高中数学必修1幂函数练习题
高中数学必修一《幂函数》精选习题(含详细解析)

高中数学必修一《幂函数》精选习题(含详细解析)一、选择题1.下列函数中,是幂函数的是( )A.y=2xB.y=2x3C.y=D.y=2x22.若幂函数y=(m2-3m+3)x m-2的图象不过原点,则m的取值范围为( )A.1≤m≤2B.m=1或m=2C.m=2D.m=13.函数y=x-2在区间上的最大值是( )A. B. C.4 D.-44若本题的条件不变,则此函数在区间上的最大值和最小值之和为多少?5.在下列函数中,定义域为R的是( )A.y=B.y=C.y=2xD.y=x-16函数y=|x(n∈N,n>9)的图象可能是( )7下列幂函数在(-∞,0)上为减函数的是( )A.y=B.y=x2C.y=x3D.y=8下列幂函数中过点(0,0),(1,1)且为偶函数的是( )A.y=B.y=x4C.y=x-2D.y=9.在同一坐标系内,函数y=x a(a≠0)和y=ax-的图象可能是( )二、填空题10幂函数f(x)=xα过点,则f(x)的定义域是.11若y=a是幂函数,则该函数的值域是.12若函数f(x)是幂函数,且满足=3,则f的值等于.13.设a=,b=,c=,则a,b,c的大小关系是.14已知幂函数f=(m∈Z)的图象与x轴,y轴都无交点,且关于原点对称,则函数f的解析式是.三、解答题15.比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.16.已知幂函数y=x3-p(p∈N*)的图象关于y轴对称,且在(0,+∞)上为增函数,求满足条件(a+1<(3-2a的实数a的取值范围.17幂函数f的图象经过点(,2),点在幂函数g的图象上,(1)求f,g的解析式.(2)x为何值时f>g,x为何值时f<g?18已知幂函数f(x)=(m2-m-1)·x-5m-3在(0,+∞)上是增函数,又g(x)=lo(a>1).(1)求函数g(x)的解析式.(2)当x∈(t,a)时,g(x)的值域为(1,+∞),试求a与t的值.参考答案与解析1【解析】选C.由幂函数所具有的特征可知,选项A,B,D中x的系数不是1;故只有选项C中y==x-1符合幂函数的特征.2【解析】选D.由题意得解得m=1.3【解析】选C.y=x-2在区间上单调递减,所以x=时,取得最大值为4.4【解析】y=x-2在区间上单调递减,所以x=2时,取得最小值为,当x=时,取得最大值为4.故最大值和最小值的和为.5【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).6【解析】选C.因为y=|x为偶函数,所以排除选项A,B.又n>9,所以<1.由幂函数在(0,+∞)内幂指数小于1的图象可知,只有选项C符合题意.7【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数. 8【解析】选B.函数y=x4是过点(0,0),(1,1)的偶函数,故B正确;函数y=x-2不过点(0,0),故C 不正确;函数y=,y=是奇函数,故A,D不正确.9【解析】选C.当a<0时,函数y=ax-在R上是减函数,此时y=x a在(0,+∞)上也是减函数,同时为减的只有D选项,而函数y=ax-与y轴相交于点,此点在y轴的正半轴上,故D选项不适合.当a>0时,函数y=ax-在R上是增函数,与y轴相交于点,此点在y轴的负半轴上,只有A,C适合,此时函数y=x a在(0,+∞)上是增函数,进一步判断只有C适合.10【解析】因为幂函数f(x)过点,所以=2α,所以α=-1,所以f(x)=x-1=,所以函数f(x)的定义域是(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)11【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).答案:[0,+∞)3,12【解析】依题意设f(x)=xα,则有=3,得α=log2则f(x)=,于是f====.答案:13【解析】因为y=在x∈(0,+∞)上递增,所以>,即a>c,因为y=在x∈(-∞,+∞)上递减,所以>,即c>b,所以a>c>b.答案:a>c>b14【解析】因为函数的图象与x轴,y轴都无交点,所以m2-1<0,解得-1<m<1;因为图象关于原点对称,且m∈Z,所以m=0,所以f=x-1.答案:f=x-115【解析】(1)由于函数y=x0.1在第一象限内单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.16【解析】因为幂函数y=x3-p(p∈N*)的图象关于y轴对称,所以函数y=x3-p是偶函数.又y=x3-p在(0,+∞)上为增函数,所以3-p是偶数且3-p>0.因为p∈N*,所以p=1,所以不等式(a+1<(3-2a化为:(a+1<(3-2a.因为函数y=是[0,+∞)上的增函数,所以⇒⇒-1≤a<,故实数a的取值范围为.17【解析】(1)设f=xα,则()α=2,所以α=2,所以f=x2.设g=xβ,则(-2)β=,所以β=-2,所以g=x-2(x≠0).(2)从图象可知,当x>1或x<-1时,f>g;当-1<x<0或0<x<1时,f<g.18【解析】(1)因为f(x)是幂函数,且在(0,+∞)上是增函数,所以解得m=-1,所以g(x)=loga.(2)由>0可解得x<-1或x>1,所以g(x)的定义域是(-∞,-1)∪(1,+∞).又a>1,x∈(t,a),可得t≥1,设x1,x2∈(1,+∞),且x1<x2,于是x2-x1>0,x1-1>0,x2-1>0,所以-=>0, 所以>.由a>1,有loga >loga,即g(x)在(1,+∞)上是减函数.又g(x)的值域是(1,+∞),所以得g(a)=loga=1,可化为=a, 解得a=1±,因为a>1,所以a=1+,综上,a=1+,t=1.。
高中数学必修1幂函数试题月考卷

高中数学必修1幂函数试题月考卷一、选择题(每题1分,共5分)1. 下列函数中,哪一个不是幂函数?A. y = x²B. y = x³C. y = 2xD. y = x¹/²2. 当x>0时,函数y=x^α是增函数,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠03. 幂函数y=x^α的图象在第一象限,则α的取值范围是?A. α>0B. α<0C. α=0D. α≠04. 已知幂函数y=x^α在区间(0,+∞)上是减函数,则α的值是?A. α<0B. α=0C. α>0D. α=15. 若幂函数y=x^α在区间(∞,0)上单调递增,则α的值是?A. α>0B. α<0C. α=0D. α=1二、判断题(每题1分,共5分)1. 所有幂函数的图象都过原点。
()2. 幂函数的图象一定关于y轴对称。
()3. 当α为负数时,幂函数的图象在第一象限。
()4. 幂函数y=x^α中,当α为正偶数时,函数为偶函数。
()5. 幂函数y=x^α中,当α为正奇数时,函数为奇函数。
()三、填空题(每题1分,共5分)1. 幂函数y=x^α的图象在第二象限,则α的取值范围是______。
2. 当α=______时,幂函数y=x^α为常数函数。
3. 幂函数y=x^α在区间(∞,0)上单调递减,则α的取值范围是______。
4. 若幂函数y=x^α的图象关于y轴对称,则α的值是______。
5. 幂函数y=x^α的图象在第一、三象限,则α的取值范围是______。
四、简答题(每题2分,共10分)1. 简述幂函数的定义。
2. 幂函数y=x^α的图象可能经过哪些象限?3. 请举例说明什么是偶函数。
4. 请举例说明什么是奇函数。
5. 简述幂函数的性质。
五、应用题(每题2分,共10分)1. 已知幂函数y=x^α,当x=2时,y=8,求α的值。
高中数学幂函数的定义练习及答案

高中数学幂函数的定义练习及答案题型一:幂函数的定义【例1】 下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=x yC .32x y =D .13-=x y【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无【解析】 形如(01)x y a a a =>≠且的函数叫做幂函数,答案为B .【答案】B【例2】 11.函数的定义域是 .【考点】幂函数的定义 【难度】1星【题型】填空【关键词】无 【解析】【答案】【例3】 如果幂函数()f x x α=的图象经过点,则(4)f 的值等于( ). A. 16 B. 2 C. 116 D. 12【考点】幂函数的定义 【难度】1星 【题型】选择 【关键词】无 【解析】 【答案】D【例4】 幂函数()y f x =的图象过点1(4,)2,则(8)f 的值为 .【考点】幂函数的定义 【难度】1星 【题型】填空 【关键词】无 【解析】典例分析【例5】 下列幂函数中过点(0,0),(1,1)的偶函数是( ).A.12y x = B. 4y x = C. 2y x -= D.13y x =【考点】幂函数的定义 【难度】1星【题型】选择【关键词】无 【解析】 【答案】B【例6】 下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限【考点】幂函数的定义 【难度】2星 【题型】选择【关键词】无【解析】 A 错,当0α=时函数y x α=的图象是一条直线(去掉点(0,1));B 错,如幂函数1y x -=的图象不过点(0,0);C 错,如幂函数1y x -=在定义域上不是增函数;D 正确,当0x >时,0x α>.【答案】D【例7】 函数2221(1)mm y m m x --=--是幂函数,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无 【解析】 幂函数需要保证系数为1,同时指数为有理数,从此两个条件入手,可以得到关于m 的等式和不等式,从而解出m 的值. ∵2221(1)mm y m m x --=--是幂函数,∴函数可以写成如下形式a y x =(a 是有理数) ∴211m m --=,解得121,2m m =-= 当11m =-时,211212m m Q --=∈22m =时,222211m m Q --=-∈∴m 的值域为-1或2.【点评】本题为幂函数的基本题目,注意不要忘了检验a 是有理数. 【答案】-1或2【例8】 求函数1302(3)y x x x -=+--的定义域.【考点】幂函数的定义 【难度】2星 【题型】解答 【关键词】无 【解析】 这是几个幂函数的复合函数,求复合函数的定义域需要保证每一个函数都有意义,即分母不为0、被开方数大于等于0.使函数有意义,则x 必须满足0030x x x ≥⎧⎪≠⎨⎪-≠⎩,解得:0x >且3x ≠即函数的定义域为{|0,3}x x x >≠且.【答案】{|0,3}x x x >≠且【例9】 函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,则实数m 的取值范围是( ).A.12),B.1)+,∞ C.(22)-,D.(11--+ 【考点】幂函数的定义【难度】2星【题型】选择【关键词】无【解析】 要使函数1224(42)(1)y mx x m m mx -=++++-+的定义域是全体实数,可转化为2420mx x m +++>对一切实数都成立,即0m >且244(2)0m m ∆=-+<.解得1m >.故选(B) 【答案】B【例10】 讨论幂函数a y x =(a 为有理数)的定义域. 【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 (1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U (3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【答案】(1)若*a N ∈,则x ∈R ,这是函数的定义域为R .(2)若a ∈{负整数} {0}U ,则(,0)(0,)x ∈-∞+∞U ,这时函数的定义域是(,0)(0,)-∞+∞U(3)若na m=*(,,,)m n N m n ∈且互质,则: ①m 是偶数,x R -∈,这是函数的定义域是R -; ②m 是奇数,x R ∈,这时函数的定义域为R(4)若na m=-*(,,,)m n N m n ∈且互质,则:①m 是偶数,x R +∈,这是函数的定义域是R +;②m 是奇数,(,0)(0,)x ∈-∞⋃+∞,这时函数的定义域是(,0)(0,)-∞⋃+∞.【例11】 已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.【考点】幂函数的定义 【难度】2星 【题型】解答【关键词】无【解析】 ∵ 幂函数图象与x 、y 轴都没有公共点,∴ 6020m m -<⎧⎨-<⎩,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =.【答案】4m =【例12】 幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 ∵ ()f x 是幂函数, ∴ 311t t -+=,解得1,10t =-或.当0t =时,75()f x x =是奇函数,不合题意;当1t =-时;25()f x x =是偶函数,在(0,)+∞上为增函数; 当1t =时;85()f x x =是偶函数,在(0,)+∞上为增函数. 所以,25()f x x =或85()f x x =.【答案】25()f x x =或85()f x x =.【例13】 已知幂函数223()()mm f x x m Z --=∈ 的图形与x 轴对称,y 轴无交点,且关于y 轴对称,试确定的解析式.【考点】幂函数的定义 【难度】2星【题型】解答【关键词】无【解析】 由()22230232m m m m n n N m Z ⎧--≤⎪--∈∈⎨⎪∈⎩得113m =-,, 1m =-和3时解析式为()0f x x =,1m =是解析式为()4f x x -=【答案】()4f x x -=题型二:幂函数的性质与应用【例14】 下列函数在区间(0,3)上是增函数的是( ).A. 1y x =B. 12y x = C. 1()3x y = D. 2215y x x =--【考点】幂函数的性质与应用 【难度】1星 【题型】选择【关键词】无 【解析】 【答案】B【例15】 下列函数中既是偶函数又是(,0)-∞上是增函数的是( )A .43y x = B .32y x = C .2y x -= D .14y x-=【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无 【解析】 A 、D 中的函数为偶函数,但A 中函数在(,0)-∞为减函数.【答案】C【例16】 942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .【考点】幂函数的性质与应用 【难度】1星【题型】填空【关键词】无 【解析】【答案】5;【例17】 比较下列各组中两个值大小(1)6110.6与6110.7(2)5533(0.88)(0.89).--与【考点】幂函数的性质与应用 【难度】1星 【题型】解答【关键词】无【解析】 (1)∵函数611y x =在(0,)+∞上是增函数且00.60.7<<<+∞∴6611110.60.7<(2)函数53y x =在(0,)+∞上增函数且89.088.00<< ∵55330.880.89<∴55330.880.89->-,即5533(0.88)(0.89).-<-【答案】(1)6611110.60.7<(2)5533(0.88)(0.89).-<-【例18】 幂函数(1)knmy x-=(,,*,,m n k N m n ∈互质)图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】k m ,为奇数,n 是偶数;【例19】 求证:函数3x y =在R 上为奇函数且为增函数. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无 【解析】【答案】显然)()()(33x f x x x f -=-=-=-,奇函数;令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-, 其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数.【例20】 设120.7a =,120.8b =,c 3log 0.7=,则( ).A. c <b <aB. c <a <bC. a <b <cD. b <a <c 【考点】幂函数的性质与应用 【难度】2星 【题型】选择 【关键词】无 【解析】 【答案】B【例21】 比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.【考点】幂函数的性质与应用 【难度】2星 【题型】填空【关键词】无 【解析】【答案】>,≤, <,【例22】 (1)若0a <,比较12,(),0.22aa a 的大小;(2)若10a -<<,比较1333,,a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 (1)当0a <时,幂函数a y x =在(0,)+∞上单调减,∵10.222<<,∴12()0.22a a a <<. (2)当10a -<<时,13330,0,0aa a ><<, 指数函数()x y a =-在(0,)+∞上单调减,∵133>,∴1330()()a a <-<-,∴ 1330a a >>, ∴ 1333a a a >>【答案】(1)12()0.22aa a <<(2)1333a a a >>【例23】 函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1- C .4D .4-【考点】幂函数的性质与应用 【难度】1星 【题型】选择 【关键词】无【解析】 函数2y x -=在区间1[,2]2上单调减,当12x =时,max 4y =.【答案】C【例24】 函数2422-+=x x y 的单调递减区间是【考点】幂函数的性质与应用 【难度】2星【题型】填空【关键词】无【解析】 由22240x x +-≥得:46x x ≥≤-或,∵ 函数12y t =在[0,)+∞上为增函数,函数2224t x x =+-在(,6]-∞上为减函数,故所给函数的单调减区间为(,6]-∞-.【答案】(,6]-∞-【例25】 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数【考点】幂函数的性质与应用 【难度】2星【题型】选择【关键词】无 【解析】【答案】C【例26】 已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 【考点】幂函数的性质与应用 【难度】2星【题型】解答【关键词】无【解析】 设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【答案】R 上单调递增【例27】 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定 【考点】幂函数的性质与应用【难度】2星【题型】选择【关键词】无 【解析】【答案】A【例28】 已知0<a <1,试比较()(),,aa a a a a a a 的大小.【考点】幂函数的性质与应用 【难度】2星 【题型】解答 【关键词】无 【解析】 本题考查的是幂函数的单调性知识,这里三个表达式的底数和幂都分别不同,所以需要转化看待,将它们化成同类幂函数进行比较.为比较a a 与()a a a 的大小,将它们看成指数相同的两个幂,由于幂函数()()01a f x x a =<<在区间[0,]+∞上是增函数,因此只须比较底数a 与a a 的大小,由于指数函数x y a = (0<a <1)为减函数,且1>a ,所以a a a <,从而()a a a a a <.比较a a 与()aa a 的大小,也可以将它们看成底数相同(都是a α)的两个幂,于是可以利用指数函数 (),01x a yb b a a ==<<是减函数,由于1>a ,得到a a a <.由于a a a <,函数x y a = (0<a <1)是减函数,因此()aa a a a >.综上,()()aa a a a a a a >>【点评】解答本题的关键都在于适当地选取一个函数,函数选得恰当,问题可以顺利地获得解决..【答案】()()aa a a a a a a >>【例29】 已知1133(1)(32)a a --+<-,求a 的取值范围.【考点】幂函数的性质与应用 【难度】2星 【题型】解答【关键词】无【解析】 13()f x x -=在(,0)-∞、(0,)+∞上是减函数,对于不同的a +1和3-2a 进行讨论,将它们等价转化到同一个单调区间..∵13(1)a -+和13(32)a --是幂函数13()f x x -=的两个函数值, 且13()f x x -=在(,0)-∞、(0,)+∞上是减函数当10,320a a +>->时,有1320a a +>->,解得2332a <<; 当10,320a a +<-<时,有3210a a -<+<,此时无解当(1)(32)0a a +-<时,有10a +<且320a ->,解得1a <-综上可知a的取值范围为23 (,1)(,)32 -∞-⋃.【答案】23(,1)(,)32-∞-⋃.【例30】若11(1)(32)m m--+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(分类讨论):(1)10320132mmm m+>⎧⎪->⎨⎪+>-⎩,,,解得2332dm<<;(2)10320132mmm m+<⎧⎪-<⎨⎪+>-⎩,,,此时无解;(3)10320mm+<⎧⎨->⎩,,,解得1m<-.综上可得23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞.【答案】23(1)32m⎛⎫∈-- ⎪⎝⎭U,,∞【例31】若33(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】(利用单调性):由于函数3y x=在()-+,∞∞上单调递增,所以132m m+<-,解得23m<.【答案】23m<【例32】若1122(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】由图3,10320321mmm m+⎧⎪->⎨⎪->+⎩,,,,解得213m-<≤.【答案】213m-<≤【例33】若44(1)(32)m m+<-,试求实数m的取值范围.【考点】幂函数的性质与应用【难度】2星【题型】解答【关键词】无【解析】作出幂函数4y x=的图象如图4.由图象知此函数在(0)(0)-+U,,∞∞上不具有单调性,若分类讨论步骤较繁,把问题转化到一个单调区间上是关键.考虑4α=时,44x x=.于是有44(1)(32)m m+<-,即44132m m+<-..又∵幂函数4y x=在(0)+,∞上单调递增,∴132m m+<-,解得23m<,或m>4.【答案】23m<,或m>4【例34】已知函数2()f x x=,设函数()[()](21)()1g x qf f x q f x=-+-+,问是否存在实数(0)q q<,使得()g x在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.【考点】幂函数的性质与应用【难度】3星【题型】解答【关键词】无【解析】∵2()f x x=,则42()(21)1g x qx q x=-+-+.假设存在实数(0)q q<,使得()g x满足题设条件,设12x x<,则4242121122()()(21)(21)g x g x qx q x qx q x-=-+-+--22122112()()[()(21)]x x x x q x x q =+-+--.若(]124x x ∈--,,∞,易知120x x +<,210x x ->,要使()g x 在(]4--,∞上是减函数,则应有2212()(21)0q x x q +--<恒成立.∵14x <-,24x -≤,∴221232x x +>.而0q <, ∴2212()32q x x q +<.. 从而要使2212()21q x x q +<-恒成立,则有2132q q -≥,即130q -≤. 若12(40)x x ∈-,,,易知1221()()0x x x x +-<,要使()f x 在(40)-,上是增函数,则应有2212()(21)0q x x q +-->恒成立.∵140x -<<,240x -<<,∴221232x x +<,而0q <,∴2212()32q x x q +>. 要使2212()21q x x q +>-恒成立,则必有2132q q -≤,即130q -≥. 综上可知,存在实数130q =-,使得()g x 在(]4-∞-,上是减函数,且在(40)-,上是增函数.【答案】存在,130q =-【例35】 由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.【考点】幂函数的性质与应用 【难度】3星【题型】解答【关键词】无【解析】 设原定价A 元,卖出B 个,则现在定价为A (110x+), 现在卖出个数为110bx B ⎛⎫- ⎪⎝⎭,现在售货金额为111110101010x bx x bx A B AB ⎛⎫⎛⎫⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,应交税款为11101010x bx a AB ⎛⎫⎛⎫+-⋅ ⎪⎪⎝⎭⎝⎭,剩余款为21111111010101010010x bx a a b b y AB AB x x -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-⋅-=--++ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 所以5(1)b x b -=时y 最大 要使y 最大,x 的值为5(1)b x b-=.【答案】5(1)b x b-=题型三:幂函数的图像【例36】 函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】【答案】D【例37】 函数43y x =的图象是( )【考点】幂函数的图像 【难度】1星【题型】选择【关键词】无 【解析】 【答案】A【例38】 幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ).A .101n m -<<<<B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <-> 【考点】幂函数的图像 【难度】2星 【题型】选择 【关键词】无 【解析】 由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【答案】B.【例39】 【答案】如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<【考点】幂函数的图像 【难度】2星【题型】选择【关键词】无 【解析】 【答案】D【例40】 下图为幂函数y x α=在第一象限的图象,则1234,,,αααα按由小到大的顺序排列为 。
高中数学 2.3.1幂函数的图像、性质与应用练习 新人教A版必修1-新人教A版高一必修1数学试题

【金版学案】2015-2016高中数学 幂函数的图像、性质与应用练习 新人教A 版必修1基础梳理1.形如y =x α(α∈R)的函数叫做________,其中α为常数,只研究α为有理数的情形.例如:函数y =x 2,y =x 4的幂函数,而函数y =2x 2不是幂函数.2.幂函数y =x ,y =x 12,y =x 2,y =x -1,y =x 3的图象,如下图所示.3.幂函数的性质.(1)过定点:y =x α恒过定点______.当α>0时,所有幂函数都过定点____________.(2)单调性:当α>0时,y =x α在(0,+∞)上单调____;当α<0时,y =x α在(0,+∞)上单调____.(3)奇偶性:当α为整数且为奇数时,y =x α为______;当α为整数且为偶数时,y =x α为______;当x 为分数时可将y =x α化为根式再判断. 基础梳理1.幂函数 3.(1)(1,1) (0,0)和(1,1) (2)递增 递减 (3)奇函数 偶函数,思考应用1.我们知道,形如y =x α(其中幂指数α是常数)的函数叫幂函数,而形如y =a x(其中a 是大于0且不为1的常数)的函数叫指数函数,那么指数函数与幂函数的区别在哪里?解析:这两个函数都具有幂指数m n 的形式,但幂函数y =x α中,自变量在底数的位置,而指数函数y =a x中,自变量在幂指数的位置,这两个函数的自变量所在的位置不同.2.从幂函数的形式:y =x α来看,它的表达式中只含有一个常数字母,确定一个待定系数通常只要一个条件.若已知幂函数y =x α过某个定点,你能确定这个幂函数吗?解析:一般来说,由幂函数y =x α所经过的定点,可以确定这个幂函数.但若只告诉幂函数过原点,那我们只能判断幂指数α>0;若只告诉幂函数过点(1,1),那告诉的这个点没有任何作用,因为所有的幂函数都过点(1,1);若只告诉幂函数过点(-1,1), 那我们只能判断这个幂指数的图象关于y 轴对称,这个幂指数是偶函数.除这三个点之外,由幂函数所经过的定点,可以确定这个幂函数的表达式.3.如何根据幂函数的图象确定幂指数的大小?解析:作直线x =t (t >1),它与各幂函数图象相交,交点在第一象限,按交点从下到上的顺序,幂指数按从小到大的顺序排列.自测自评1.下列函数中,定义域是R 的是( )A .y =x -2B .y =x 12C .y =x 2D .y =x -12.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .正比例函数3.已知幂函数f (x )的图象经过点(2,2),则f (4)=____ 自测自评1.解析:函数y =x -2,y =x -1的定义域为{x |x ∈R,x ≠0},函数y =x 12的定义域为{x |x ≥0},函数y =x 2的定义域为R.故选C.答案:C2.解析:本题考查幂的运算性质f (x )f (y )=a x a y =a x +y=f (x +y ). 答案:C3.解析:设f (x )=x n ,则2=2n,解得n =12.∴f (x )=x 12,f (4)=2.答案:2►基础达标1.下列所给出的函数中,属于幂函数的是( )A .y =-x 3B .y =x -3C .y =2x 3D .y =x 3-1 1.解析:由幂函数定义知选B. 答案:B2.已知函数:①y =x x ,②y =-x 2,③y =x 0,④y =2x ,⑤y =x 2+1,⑥y =x ,其中幂函数的个数是( )A .2个B .3个C .4个D .5个2.解析:由幂函数定义知③⑥是幂函数.故选A. 答案:A3.函数y =x -2在区间⎣⎢⎡⎦⎥⎤12,2上的最大值是( )3.解析:∵y =x -2在⎣⎢⎡⎦⎥⎤12,2上是单调递减函数,∴当x =12时,y 有最大值4.答案:C A.14 B .-14C .4D .-44.利用幂函数的性质,比较下列各题中两个值的大小:①2.334____2.434; ②0.3165____0.3565;③(2)-32____(3)-32; ④1.1-12____0.9-12.4.①< ②< ③> ④<5.下图是幂函数y =x m 和y =x n在第一象限内的图象,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >15.解析:利用幂函数图象的性质及图象的关系知n <-1,0<m <1.故选B. 答案:B6.(2013·某某卷)函数f (x )=x -12的大致图象是( )6.解析:∵y =x -12定义域为(0,+∞),故选A.答案:A7.求下列幂函数的定义域:(1)y =x 3;(2)y =x 13;(3)y =x 12;(4)y =x -2;(5)y =x -12.7.分析:含分数指数幂的要化归为根式的形式.解析:(1)y =x 3,定义域是R.(2)y =x 13=3x ,定义域是R.(3)y =x 12=x ,定义域是[0,+∞).(4)y =x -2=1x2,定义域是{x |x ∈R,且x ≠0}.(5)y =x -12=1x,定义域是(0,+∞).点评:考查函数的定义域要全面,如分母不为零,零次幂的底数不为零,偶次根号下不小于零,等等►巩固提高8.给出两个结论:(1)当α=0时,幂函数y =x α的图象是一条直线;(2)幂函数y =x α的图象都经过(0,0)和(1,1)点,则正确的判断是( ) A .(1)对(2)错 B .(1)错(2)对 C .(1)(2)都错 D .(1)(2)都对 8.C 9.C 4,C 2,C 3,C 19.如图所示的曲线是幂函数y =x α在第一象限内的图象,已知α分别取-1,1,12,2四个值,则相应图象依次为:____________.10.设f (x )=(a -3)x (a +1)(a -2),当a 为何值时,(1)f (x )为常数函数? (2)f (x )为幂函数? (3)f (x )为正比例函数?10.(1){3,-1,2} (2){4} (3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-132,1+1321.注意幂函数与指数函数的区别,幂函数中底数是自变量,指数函数中指数是自变量.2.将幂指式x nm 写成m x n可以看出x 的取值X 围.3.比较幂值的大小常利用相关函数的单调性.。
高中数学必修1 必修一幂函数专项练习题

必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
高中数学-幂函数测试题及答案详解

-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。
高中数学必修一同步练习题库:幂函数(简答题:一般)

幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。
求满足的实数的取值范围。
10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。
11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。
高中数学必修一同步练习题库:幂函数(填空题:容易)

幂函数(填空题:容易)1、若<,则a的取值范围是.2、幂函数的图像经过点,则的值为 .3、幂函数的图像经过点(2,4),则=4、已知幂函数的图象过点,则k+α=_______.5、已知幂函数经过点,则_________.6、已知幂函数的图象过点,则__________.7、已知幂函数的图象经过点,则__________.8、若幂函数的图象经过点,则的值是________;9、已知幂函数的图象过点,则__________.10、已知幂函数的图象经过点,则__________.11、与的大小关系是________________12、已知幂函数的图象经过点(2,),则这个函数的解析式为________13、已知幂函数的图像经过点,则的值为__________.14、幂函数的图像经过点,则的解析式是____________.15、已知幂函数的图像经过点,则的值为__________.16、已知幂函数的图像经过点,则实数___________.17、若幂函数的图象不经过原点,则的值是__________.18、若真函数的图像过点,则________.19、若幂函数在区间上是增函数,则实数的值为_______20、已知幂函数的图象过点,则__________.21、幂函数的图象经过点(4,2),那么的值是22、已知幂函数的图象过点,则它的解析式为.23、已知幂函数的图象过点,则__________.24、已知幂函数的图像过点,则.25、已知幂函数的图像经过点,则实数___________.26、若幂函数的图象经过点,则.27、幂函数过点,则_____________.28、已知幂函数y=f(x)的图象过点= .29、已知幂函数为奇函数,且在上是减函数,则.30、已知幂函数的图象过,则.31、已知幂函数的图象过点,则为.32、已知幂函数f(x)的图象经过(3,27),则f(2)=________.33、幂函数的图象经过点,则的值为34、已知幂函数的图象过点,则=35、已知函数f(x)=,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x2)=f(x1)成立,则实数k的取值范围是________.36、设,则使函数的定义域为且为奇函数的所有的值为 .37、幂函数的图像经过点,则的值为 .38、已知幂函数的图象过点,则.39、若幂函数的图象经过点,则的值是 .40、幂函数的图像经过,则= ________.41、已知幂函数的图像经过点,则的值为__________.42、已知幂函数的图象过点 .43、当α∈时,幂函数y=xα的图象不可能经过第________象限.44、已知幂函数的部分对应值如图表:则不等式的解集是45、若幂函数的图像经过点,则它在A点处的切线的斜率为 .46、已知幂函数的图象过点,则= ;47、若幂函数的图象经过点(,),则该函数在(0,上是函数(只填单调性).48、幂函数满足,则曲线与直线围成的封闭图形的面积为___________.49、幂函数的图象过点,则 .50、已知幂函数过点,则的值为 ;51、幂函数的图像过点,则=_______.52、幂函数f(x)=xα(α为常数)的图象经过,则f(x)的解析式是.53、已知幂函数的图像过点,则此幂函数的解析式是_____________.54、幂函数=(m2-m-5)x2m-3 的图象在第一象限内递减,则m的值是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页共1页幂函数练习题
一、选择题
1.幂函数35m y x ,其中m ∈N ,且在(0,+∞)上是减函数,又()
()f x f x ,则m= ( ) A .0 B .1 C .2 D
.3 2.函数23y x 的图象是(
)
A B C D
3.在同一坐标系函数
3x y 与31
x y 的两个图象之间()A .关于原点对称
B .关于x轴对称
C .关于y轴对称
D .关于x y 对称
4.已知幂函数Z q N p x y q p ,的图象如图,则()
A .p 为偶数,q 为奇数
B .p 为偶数,q 为负奇数
C .p 为奇数,q 为偶数
D .p 为奇数,q 为负偶数二、填空题
5.幂函数的图象都经过点
,幂函数的图象不可能出现在第象限.6.函数3k x y 为,
0上的增函数,则k ______________ .7.当1x 时,21
x x k ,则实数k 的取值范围是_______________ .
三、解答题
8.已知幂函数)(x f 的图象过点(3,27),求证:)(x f 在R 上为奇函数且为增函数.
9.若幂函数x m m m m y )332(22
的图象不过原点,求:m 值.
10.已知43
43
823a a ,求a 的取值范围.
x x x x
y y y y O O O O x y o。