,q的式子表示lg2. 10.已知lga和lgb是关于x的方程x2-x+m=0的两个根,而关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根.求实数a,b和m的值.2.2.3 对数函数及其性质(1)1.若log2a<0,12b>1,则()A.a>1,b>0 B.a>1,b<0C.0<a<1, b>0 D.0<a<1, b<02.(2019年广东揭阳一模)已知集合A={x|y=lg(x+3)},B={x|x2},则下列结论正确的是()A.-3A B.3BC.AB=B D.AB=B3.函数y=log2x与y=log x的图象关于()A.x轴对称 B.y轴对称B.原点对称 D.直线y=x对称4.函数y=1log0.54x-3的定义域为()A.34,1B.34,+C.(1,+)D.34,1(1,+)5.若函数f(x)=loga(x+1)(a0,a1)的定义域和值域都是[0,1],则a=()A.13B.2C.22 D.26.已知a0,且a1,函数y=ax与y=loga(-x)的图象只能是图中的()7.若函数y=loga(x+b)(a0,a1)的图象过点(-1,0)和(0,1),求a,b的值.8.已知A={x|2},定义在A上的函数y=logax(a>0,且a1)的最大值比最小值大1,则底数a的值为()A.2B.2C.-2 D.2或29.设a=log54,b=(log53)2,c=log45,则()A.ab B.baC.ac D.bc10.已知函数f(x)=lnkx-1x-1(k0).(1)求函数f(x)的定义域;(2)若函数f(x)在区间[10,+)上是增函数,求实数k的取值范围.2.2.4 对数函数及其性质(2)1.已知函数y=ax与y=logax(a>0,且a1),下列说法不正确的是()A.两者的图象都关于直线y=x对称B.前者的定义域、值域分别是后者的值域、定义域C.两函数在各自的定义域内的增减性相同D.y=ax的图象经过平移可得到y=logax的图象2.若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()A.(1,1) B.(1,5)C.(5,1) D.(5,5)3.点(4,16)在函数y=logax的反函数的图象上,则a=() A.2 B.4C.8 D.164.已知a=log23.6,b=log43.2,c=log43.6,则() A.ac B.abC.bc D.cb5.若0y1,则()A.3y B.logx3logy3C.log4xlog4y D.14x14y6.设loga23<1,则实数a的取值范围是()A.0<a<23 B.23<a<1C.0<a<23或a>1 D.a>237.在下面函数中,与函数f(x)=lg1+x1-x有相同奇偶性的是()A.y=x3+1B.y=e0-1e0+1C.y=|2x+1|+|2x-1|D.y=x+1x8.函数y=ln(4+3x-x2)的单调递增区间是___________.9.对于函数f(x)定义域中的任意x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)② f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1+x22fx1+fx22.当f(x)=lgx时,上述结论中,正确结论的序号是____________.10.设f(x)=log 1-axx-1为奇函数,a为常数,(1)求a的值;(2)证明f(x)在(1,+)上单调递增;(3)若对于[3,4]上的每一个x值,不等式f(x)>12x+m恒成立,求实数m的取值范围.2.2.5 对数函数及其性质(3)1.设a=log 2,b=log 3,c=120.3,则()A.ac B.abC.ba D.bc2.将函数y=3x-2的图象向左平移2个单位,再将所得图象关于直线y=x对称后,所得图象的函数解析式为() A.y=4+log3x B.y=log3(x-4)C.y=log3x D.y=2+log3x3.方程log2x=x2-2的实根有()A.3个 B.2个C.1个 D.0个4.设函数f(x)=loga(x+b)(a0,a1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b=()A.3 B.4C.5 D.65.如图K21,给出函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=ax,y=logax,y=log(a +1)x,y=(a-1)x2依次对应的图象是()图K21A.①②③④ B.①③②④C.②③①④ D.①④③②6.函数y=e|lnx|-|x-1|的图象大致是()7.已知函数f(x)=loga(2x+b-1)(a0,a1)的图象如图K22,则a,b满足的关系是()图K22A.0a-11B.0a-11C.0b-11D.0a-1b-118.下列函数的图象中,经过平移或翻折后不能与函数y=log2x的图象重合的函数是()A.y=2x B.y=log xC.y=4x2 D.y=log21x+19.若函数f(x)=loga(x+x2+2a2)是奇函数,求a的值.10.已知函数f(x)=loga(1-x)+loga(x+3)(01).(1)求函数f(x)的定义域;(2)求方程f(x)=0的解;(3)若函数f(x)的最小值为-4,求a的值.2.3 幂函数1.所有幂函数的图象都经过的定点的坐标是()A.(0,0) B.(0,1)C.(1,1) D.(-1,-1)2.下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.y=x是增函数,也是偶函数D.y=x0不是偶函数3.已知幂函数f(x)的图象经过点2,22,则f(4)的值为() A.16 B.116C.12 D.24.下列函数中,既是偶函数,又是在区间(0,+)上单调递减的函数为()A.y=x-2 B.y=x-1C.y=x2 D.y=x5.当x(1,+)时,下列函数的图象全在直线y=x下方的偶函数是()A.y=x B.y=x-2C.y=x2 D.y=x-16.设a=0.7 ,b=0.8 ,c=log30.7,则()A.ca B.cbC.ac D.bc7.若幂函数y=(m2-3m+3)x 的图象不经过坐标原点,求实数m的取值范围.8.给出函数的一组解析式如下:①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧y=x3;⑨y=x-3;⑩y= .回答下列问题:(1)图象关于y轴对称的函数有__________;(2)图象关于原点对称的函数有__________.9.请把相应的幂函数图象代号填入表格.①y=;②y=x-2;③y=;④y=x-1;⑤y=;⑥y=;⑦y=;⑧y= .函数代号① ② ③ ④ ⑤ ⑥ ⑦ ⑧图象代号10.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x)是:(1)幂函数;(2)幂函数,且是(0,+)上的增函数;(3)正比例函数;(4)反比例函数;(5)二次函数.第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 根式与分数指数幂1.B 2.A 3.A4.B 解析:A错,=2;C错,=|-3|=3;D错,( )5=-2.5.C 解析:A错,-x=-x (x0);B错,=(-y) (y0);D错,x = (x0).6.B7.解:当n为奇数时,原式=a-b+a+b=2a;当n为偶数时,原式=b-a-a-b=-2a.8.4 解析:原式=22+222+22+22-222+22=2+22+2-22=2+2+2-2=4.9.B 解析:∵3.1410,=-3.143.14-=-1,=10--10=-1,而=1.故原式=-1+1-1=-1.10.解:∵a,b是方程x2-6x+4=0的两根,a+b=6,ab=4.∵a>b>0,a-ba+b2=a+b2-4aba+b+2ab=2019=2.a-ba+b=2.2.1.2 指数幂的运算1.B2.C 解析:[(-2)2] =(2) =(2)-1=22.3.D4.C 解析:原式==a2.5.A 解析:原式=310 =103.6.29 解析:原式=1+23232 +=1+1+27=29. 7.解:原式=== .8. 解析:原式=ab3 ba3 a2b=a b ba3 a2b =a b b a a2b=a b a b =a b=a0b = .9.-23 解析:(2x +3 )(2x -3 )-4x (x-x )=4x -33-4x +4=-23.10.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=2ex(-2e-x)=-4e0=-4.(2)f(x)f(y)=(ex-e-x)(ey-e-y)=ex+y+e-(x+y)-ex-y-e-(x-y)=g(x+y)-g(x-y)=4,①同法可得g(x)g(y)=g(x+y)+g(x-y)=8. ②由①②解方程组gx+y-gx-y=4,gx+y+gx-y=8.解得g(x+y)=6,g(x-y)=2,gx+ygx-y=62=3.2.1.3 指数函数及其图象1.B 2.B 3.A4.A 解析:g(x)=ax的图象经过一、二象限,f(x)=ax+b是将g(x)=ax的图象向下平移|b|(b<-1)个单位而得,因而图象不经过第一象限.5.D 解析:A={x|y=2x-x2}={x|2x-x20}={x|02},B ={y|y=3x(x0)}={y|y1},则AB={x|x0},AB={x|12},根据新运算,得A#B=AB(AB)={x|01或x2}.故选D. 6.B 解析:函数关于y轴对称.7.解:∵4x0,016-4x16,016-4x4.8.B 解析:设x0,则-x0,f(-x)=10-x,∵f(x)为偶函数.f(x)=f(-x)=10-x.9.①③④⑤解析:因为f(x)=12x,f(x1+x2)===f(x1)f(x2),所以①成立,②不成立;显然函数f(x)=12x单调递减,即fx1-fx2x1-x20,故③成立;当x10时,f(x1)1,fx1-1x10,当x10时,0f(x1)1,fx1-1x10,故④成立;f(-x1)=12 ==1fx1,故⑤成立.10.解:(1)∵当x>0时,f(x)=(a2-1)x的值总大于1,a2-1>1.a2>2.a>2或a<-2.(2)∵函数y=ax-3的图象恒过定点(3,1),函数y=ax-3+3的图象恒过定点(3,4).2.1.4 指数函数的性质及其应用1.A 2.B3.B 解析:由y=|2x-2|=2x-2, x1,-2x+2, x1,分两部分:一部分为y1=2x-2(x1),只须将y=2x的图象沿y轴的负半轴平移2个单位即可,另一部分为y2=-2x+2(x1),只须将y=2x的图象对称于x轴的图象y=-2x,然后再沿y轴的正半轴平移2个单位,即可得到y=-2x+2的图象.故选B.4.C 解析:由于函数y=ax在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=3ax-1在[0,1]上是单调递增函数,最大值当x =1时取到,即为3.5.C 解析:很显然a,b均大于1;且y=bx函数图象比y =ax变化趋势小,故b<a,综上所述,a>b>1.6.B7.解:f(3)=f(3+1)=f(4)=124=116.8.(-,-2)(2,+)9.(0,3] 解析:设y=13u,u=x2-2x,∵函数y=13u是单调减函数,函数y=f(x)与u=x2-2x增减性相反.∵u有最小值-1,无最大值,y有最大值13-1=3,无最小值.又由指数函数值域y0知所求函数的值域为(0,3].10.(1)解:∵f(x)的定义域是R,且f(-x)=10-x-10x10-x+10x=-f(x),f(x)是奇函数.(2)证法一:f(x)=10x-10-x10x+10-x=102x-1102x+1=1-2102x+1.令x2>x1,则f(x2)-f(x1)=-∵y=10x为增函数,当x2>x1时,->0.又∵ +1>0, +1>0,故当x2>x1时,f(x2)-f(x1)>0,即f(x2)>f(x1).f(x)是增函数.证法二:考虑复合函数的增减性.由f(x)=10x-10-x10x+10-x=1-2102x+1.∵y=10x为增函数,y=102x+1为增函数,y=2102x+1为减函数,y=-2102x+1为增函数,y=1-2102x+1为增函数.f(x)=10x-10-x10x+10-x在定义域内是增函数.(3)解:令y=f(x).由y=102x-1102x+1,解得102x=1+y1-y.∵102x>0,1+y1-y>0,解得-1<y<1.即f(x)的值域为(-1,1).2.2 对数函数2.2.1 对数与对数运算1.C 2.B 3.B 4.A5.A 解析:令ex=t,则x=lnt,f(t)=lnt.f(e)=lne =1.6.B 解析:log2a=0,a=1.从而b=0,PQ={3,0,1}.7.解:(1)由题意知x+20,x-10,x-11,解得x1,且x2. 故x的取值范围为(1,2)(2,+).(2)由题意知x+30,x+31,解得x-3,且x-2.故x的取值范围为(-3,-2)(-2,+).8.-2 解析:∵x=-20,f(-2)=10-2=11000,f(10-2)=lg10-2=-2,即f[f(-2)]=-2.9.3 解析:(a ) =232 a=233log a=log 233=3. 10.解:(1)令log2x=t,则2t=x.因为f(log2x)=x,所以f(t)=2t.所以f12=2 =2.(2)因为log2[log3(log4x)]=0,所以log3(log4x)=1.所以log4x=3,所以x=43=64.又因为log3[log4(log2y)]=0.所以log4(log2y)=1.所以log2y=4.所以y=24=16.所以x+y=64+16=80.2.2.2 对数的性质及其应用1.A 2.B 3.B4.B 解析:方法一:原式=lg10023-lg1024+lg12=lg100-lg23-lg10+lg24+lg1-lg2=lg102-3lg2-1+4lg2-lg2=2-1=1.方法二:原式=lg12.51258=lg10=1.5.D6.A 解析:∵1a+1b=logm2+logm5=logm10=2,m2=10.又∵m0,m=10.7.解:原式=lg2lg1022+lg210lg(2210)=lg2(1-2lg2)+(lg2-1)(2lg2+1)=lg2-2(lg2)2+2(lg2)2-2lg2+lg2-1=-1.8.2b+1-a2a+b 解析:log1245=lg45lg12=2lg3+lg52lg2+lg3=2b+1-a2a+b.9.解:由log83=p,得lg3lg8=p,即lg3=3lg2p.①由log35=q,得lg5lg3=q,即1-lg2=lg3q.②①代入②中,得1-lg2=3lg2pq.(3pq+1)lg2=1.∵3pq+10,lg2=13pq+1.10.解:∵lga和lgb是关于x的方程x2-x+m=0的两个根,lga+lgb=1,①lgalgb=m. ②∵关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根,=(lga)2+4(1+lga)=0.lga=-2,即a=1100.将lga=-2代入①,得lgb=3.b=1000.再将lga=-2,lgb=3代入②,得m=-6.综上所述,a=1100,b=1000,m=-6.2.2.3 对数函数及其性质(1)1.D 解析:由log2a0,得01.由12b1,得b0.故选D. 2.D3.A 解析:y=log x=-log2x.4.A 解析:由log0.54x-30,4x-30,解得341.5.D6.B 解析:y=loga(-x)与y=logax关于y轴对称.7.a=2,b=28.D9.D 解析:∵log45log54log531,(log53)2log54log45.bc.故选D.10.解:(1)由kx-1x-10,得(kx-1)(x-1)0.又∵k0,x-1k(x-1)0.当k=1时,函数f(x)的定义域为{x|x1};由01时,函数f(x)的定义域为xx1或x1k,当k1时,函数f(x)的定义域为xx1k或x1.(2)f(x)=lnkx-1+k-1x-1=lnk+k-1x-1,∵函数f(x)在区间[10,+)上是增函数,k-10,即k1.又由10k-110-10,得k110.综上所述,实数k的取值范围为1101.2.2.4 对数函数及其性质(2)1.D 2.C 3.A4.B 解析:∵a=log23.6log22=1.又∵y=log4x,x(0,+)为单调递增函数,log43.2log43.6log44=1,ba.5.C6.C 解析:由loga23<1=logaa,得(1)当0<a<1时,由y=logax是减函数,得0<a<23;(2)当a>1时,由y=logax是增函数,得a>23,a>1.综合(1)(2),得0<a<23或a>1.7.D 解析:f(x)的定义域为(-1,1),且对定义域内任意x,f(-x)=lg1-x1+x=lg1+x1-x-1=-lg1+x1-x=-f(x);又可以验证f-12f12,因此,f(x)是奇函数但不是偶函数.用同样的方法可有:y=x3+1既不是奇函数又不是偶函数;y=e0-1e0+1=0(xR)既是奇函数又是偶函数;y=|2x+1|+|2x-1|是偶函数而不是奇函数,只有y=12x-1+12是奇函数但不是偶函数.故选D.8.-1,32 解析:令u(x)=4+3x-x2,又∵4+3x-x2>0x2-3x-4<0,解得-1<x<4.又u(x)=-x2+3x+4=-x-322+254,对称轴为x=32,开口向下的抛物线;u(x)在-1, 32上是增函数,在32,4上是减函数,又y=lnu(x)是定义域上的增函数,根据复合函数的单调性,y=ln(4+3x-x2)在-1, 32上是增函数.9.②③10.(1)解:∵f(x)是奇函数,f(-x)=-f(x).log 1+ax-x-1=-log 1-axx-11+ax-x-1=x-11-ax>01-a2x2=1-x2a=1.检验a=1(舍),a=-1.(2)证明:任取x1>x2>1,x1-1>x2-1>0.0<2x1-1<2x2-10<1+2x1-1<1+2x2-10<x1+1x1-1<x2+1x2-1log x1+1x1-1>log x2+1x2-1,即f(x1)>f(x2).f(x)在(1,+)内单调递增.(3)解:f(x)-12x>m恒成立.令g(x)=f(x)-12x.只需g(x)min>m,用定义可以证g(x)在[3,4]上是增函数,g(x)min=g(3)=-98.当m<-98时原式恒成立.2.2.5 对数函数及其性质(3)1.D 解析:c=120.30,a=log 20,b=log 30,并且log 2log 3,所以cb.2.C 解析:y=3x-2的图象向左平移2个单位得到y=3x 的图象,其反函数为y=log3x.3.B 4.B 5.B 6.D 7.A8.C 解析:将A项函数沿着直线y=x对折即可得到函数y =log2x.将B沿着x轴对折,将D向下平移1个单位再沿x 轴对折即可.9.22 提示:利用奇函数的定义或f(0)=0.10.解:(1)要使函数有意义,则有1-x0,x+30,解得-31.所以函数f(x)的定义域为(-3,1).(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3),由f(x)=0,得-x2-2x+3=1,即x2+2x-2=0,x=-13.∵-13(-3,1),方程f(x)=0的解为-13.(3)函数可化为f(x)=loga(-x2-2x+3)=loga[-(x+1)2+4],∵-31,0-(x+1)2+44.∵01,loga[-(x+1)2+4]loga4,即f(x)min=loga4.由loga4=-4,得a-4=4.a=4-14=22.2.3 幂函数1.C 2.A3.C 解析:设f(x)=x,则有2=22,解得=-12,即f(x)=x ,所以f(4)=4 =12.4.A 5.B 6.B7.解:m2-3m+3=1,m2-m-20,解得m=1或m=2. 8.(1)②④(2)①⑤⑧⑨9.依次是E,C,A,G,B,D,H,F10.解:(1)若f(x)是幂函数,故m2-m-1=1,即m2-m-2=0.解得m=2或m=-1.(2)若f(x)是幂函数且又是(0,+)上的增函数,则m2-m-1=1,-5m-30.所以m=-1.(3)若f(x)是正比例函数,则-5m-3=1,解得m=-45.此时m2-m-10,故m=-45.(4)若f(x)是反比例函数,则-5m-3=-1,则m=-25,此时m2-m-10,故m=-25.(5)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-10,故m=-1.综上所述,当m=2或m=-1时,f(x)是幂函数;当m=-1时,f(x)既是幂函数,又是(0,+)上的增函数;当m=-45时,f(x)是正比例函数;当m=-25时,f(x)是反比例函数;当m=-1时,f(x)是二次函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年高一数学章节测试题
第二章 基本初等函数
时量 120分钟 总分 150分
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 下列计算中正确的是 A .633x x x =+ B .9
42329)3(b a b a = C . lg(a+b)=lga·lgb D .lne=1
2. 已知71
=+a
a ,则=+-21
21
a a
A. 3
B. 9
C. –3
D. 3±
3.下列函数中,在其定义域内既是奇函数又是减函数的是
A. 3
x y -= B. x y 2
1log = C. x y = D. x y )2
1(=
4. 世界人口已超过56亿,若年增长率按千分之一计算,则两年增长的人口就可相当于一个
A .新加坡(270万)
B .香港(560万)
C .瑞士(700万)
D .上海(1200万) 5. 把函数y=a x (0<a<1)的反函数的图象向右平移一个单位得到的函数图象大致是 (A ) (B ) (C ) (D )
A .
B .
C .
D .
6. 若a 、b 是任意实数,且b a >,则 A .2
2
b a > B .02
<-b
a C .0)lg(>-
b a D .b
a ⎪⎭

⎝⎛<⎪⎭⎫ ⎝⎛2121
7.(山东)设⎭
⎬⎫
⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α值为
A .1,3
B .1-,1
C .1-,3
D .1-,1,3
8.(全国Ⅰ) 设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为1
2
, 则a =
A
B .2
C .
D .4
9. 已知f(x)=|lgx |,则f(41)、f(31
)、f(2) 大小关系为
A. f(2)> f(31)>f(41)
B. f(41)>f(31
)>f(2)
C. f(2)> f(41)>f(31)
D. f(31
)>f(4
1)>f(2)
10.(湖南) 函数2
441()431
x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点
个数是 A .4
B .3
C .2
D .1
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上. 11.(上海) 函数3
)
4lg(--=
x x y 的定义域是 .
12. 当x ∈[-1, 1]时,函数f(x)=3x -2的值域为 .
13. (全国Ⅰ)函数()y f x =的图象与函数3log (0)y x x =>的图象关于直线y x =对称,则()f x = . 14.(湖南) 若0a >,23
4
9a =
,则23
log a = . 15. (四川) 若函数2
()()x f x e μ--=(e 是自然对数的底数)的最大值是m ,且()f x 是
偶函数,则m μ+=________.
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)
(1)指数函数y=f(x)的图象过点(2,4),求f(4)的值; (2)已知log a 2=m ,log a 3=n ,求a 2m+n . 17. (本小题满分12分) 求下列各式的值 (1) ()()[]
75
.05
250
3
1161287064.0⎪⎭
⎫ ⎝⎛+-+⎪⎭
⎫ ⎝⎛---
-
(2)
5lg 8lg 3
4
32lg 21+- 18. (本小题满分12分) 牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是一种指数型函数.....,若牛奶放在0oC 的冰箱中,保鲜时间是200h,而在1oC 的温度下则是160h.
(1) 写出保鲜时间y 关于储藏温度x 的函数解析式; (2) 利用(1)的结论,指出温度在2oC 和3oC 的保鲜时间.
19. (本小题满分12分) 某种放射性物质不断变化为其它物质,每经过一年,剩留的该物质是原来的
5
4
,若该放射性物质原有的质量为a 克,经过x 年后剩留的该物质的质量为y 克.
(1) 写出y 随x 变化的函数关系式;
(2) 经过多少年后,该物质剩留的质量是原来的
125
64 20. (本小题满分13分) 已知f(x)=1
22
a 2a x
x +-+⋅ (x ∈R) ,若对R x ∈,都有f (-x)=-f(x)
成立
(1) 求实数a 的值,并求)1(f 的值; (2)判断函数的单调性,并证明你的结论; (3) 解不等式 3
1)12(<
-x f . 第二章 基本初等函数参考答案
一、选择题
D A A D A D A D B B 二、填空题
11. {}
34≠<x x x 且? 12. [-3
5,1] 13. ()f x =3()x
x ∈R
14 . 3 15. 1m μ+=. 三、解答题 16. 解:(1)f(4)=16 …………6分 (2)a 2m+n =12 …………12分 17. 解:(用计算器计算没有过程,只记2分)
(1) 原式=1
4
.0--1()2
2--++3
2-=
8
15
. …………6分 (2) 原式2
1
)5lg 2(lg 215lg 212lg 23342lg 521=+=+⨯-⨯=.…………12分
18. (1)保鲜时间y 关于储藏温度x 的函数解析式x
y )5
4(200= ………6分
(2)温度在2oC 和3oC 的保鲜时间分别为128和102.4小时. ………11分 答 略 ………………12分
19. 解:(1)*)(54N x a
y x
∈⋅⎪⎭

⎝⎛= …………6分
(2)依题意得 a a x
1256454=⎪⎭

⎝⎛,解x=3. …………11分
答略. ………………12分 20. 解:(1) 由对R x ∈,都有f (-x)=-f(x)成立 得, a=1,3
1
)1(=
f .……4分 (2) f(x)在定义域R 上为增函数. ………………6分
证明如下:由得)(1
21
2)(R x x f x
x ∈+-= 任取+∞<<<∞-21x x ,
∵ 121
21212)()(221121+--+-=-x x x x x f x f ()()
1
212)22(22
121++-=x x x x ………………8分 ∵ +∞<<<∞-21x x ,∴ 2122x
x < ∴ 0)()(21<-x f x f ,即)()(21x f x f <
∴ f(x)在定义域R 上为增函数.(未用定义证明适当扣分) ………………10分
(3) 由(1),(2)可知,不等式可化为)1()12(f x f <-112<-⇔x
得原不等式的解为 1<x (其它解法也可) ………………13分。

相关文档
最新文档