人教版高中数学必修一《基本初等函数》之《幂函数》表格式教学设计

合集下载

新人教A版必修1《幂函数》教案

新人教A版必修1《幂函数》教案
其次,在实践活动环节,学生们在分组讨论和实验操作中表现出了很高的积极性。他们能够将所学的幂函数知识应用到实际问题中,这让我感到很欣慰。但同时我也注意到,有些学生在讨论过程中过于依赖公式,缺乏对问题的深入思考。针对这一问题,我计划在今后的教学中,多引导学生从不同角度分析问题,培养他们的创新意识和解决问题的能力。
-强调幂函数的单调性、奇偶性、过定点等性质。
-结合具体幂函数,如f(x) = x^2、f(x) = x^3等,讲解其性质并举例说明。
-核心内容三:常见幂函数的图像与性质
-详细分析正比例函数、反比例函数、二次函数、三次函数的图像及其性质。
-引导学生观察图像,总结性质,并能运用性质解决相关问题。
2.教学难点
4.数学抽象:帮助学生从具体实例中抽象出幂函数的一般规律,培养学生的数学抽象思维。
三、教学难点与重点
1.教学重点
-核心内容一:幂函数的定义及其一般形式
-重点讲解幂函数的一般形式f(x) = x^a,强调a为常数的特点。
-通过实例展示,让学生理解不同a值对应的幂函数图形差异。
-核心内容二:幂函数的性质
-难点三:幂函数在实际问题中的应用
-学生可能不知道如何将幂函数应用于实际问题,如计算面积、体积等。
-教师应设计相关实际问题,引导学生运用幂函数知识解决问题,提高应用能力。
-难点四:幂函数性质的应用与拓展
-学生可能难以将幂函数性质应用于更广泛的数学问题。
-教师可通过举例,如数学竞赛题等,展示幂函数性质在更复杂问题中的应用,拓展学生思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂函数的基本概念。幂函数是形如f(x) = x^a的函数,其中a为常数。幂函数在数学中具有重要地位,广泛应用于实际问题中。

2023年高中数学幂函数教学教案(7篇)

2023年高中数学幂函数教学教案(7篇)

2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。

(2)能应用幂函数的图象和性质解决有关简洁问题。

力量目标:培育学生发觉问题,分析问题,解决问题的力量。

情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。

(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。

2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。

教学难点:引导学生概括出幂函数的性质。

3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。

为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。

问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。

函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。

)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。

依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。

将学生作图用实物投影仪演示,指出优点和错误之处。

教师利用几何画板演示,通过超级链接几何画板演示。

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

必修1第二章基本初等函数数学:2.3《幂函数》教案(新人教A必修1)

必修1第二章基本初等函数数学:2.3《幂函数》教案(新人教A必修1)

2.3幂函数教学目的:使学生掌握幂函数的概念,会画幂函数的图象,能判定一个幂函数是增函 数还是减函数,能判断一个幂函数的奇偶性。

教学重点:幂函数的图象、幂函数的增减性的证明。

教学难点:幂函数增减性的证明。

教学过程一、新课引入课本P90,p=w, S=a 2, V=a 3 ,a=S 21,v=t -1,上述问题中的函数具有什么共同特征?二、新课上述问题中涉及的函数,都是形如y =x a 的函数。

一般地,函数y =x a 叫做幂函数(power function)。

其中x 是自变量,a 是常数。

当a =1,2,3,21,-1时,得到下列的幂函数,画出它们的图象,并观察图象, 将你发现的结论写在下表中:y =x y =x 2 y =x 3 y =x 21y =x -1 定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R [0,+∞) (-∞,0)∪(0,+∞)奇偶性 奇 偶 奇 非奇非偶 奇单调性 增 [0,+∞)增 增 增 (-∞,0)减(-∞,0)减 [0,+∞)减定点 (1,1) (1,1) (1,1) (1,1) (1,1)例1、证明幂函数f(x)=x 在[0,+∞)上是增函数。

证明:任取1x 、2x ∈[0,+∞),且1x <2x ,则f(1x )-f(2x )=21x x -=212121))((x x x x x x ++-=2121x x x x +-因为1x -2x <0,21x x +>0,所以,f(1x )<f(2x )即幂函数f(x)=x 在[0,+∞)上是增函数。

注意:证明函数的单调性时既可以用作差的方法,也可以用作比的方法,应用用比的 方法时应注意分母不为零,及去母时考虑符号问题。

作业:P92 1、2、3。

人教版高中数学必修1第二章基本初等函数(I)-《2.3幂函数》教案(1)_001

人教版高中数学必修1第二章基本初等函数(I)-《2.3幂函数》教案(1)_001

2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,后研幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质5.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质;(2)教学用具:多媒体三.教学过程:引入新知阅读教材P90的具体实例(1)~(5),思考下列问题.(1)它们的对应法则分别是什么?(2)以上问题中的函数有什么共同特征?让学生独立思考后交流,引导学生概括出结论答:1、(1)乘以1 (2)求平方(3)求立方(4)求算术平方根(5)求-1次方=,其中x是自变量,α是2、上述的问题涉及到的函数,都是形如:y xα常数.探究新知1.幂函数的定义=(x∈R)的函数称为幂孙函数,其中x是自变量,α是常一般地,形如y xα数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2.研究函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x = 一.提问:如何画出以上五个函数图像引导学生用列表描点法,应用函数的性质,如奇偶性,定义域等,画出函数图像,最后,教师利用电脑软件画出以上五个数数的图像..23.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:11x=);(2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(从左往右看,函数图象逐渐上升).特别地,当x >1,x >1时,x ∈(0,1),2y x =的图象都在y x =图象的下方,形状向下凸越大,下凸的程度越大(你能找出原因吗?)当∠α<1时,x ∈(0,1),2y x =的图象都在y x =的图象上方,形状向上凸,α越小,上凸的程度越大(你能说出原因吗?)(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一家限内,当x 向原点靠近时,图象在y 轴的右方无限逼近y 轴正半轴,当x 慢慢地变大时,图象在x 轴上方并无限逼近x 轴的正半轴. 例题:1.证明幂函数()[0,]f x =+∞上是增函数证:任取121,[0,),x x x ∈+∞且<2x 则12()()f x f x -=因12x x -<0所以12()()f x f x <,即()[0,]f x =+∞上是增函数.思考:我们知道,若12()()0,1()f x y f x f x =><若得12()()f x f x <,你能否用这种作比的方法来证明()[0,]f x=+∞上是增函数,利用这种方法需要注意些什么?2.利用函数的性质,判断下列两个值的大小(1)11662,3(2)3322(1),(0)x x x+>(3)22244(4),4a--+分析:利用幂函数的单调性来比较大小.5.课堂练习画出23y x=的大致图象,并求出其定义域、奇偶性,并判断和证明其单调性.6.归纳小结:提问方式(1)我们今天学习了哪一类基本函数,它们定义是怎样描述的?(2)你能根据函数图象说出有关幂函数的性质吗?作业:P92习题2.3 第2、3 题。

人教版高中数学必修一《基本初等函数》之《幂函数》表格式教案

人教版高中数学必修一《基本初等函数》之《幂函数》表格式教案

§2.3幂函数(教案)教材分析:幂函数是函数的重要内容之一,新课程标准将其列为基本初等函数之一,并与 指数函数、对数函数安排在一起。

新课程标准对幂函数提出了明确的要求:(1)通过实例,了解幂函数的概念;结合函数x y =;21x y =;2x y =;1-=x y ;3x y =的图像,了解它们的变化情况。

(2)利用计算工具,比较指数函数、对数函数以及幂函数增长差异。

(3)收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

上面的表述中,可以看出:指数函数、对数函数、幂函数三类不同函数的增长变化是认识的核心。

所以幂函数教学必须分两个层次来进行,一是幂函数概念及其简单性质,二是函数模型的应用。

本节课为前一层次。

所以幂函数的教学要求不能过高,也不能太低,必须体现以下三点: (1) 通过实例,了解幂函数的概念;(2) 结合函数x y =;21x y =;2x y =;1-=x y ;3x y =的图像,了解它们的变化情况。

(3) 与指数函数、对数函数的性质比较,概括y x α=在第一象限的简单性质。

其中(1)和(2)在新课标中已经明确指出,(3)作为培养学生概括能力目标,课本的复习与小结中也有涉及。

前面已经学习了指数函数、对数函数,得到了教系统的函数知识和研究函数的方法, 通过本节的幂函数学习,使函数内容的学习再一次得到广泛的回顾和整理,可以进一步深化学生对函数概念的理解与认识。

在各种数学思想方法的领悟、应用上也得到一次提高。

学情分析:本班的学生为普通校的平行班的学生,学生的数学基础,理解能力,运算能力、思维能力一般,但是通过前面的指数函数,对数函数的学习来看,学生通过数形结合来学习,学生还是有强烈的求知欲望,所以除了课标的要求外,还是酌情补充了概括y x α=在第一象限的简单性质。

学法指导1、针对以上情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维,主动获取知识,养成良好的学习方法,并逐步学会独立提出问题,解决问题。

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案《人教版高中必修1幂函数教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!§2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,研究幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质三.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;(2)教学用具:多媒体四.教学过程:1导入新课1.如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?根据函数的定义可知,这里p是w的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.4.如果正方形场地面积为S,那么正方形的边长a=S,这里a是S的函数.5.如果某人t s内骑车行进了1 km,那么他骑车的速度v=t-1km/s,这里v是t的函数.以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).2新知探究提出问题:问题①:给出下列函数:y=x,y=x,y=x2,y=x-1,y=x3,考察这些解析式的特点,总结出来,是否为指数函数?问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=xα(x∈R)的函数称为幂函数,其中x是自变量,α是常数.如y=x2,y=x,y=x3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.练1判断下列函数哪些是幂函数.(1)y=0.2x;(2)y=x-3;(3)y=x-2;(4)y=x;(5)y=2x2 ;(6)y=-x-1活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=xα(x∈R)的函数称为幂函数,变量x的系数为1,指数α是一个常数,严格按这个标准来判断.解:(1)y=0.2x的底数是0.2,因此不是幂函数;(2)y=x-3的底数是变量,指数是常数,因此是幂函数;(3)y=x-2的底数是变量,指数是常数,因此是幂函数;(4)y=x的底数是变量,指数是常数,因此是幂函数.(5)的变量x2的系数为2,因此不是幂函数;(6)的变量x3的系数为-1,因此不是幂函数点评:判断函数是否是幂函数要严格按定义来判断.提出问题:问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题④:画出y=x,y=x,y=x2,y=x-1,y=x3五个函数图象,完成下列表格.讨论结果:③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x,y=x2,y=x3,y=x-1的图象.列表:图1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.通过观察图象,完成表格.提出问题:问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?讨论结果:⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.⑥幂函数y=xα的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x=1);(2)当α>0时,幂函数的图象都通过原点,并且在[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).特别地,当α>1时,x∈(0,1),y=x2的图象都在y=x图象的下方,形状向下凸,α越大,下凸的程度越大.当0<α<1时,x∈(0,1),y=x2的图象都在y=x的图象上方,形状向上凸,α越小,上凸的程度越大.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x向原点靠近时,图象在y轴的右方无限逼近y轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼近x轴的正半轴.活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示.3典例精析例1比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨.比较数的大小,常借助于函数的单调性.对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x-0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,考察函数y=x0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,考察函数y=0.3x的单调性,它在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.另外,本题还有图象法,计算结果等方法,留作同学们自己完成.点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性例2.证明幂函数f(x)=在[0,+∞)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导.证明函数的单调性一般用定义法,有时利用复合函数的单调性.证明:任取x1,x2∈[0,+∞),且x1f(x1)-f(x2)===,因为x1-x2<0,x1+x2>0,所以<0.所以f(x1)点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x1)与f(x2)的符号要一致.4知能训练1.下列函数中,既是幂函数又是奇函数的是( )A.y=2xB.y=2x3C.y=D.y=2x2.下列结论正确的是( )A.幂函数的图象一定过原点B.当α<0时,幂函数y=xα是减函数C.当α>0时,幂函数y=xα是增函数D.函数y=x2既是偶函数,也是幂函数3.下列函数中,在(-∞,0)是增函数的是( )A.y=x3B.y=x2C.y=D.y=x4.已知某幂函数的图象经过点(2,),则这个函数的解析式为. 。

人教版高中数学必修1: 2.3幂函数教案

人教版高中数学必修1: 2.3幂函数教案

2.3 幂函数(教学设计)教学目的:1.通过实例,了解幂函数的概念.2.具体结合函数12132,,,,-=====x y x y x y x y x y 的图象,了解幂函数的变化情况.3.在归纳五个幂函数的基本性质时,应注意引导学生类比前面研究一般的函数、指数函数、对函数等过程中的思想方法,对研究这些函数的思路作出指导. 教学重点:从五个具体的幂函数中认识幂函数的一些性质.教学难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难. 一、新课导入先看五个具体的问题:(1)如果张红购买了每千克1元的蔬菜w 千克,那么她需要支付p=w 元,这里p 是w 的函数; (2)如果正方形的边长为a ,那么正方形的面积2a S =,这里S 是a 的函数; (3)如果立方体的边长为a ,求立方体的体积3a V =,这里V 是a 的函数;(4)如果一个正方形场地的面积为S ,那么这个正方形的边长21S a =,这里a 是S 的函数; (5)如果某人t s 内骑车进行了1km ,那么他骑车的平均速度1-=t v km/s ,这里v 是t 的函数.讨论:以上五个问题中的函数具有什么共同特征?它们具有的共同特征:幂的底数是自变量,指数是常数. 从上述函数中,我们观察到,它们都是形如y x α=的函数.二、师生互动,新课讲解: 1、幂函数的定义一般地,函数αx y =)(R a ∈叫做幂函数(power function ),其中x 是自变量,α是常数.对于幂函数αx y =,我们只讨论1,21,3,2,1-=α时的情形. 2、幂函数的图象在同一直角坐标系内作出幂函数x y =; 21x y =; 2x y =;1-=x y ;3x y =的图象.观察以上函数的图象的特征,归纳出幂函数的性质.3、幂函数的性质 1).五个具体的幂函数的性质(1)函数x y =; 21x y =; 2x y =;3x y =和1-=x y 的图象都通过点(1,1);(2)函数x y =;3x y =;1-=x y 是奇函数,函数2x y =是偶函数;(3)在区间),0(+∞上,函数x y =,2x y =,3x y =和21x y =是增函数,函数1-=x y 是减函数;(4)在第一象限内,函数1-=x y 的图象向上与y 轴无限接近,向右与x 轴无限接近. 2).一般的幂函数的性质(1)所有的幂函数αx y =在(0,+∞)都有定义,并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数; α>1时,图象向上,靠近y 轴; 0<α<1,图景向上,靠近x 轴; α=1是条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3幂函数
教学目标:
知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.
过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.
情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.
教学重点:
重点从五个具体幂函数中认识幂函数的一些性质.
难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.
教学程序与环节设计:
问题引入.
幂函数的图象和性质.
教学过程与操作设计:
环节教学内容设计师生双边互动
创设情境
阅读教材P90的具体实例(1)~(5),思考下列
问题:
1.它们的对应法则分别是什么?
2.以上问题中的函数有什么共同特征?
(答案)
1.(1)乘以1;(2)求平方;(3)求立方;(4)
开方;(5)取倒数(或求-1次方).
2.上述问题中涉及到的函数,都是形如αx
y=
的函数,其中x是自变量,是α常数.
生:独立思考完成引
例.
师:引导学生分析归纳
概括得出结论.
师生:共同辨析这种新
函数与指数函数的异
同.
组织探究
材料一:幂函数定义及其图象.
一般地,形如
α
x
y=)
(R
a∈
的函数称为幂函数,其中α为常数.
下面我们举例学习这类函数的一些性质.
作出下列函数的图象:
(1)x
y=;(2)2
1
x
y=;(3)2x
y=;
(4)1-
=x
y;(5)3x
y=.
[解] ○1列表(略)
○2图象
师:说明:
幂函数的定义来
自于实践,它同指数函
数、对数函数一样,也
是基本初等函数,同样
也是一种“形式定义”
的函数,引导学生注意
辨析.
生:利用所学知识和方
法尝试作出五个具体
幂函数的图象,观察所
图象,体会幂函数的变
化规律.
师:引导学生应用画函
数的性质画图象,如:
定义域、奇偶性.
师生共同分析,强调画
图象易犯的错误.
环节教学内容设计师生双边互动
尝试练习
1.利用幂函数的性质,比较下列各题中两个幂的值的大小:
(1)4
3
3.2,4
3
4.2;
(2)5
6
31
.0,5
6
35
.0;
(3)2
3
)2
(-,2
3
)3
(-;
(4)2
1
1.1-,2
1
9.0-.
2.作出函数2
3
x
y=的图象,根据图象讨论这个函数有哪些性质,并给出证明.
3.作出函数2-
=x
y和函数2)3
(-
-
=x
y的图象,求这两个函数的定义域和单调区间.
4.用图象法解方程:
(1)1
-
=x
x;(2)3
2
3-
=x
x.
探究与发现
1.如图所示,曲线是幂
函数αx
y=在第一象限内的
图象,已知α分别取
2,
2
1
,1,1
-四个值,则相应图
象依次为:.
2.在同一坐标系内,作出下列函数的图象,
你能发现什么规律?
(1)3-
=x
y和3
1
-
=x
y;
(2)4
5
x
y=和5
4
x
y=.
规律1:在第一象限,
作直线)1
(>
=a
a
x,
它同各幂函数图象相
交,按交点从下到上的
顺序,幂指数按从小到
大的顺序排列.
规律2:幂指数互为倒
数的幂函数在第一象
限内的图象关于直线
x
y=对称.
作业回馈
1.在函数1
,
,
2
,
1
2
2
2
=
+
=
=
=y
x
x
y
x
y
x
y
中,幂函数的个数为:
A.0 B.1 C.2 D.3
环节呈现教学材料师生互动设计。

相关文档
最新文档