202020-2021-2020年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2-2

202020-2021-2020年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2-2
202020-2021-2020年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2-2

2019-2020年高中数学第二章推理与证明2.3数学归纳法教学案新人教A

版选修2-2

预习课本P92~95,思考并完成下列问题

(1)数学归纳法的概念是什么?适用范围是什么?

(2)数学归纳法的证题步骤是什么?

[新知初探]

1.数学归纳法的定义

一般地,证明一个与正整数n有关的命题,可按下列步骤进行

只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.

2.数学归纳法的框图表示

[点睛] 数学归纳法证题的三个关键点

(1)验证是基础

数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点.

(2)递推是关键

数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.

(3)利用假设是核心

在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法.

[小试身手]

1.判断(正确的打“√”,错误的打“×”)

(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( )

(2)数学归纳法的第一步n 0的初始值一定为1.( )

(3)数学归纳法的两个步骤缺一不可.( )

答案:(1)× (2)× (3)√

2.如果命题p (n )对所有正偶数n 都成立,则用数学归纳法证明时须先证n =________成立.

答案:2

3.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52

,f (16)>3,f (32)>72

,由此推测,当n >2时,有______________.

答案:f (2n )>n +22

用数学归纳法证明等式

[典例] 用数学归纳法证明:

121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1)

(n ∈N *). [证明] (1)当n =1时,121×3=1×22×3

成立. (2)假设当n =k (n ∈N *)时等式成立,即有

121×3+223×5+…+k 2(2k -1)(2k +1)=k (k +1)2(2k +1)

, 则当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)

+ (k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)

=(k +1)(k +2)2(2k +3), 即当n =k +1时等式也成立.

由(1)(2)可得对于任意的n ∈N *

等式都成立.

用数学归纳法证明恒等式应注意的三点 用数学归纳法证明恒等式时,一是弄清n 取第一个值n 0时等式两端项的情况;二是弄清从n =k 到n =k +1等式两端增加了哪些项,减少了哪些项;三是证明n =k +1时结论也成立,要设法将待证式与归纳假设建立联系,并朝n =k +1证明目标的表达式变形.

[活学活用]

求证:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)

(n ∈N *). 证明:(1)当n =1时,左边=1-12=12

, 右边=11+1=12,左边=右边.

(2)假设n =k (k ∈N *)时等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2

+ (12)

, 则当n =k +1时,

? ????1-12+13-14+…+12k -1-12k +? ??

??12k +1-12k +2 =? ????1k +1+1k +2+…+12k +? ????12k +1-12k +2 =1k +2+1k +3+…+12k +1+12k +2

. 即当n =k +1时,等式也成立.

综合(1),(2)可知,对一切n ∈N *,等式成立.

用数学归纳法证明不等式

[典例求证:1+1

2+1

3+…+1n >n +1.

[证明] (1)当n =3时,左边=1+1

2+13,右边=3+1=2,左边>右边,不等式成立.

(2)假设当n =k (k ∈N *

,k ≥3)时,不等式成立,

即1+12+13+…+1k >k +1. 当n =k +1时,

1+1

2+13+…+1k +1k +1 >k +1+1k +1

=k +1+1k +1=k +2k +1

. 因为k +2k +1 >k +2k +2

=k +2=(k +1)+1, 所以1+1

2+1

3+…+1k +1

k +1 >(k +1)+1. 所以当n =k +1时,不等式也成立.

由(1),(2)知对一切n ∈N *

,n >2,不等式恒成立.

[一题多变]

1.[变条件,变设问]将本题中所要证明的不等式改为:

1n +1+1n +2+1n +3+…+13n >56

(n ≥2,n ∈N *),如何证明? 证明:(1)当n =2时,13+14+15+16>56

,不等式成立. (2)假设当n =k (k ≥2,k ∈N *

)时,命题成立.

即1k +1+1k +2+…+13k >56. 则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1

+1k +2+…+13k +13k +1+13k +2+13k +3-1k +1>56+13k +1+13k +2+13k +3-1k +1>56

+3×13k +3-1k +1=56

. 所以当n =k +1时,不等式也成立.

由(1),(2)可知,原不等式对一切n ≥2,n ∈N *

都成立.

2.[变条件,变设问]将本题中所要证明的不等式改为: ? ????1+13? ????1+15…? ??

??1+12n -1>2n +12(n ≥2,n ∈N *),如何证明? 证明:(1)当n =2时,左边=1+13=43,右边=52

. 左边>右边,所以原不等式成立.

(2)假设当n =k (k ≥2,k ∈N *

)时不等式成立,

即? ????1+13? ????1+15…? ??

??1+12k -1>2k +12. 则当n =k +1时,

左边=? ????1+13? ????1+15…? ??

??1+12k -1 ????

??1+12(k +1)-1>2k +12·2k +22k +1 =2k +222k +1=4k 2+8k +422k +1>4k 2+8k +322k +1

=2k +3·2k +122k +1=2(k +1)+12. 所以,当n =k +1时不等式也成立.

由(1)和(2)可知,对一切n ≥2,n ∈N *不等式都成立.

用数学归纳法证明不等式的四个关键

高中数学选修2-2推理与证明 直接证明与间接证明

2.2.1综合法和分析法 [学习目标] 1.了解直接证明的两种基本方法:分析法与综合法.2.了解分析法和综合法的思维过程和特点.3.会用分析法、综合法证明实际问题. 知识点一综合法 1.定义 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. 2.基本模式 综合法的证明过程如下: 已知条件?…?…?结论 即用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论,则综合法用框图可表示为: P?Q1→Q1?Q2→Q2?Q3→…→Q n?Q 3.综合法的证明格式 因为…,所以…,所以…,…,所以…成立. 思考综合法的推理过程是合情推理还是演绎推理? 答案演绎推理. 知识点二分析法 1.分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. 2.基本模式

用Q 表示要证明的结论,P 表示条件,则分析法可用框图表示为: Q ?P 1→P 1?P 2→P 2?P 3→…→得到一个明显成立的条件 3.分析法的证明格式 要证…,只需证…,只需证…,…,因为…成立,所以…成立. 思考 分析法与综合法有哪些异同点? 答案 相同点:两者都是直接利用原命题的条件(或结论),逐步推得命题成立的证明方法——直接证明法.不同点:证法1,由因导果,使用综合法;证法2,执果索因,使用分析法. 题型一 综合法的应用 例1 已知a ,b 是正数,且a +b =1,求证:1a +1 b ≥4. 证明 方法一 ∵a ,b 是正数,且a +b =1, ∴a +b ≥2ab ,∴ab ≤12,∴1a +1b =a +b ab =1 ab ≥4. 方法二 ∵a ,b 是正数,∴a +b ≥2ab >0, 1a +1 b ≥2 1 ab >0, ∴(a +b )???? 1a +1b ≥4. 又a +b =1,∴1a +1b ≥4. 方法三 1a +1b =a +b a +a +b b =1+b a +a b +1≥2+2 b a ·a b =4.当且仅当a =b 时,取“=”号. 反思与感悟 利用综合法证明问题的步骤: (1)分析条件选择方向:仔细分析题目的已知条件(包括隐含条件),分析已知与结论之间的联系与区别,选择相关的公理、定理、公式、结论,确定恰当的解题方法. (2)转化条件组织过程:把题目的已知条件,转化成解题所需要的语言,主要是文字、符号、图形三种语言之间的转化,组织过程时要有严密的逻辑,简洁的语言,清晰的思路. (3)适当调整回顾反思:解题后回顾解题过程,可对部分步骤进行调整,并对一些语言进行适当的修饰,反思总结优化解法. 跟踪训练1 已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2. 证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等. ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.

高中数学专题讲义-直接证明与间接证明

题型一:综合法 【例1】若 11 0a b <<,则下列结论不正确的是 ( ) A.22a b < B.2ab b < C.2b a a b +> D.a b a b -=- 【例2】如果数列{}n a 是等差数列,则( )。 (A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a = 【例3】在△ABC 中若2sin b a B =,则A 等于( ) (A)003060或 (B)004560或 (C)0060120或 (D)0030150或 【例4】下列四个命题:①若1 02 a << ,则()()cos 1cos 1a a +<-;②若01a <<,则11a -1a >+>2a ;③若x 、y ∈R ,满足2y x =,则()2log 22x y +的最小值是7 8;④ 若a 、b ∈R ,则221a b ab a b +++>+。其中正确的是( )。 (A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④ 【例5】下面的四个不等式:①ca bc ab c b a ++≥++222;②()4 1 1≤ -a a ;③2≥+a b b a ;④()()()2 2222bd ac d c b a +≥+?+.其中不成立的有 (A )1个 (B )2个 (C )3个 (D )4个 【例6】已知,a b R ∈且,0a b ≠,则在① ab b a ≥+222;②2≥+b a a b ; 典例分析 板块二.直接证明与 间接证明

③2 )2 (b a ab +≤;④2)2(222b a b a +≤+这四个式子中,恒成立的个数是 ( ) A 1个 B 2个 C 3个 D 4个 【例7】已知c b a ,,均大于1,且4log log =?c b c a ,则下列各式中,一定正确的是 ( ) A b ac ≥ B c ab ≥ C a bc ≥ D c ab ≤ 【例8】已知不等式1()()9,a x y x y ++≥对任意正实数x ,y 恒成立,则正实数a 的最小值是 ( ) A .2 B .4 C .6 D .8 【例9】α、β为锐角()sin a αβ=+,sin sin b αβ=+,则a 、b 之间关系为 ( ) A .a b > B .b a > C .a b = D .不确定 【例10】设M 是ABC ?内一点,且AB AC ?=u u u r u u u r 30BAC ∠=?,定义()(,,)f M m n p =, 其中m 、n 、p 分别是MBC ?,MCA ?,MAB ?的面积,若1 ()(,,)2 f P x y =,则14x y + 的最小值是 ( ) A .8 B .9 C .16 D .18 【例11】若函数32)1(2++-=mx x m y 是偶函数,则)4 3(-f ,)1(2+-a a f (a ∈R ) 的大小关系是)4 3(-f )1(2+-a a f . 【例12】设≥++=++>>>c b a c b a c b a 111 ,1,0,0,0则若 【例13】函数()y f x =在(0,2)上是增函数,函数()2y f x =+是偶函数,则 ()1f ,()2.5f ,()3.5f 的大小关系是 . 【例14】已知 5,2==b a ρρ,向量b a ρρ与的 夹角为0 120,则a b a ρρρ.)2(-=

线面平行与垂直的证明题

线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1; (2)求三棱锥B-ACB1体积. 2:如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE. D1 C1 B1 A1 C D B A

3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1 AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .

5:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是P C的中点,作EF⊥PB交PB于点F. (1)证明PA//平面EDB;(2)证明PB⊥平面EFD; 6:已知正方形ABCD和正方形ABEF所在的平面相交于AB,点M,N分别在AC和BF上,且 AM=FN. C

求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;

8:如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1) FD∥平面ABC (2) AF⊥平面EDB. 9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.

新课标高中数学《推理与证明》知识归纳总结

《推理与证明》知识归纳总结 第一部分 合情推理 学习目标: 了解合情推理的含义(易混点) 理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点) 了解合情推理在数学发展中的作用(难点) 一、知识归纳: 合情推理可分为归纳推理和类比推理两类: 归纳推理: 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理. 2.归纳推理的一般步骤: 第一步,通过观察个别情况发现某些相同的性质; 第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想). 思考探究: 1.归纳推理的结论一定正确吗? 2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? 题型1 用归纳推理发现规律 1、观察 < < ;….对于任意正实数,a b , ≤成立的一个条件可以是 ____. 点拨:前面所列式子的共同特征特征是被开方数之和为22,故22=+b a

2、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图. 其中第一个图有1个蜂巢,第二个图 有7个蜂巢,第三个图有19个蜂巢,按此规律,以 ()f n 表示第n 幅图的蜂巢总数.则(4)f =_____;()f n =___________. 【解题思路】找出)1()(--n f n f 的关系式 [解析],1261)3(,61)2(,1)1(++=+==f f f 37181261)4(=+++=∴f 133)1(6181261)(2+-=-+++++=∴n n n n f 总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系 类比推理 1.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理. 2.类比推理的一般步骤: 第一步:找出两类对象之间可以确切表述的相似特征; 第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想. 思考探究: 1.类比推理的结论能作为定理应用吗? 2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体? (2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论? 题型2 用类比推理猜想新的命题 [例]已知正三角形内切圆的半径是高的 13,把这个结论推广到空间正四面体,类似的结论是______. 【解题思路】从方法的类比入手 [解析]原问题的解法为等面积法,即h r ar ah S 3121321=??== ,类比问题的解法应为等体积法, h r Sr Sh V 4131431=??==即正四面体的内切球的半径是高4 1 总结:(1)不仅要注意形式的类比,还要注意方法的类比 (2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等

高中数学四大推理方法巧解证明题

高中数学四大推理方法巧解证明题 高中数学四大推理方法巧解证明题 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。

三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

高中数学选修2-2推理与证明教(学)案及章节测试及答案

推理与证明 一、核心知识 1.合情推理 (1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。 (2)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。 2.演绎推理 (1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。 (2)演绎推理的主要形式:三段论 “三段论”可以表示为:①大前题:M 是P②小前提:S 是M ③结论:S 是 P。其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。 3.直接证明 直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。 (1)综合法就是“由因导果” ,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。 (2)分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因” 。要注意叙述的形式:要证 A,只要证 B,B 应是 A 成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。 4反证法 (1)定义:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 (2)一般步骤:(1)假设命题结论不成立,即假设结论的反面成立;②从假设出发,经过推理论证,得出矛盾;③从矛盾判定假设不正确,即所求证命题正

线线平行线面平行面面平行的练习题

线线平行、线面平行、面面平行部分的练习题 1.如图2-3-3所示,已知α∩β=CD,α∩γ=EF,β∩γ=AB,AB ∥α.求证:CD∥EF. 2.已知直线a ∥平面α,直线a ∥平面β,平面αI 平面β=b , 求证//a b . 3. 正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。求证:MN //平面BCE 4.如图2-3-7所示,正三棱柱ABC —A1B1C1中,D 是BC 的中点,试判断A1B 与平面ADC1的位置关系,并证明你的结论. 5.、已知⊥PA 矩形ABCD 所在的平面,M 、N 分别是AB 、PC 的中点, 求证:MN//平面PAD. 6.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,设M 、N 、E 、F 分别是棱A 1B 1、A 1D 1、C 1D 1、B 1C 1的中点.求证:(1)E 、F 、B 、D 四点共面;(2)面AMN ∥面EFBD. 7.已知在正方体ABCD -1111D C B A 中,M 、N 分别是11D A 、11B A 的中点,在该正方体中作出与平面AMN 平行的平面,并证 明你的结论。

8.已知点 是△ 所在平面外一点,点 , , 分 别是△ ,△ ,△ 的重心,求证:平面 平 面 . 9. 已知三棱锥P—ABC,A′,B ′C ′是△PBC,△PCA,△PAB 的重心. (1)求证:面A′B′C′∥面ABC; (2)求S △A ′B ′C ′: S △ABC . . 10. 如图所示11 1 ABC A B C -中,平面ABC//平面A 1B 1C 1 , 若D 是棱1 CC 的中点,在棱AB 上是否存在一点E ,使 11//C AB DE 证明你的结论 答案与提示: 1.证明:∵AB β,AB α,又∵AB ∥α,α∩β =CD,∴AB ∥CD,同理AB∥EF,∴CD∥EF. 2. 证明:经过a 作两个平面γ和δ,与平面α和β分别相交于直线c 和d , ∵a ∥平面α,a ∥平面β, ∴a ∥c ,a ∥d ,∴c ∥d , 又∵d ?平面β,c ?平面β, ∴c ∥平面β, d c b a δ γ β α

高一数学直接证明与间接证明练习题

推理与证明综合测试题 一、选择题 1.分析法是从要证明的结论出发,逐步寻求使结论成立的( ) A.充分条件 B.必要条件 C.充要条件 D.等价条件 答案:A 2.结论为:n n x y +能被x y +整除,令1234n =, ,,验证结论是否正确,得到此结论成立的条件可以为( ) A.n *∈N B.n *∈N 且3n ≥ C.n 为正奇数 D.n 为正偶数 答案:C 3.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 答案:C 4.在等差数列{}n a 中,若0n a >,公差0d >,则有4637a a a a >··,类经上述

性质,在等比数列{}n b 中,若01n b q >>,,则4578b b b b ,,,的一个不等关系是( ) A.4857b b b b +>+ B.5748b b b b +>+ C.4758b b b b +>+ D.4578b b b b +>+ 答案:B 5.(1)已知332p q +=,求证2p q +≤,用反证法证明时,可假设2p q +≥, (2)已知a b ∈R ,,1a b +<,求证方程20x ax b ++=的两根的绝对值都小于1.用反证法证明时可假设方程有一根1x 的绝对值大于或等于1,即假设11x ≥,以下结论正确的是( ) A.(1)与(2)的假设都错误 B.(1)与(2)假设都正确 C.(1)的假设正确;(2)的假设错误 D.(1)的假设错误;(2)的假设正确 答案:D 6.观察式子:213122+ <,221151233++<,2221117 12344 +++<,,则可归纳 出式子为( ) A.22211 111(2)2321n n n ++++<-≥ B.22 211111(2)2321 n n n + +++ <+≥

2020年高考理科数学《推理与证明》题型归纳与训练

福利:本教程由捡漏优惠券(https://www.360docs.net/doc/3a17629299.html, )整理提供 领红包:支付宝首页搜索“527608834”即可领取支付宝红包哟 领下面余额宝红包才是大红包,一般都是5-10元 支付的时候把选择余额宝就行呢 每天都可以领取早餐钱哟! 2020年高考理科数学《推理与证明》题型归纳与训练 合情推理与演绎推理 题型一 归纳推理 1 与数字有关的等式的推理 【易错点】 例1观察下列等式: ????sin π3-2+????sin 2π3-2=43 ×1×2; ????sin π5-2+????sin 2π5-2+????sin 3π5-2+????sin 4π5-2=43×2×3; ????sin π7-2+????sin 2π7-2+????sin 3π7-2+…+????sin 6π7-2=43×3×4; ????sin π9-2+????sin 2π9-2+????sin 3π9-2+…+????sin 8π9-2=43 ×4×5; … 照此规律,????sin π2n +1-2+????sin 2π2n +1-2+????sin 3π2n +1-2+…+??? ?sin 2n π2n +1- 2=__________. 【答案】 4 3 ×n ×(n +1) 【解析】观察等式右边的规律:第1个数都是4 3,第2个数对应行数n ,第3个数为n +1. 2 与不等式有关的推理 例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 2 2≥a 1a 2; a 1+a 2+a 33≥3 a 1a 2a 3; a 1+a 2+a 3+a 44≥4 a 1a 2a 3a 4; … 照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a n n ≥______. 【答案】 n a 1a 2…a n

立体几何线面、面面平行的证明

Q D C B A P C 1 B 1 A 1D 1 D C B A D A 1 C 1 C B 1 B 理科数学复习专题 立体几何 线面平行与面面平行专题复习 【题型总结】 题型一 小题:判断正误 1. a 、b 、c 是直线,,,αβγ是平面,下列命题正确的是_____________ α αβ βααβαβαγαγββααα////a ,//a //a //,//a ////a ,//a ////,////a //,//a //a //,//a b b b b c c b b 则⑥则⑤则④则③则②则① 归纳:_______________________________________ 题型二 线面平行的判定 1、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,E 、F 分别是PB,PC的中点,求证:EF 归纳: 3、在正方体中,E,F分别为C1D1和BC 的中点, 求证: FE 1111111//. ABCD A B C D AB D C BC -在正方体中,求证:平面平面11111111111,,:(1)//;(2)//. ABC A B C D AC BC AB D D AC B DA BC D -2、如图已知正三棱柱中,点为的中点求证平面为的中点,求证:平面平面111ABC A B C -AB AC =,,M N P 11,,BC CC BB 1//A N AMP

【综合练习】 一、选择题 1、直线和平面平行是指该直线与平面内的( ) (A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交(D)任意一条直线都不相交 2、已知a b ||,αα?,则必有( ) ()||(),A a b B a b 异面 (),C a b 相交 (),D a b 平行或异面 3、若直线a,b 都与平面?平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线 4.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ?α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( ) A .①④ B .①⑤ C .②⑤ D .③⑤ 5.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行 B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行 C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行 D 一直线与平面平行,则平面内任意直线都与已知直线异面 6. 以下命题(其中a ,b 表示直线,?表示平面) ①若a ∥b ,b ??,则a ∥? ②若a ∥?,b ∥?,则a ∥b ③若a ∥b ,b ∥?,则a ∥? ④若a ∥?,b ??,则a ∥b 其中正确命题的个数是 ( ) 个 个 个 个 二、解答题 1.如图,E D ,分别是正三棱柱111ABC A B C -的棱1AA 、11B C 的中点, 求证:1//A E 平面1BDC ; 2、如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=1,点E 是PC 的中点,作EF PB 交PB 于点

2019-2020年高中数学选修1-2合情推理

2019-2020年高中数学选修1-2合情推理 教学目标: 结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学重点: 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用 教学过程 一、引入新课 1归纳推理 (一)什么是归纳推理 归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。 拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。这里就有着归纳推理的运用。 (二)归纳推理与演绎推理的区别和联系 归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。也就是说,即使其前提都真也并不能保证结论是必然真实的。 归纳推理与演绎推理虽有上述区别,但它们在人们的认识过程中是紧密的联系着的,两者互相依赖、互为补充,比如说,演绎推理的一般性知识的大前提必须借助于归纳推理从具体的经验中概括出来,从这个意义上我们可以说,没有归纳推理也就没有演绎推理。当然,归纳推理也离不开演绎推理。比如,归纳活动的目的、任务和方向是归纳过程本身所不能解决和提供的,这只有借助于理论思维,依靠人们先前积累的一般性理论知识的指导,而这本身就是一种演绎活动。而且,单靠归纳推理是不能证明必然性的,因此,在归纳推理的过程中,人们常常需要应用演绎推理对某些归纳的前提或者结论加以论证。从这个意义上我们也可以说,没有演绎推理也就不可能有归纳推理。 (三)观察与实验 归纳推理是一种由特殊性知识的前提得出一般性知识的结论的推理。当然,人们在进行归纳推理的时候,总是先要搜集到一定的事实材料,有了个别性的、特殊性的知识作为前提,

高中数学四大推理方法巧解证明题.doc

高中数学四大推理方法巧解证明题- 高中数学是数学各种基础知识的总结和归纳,同时也是以前所学到的数学知识的深化和检验。针对高中数学的这一特性,可以通过四大推理方法来进行证明题的解答,不但可以掌握数学知识脉络,也可以把所学到的知识上升到思维层面,使自己可以综合运用数学知识,达到学以致用的目的。 一、合情推理法 在高中数学证明题的解答过程中使用合情推理,有着比较重要的作用以及影响。比较常用的合情推理法就是类比推理法,这是一种从特殊转向特殊的推理方法,两种类似对象间的推理,一个对象有着某个性质,而另一个对象同时也有类似性质。进行类比时,对已知对象性质推理的过程进行充分的考虑,之后类比推导出类比对象性质。高中数学知识的结构很复杂,难度也比其他学科大,而通过合情推理法,并结合多种的思维方法,使学生可以进行思考和分析,也培养了学生对于数学学习的兴趣,提高了学生数学的学习能力。所以,合情推理法是一种很好的解答高中数学证明题的方法。 二、演绎推理法 对于演绎推理法来说,这是一种从一般转向特殊的推理方法,高中数学证明题的证明过程大都是通过演绎推理来证明的,保证演绎推理的前提以及形式正确,就能保证结论是正确的,同时要注意推理的过程具有正确性以及完备性。 三、间接和直接证明法 (一)直接证明法 直接证明法比较常见的就是综合法以及分析法。其中,综

合法就是利用已知的条件以及数学定理和公理等,进行推理论证,之后推导出结论成立。综合法也被称作为顺推证法或者由因导果法。而分析法是从结论出发,对结论充分成立的条件进行逐步的寻求,把结论归纳总结成明显成立的一个条件。 (二)间接证明法 间接证明法比较常用的就是反证法,其证明步骤为首先反设,之后归谬,最后存真。首先假设结论不成立,就是把结论反面假设为真,之后的归谬就是在己知条件和反设背景下推理,得出同假设命题相矛盾的结论,最后的存真就是由归谬得出的结果进行反设命题不真的断定,来说明原先结论是成立的。 四、归纳推理法 同上述的推理方法相比较来说,归纳推理法注重对高中数学知识总体的规划,总结和归纳所学到知识。我们都知道,高中数学的知识点比较多,每个知识点之间都有着一定的关系,一道证明题中,可能存在几个知识点,如果同学们不能归纳知识的话,短时间内就不能看出题目中知识点之间的联系,就会严重影响题目的解答。 在高中数学的证明题目中,虽然有限的研究对象比较常见,但是,更为常见的是研究对象众多,一些特定的情况下研究对象可能是无穷的,同学们很难找到突破口。如果同学们把研究对象根据形成的情况进行分类,之后根据分类在进行证明,假如每种情况都可以得到证明,那么所得到的结论就必然是正确的,这种分类证明、归纳方法,可以使同学们找到突破口,从而使证明题得到解答。 结束语: 在数学证明题的实际解答过程中,要根据题目的具体情景

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高二数学选择进修2-2第二章推理与证明

高二数学选修2-2第二章推理与证明 1、 下列表述正确的是( ). ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理. A .①②③; B .②③④; C .②④⑤; D .①③⑤. 2、下面使用类比推理正确的是 ( ). A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?” C.“若()a b c ac bc +=+” 类推出“ a b a b c c c +=+ (c ≠0) ” D.“n n a a b =n (b )” 类推出“n n a a b +=+n (b )” 3、 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ?/平面α,直线a ≠ ?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的, 这是因为 ( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 (A)假设三内角都不大于60度; (B) 假设三内角都大于60度; (C) 假设三内角至多有一个大于60度; (D) 假设三内角至多有两个大于60度。 5、在十进制中01232004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 ( ) A.29 B. 254 C. 602 D. 2004 6、利用数学归纳法证明“1+a +a 2+…+a n +1=a a n --+112 , (a ≠1,n ∈N)”时,在验证n=1 成立时,左边应该是 ( ) (A)1 (B)1+a (C)1+a +a 2 (D)1+a +a 2+a 3 7、某个命题与正整数n 有关,如果当)(+∈=N k k n 时命题成立,那么可推得当1+=k n 时

线面平行证明常用方法

线面平行证明的常用方法 方法一:两平行线能确定一个平面,过已知直线的两个端点作两条平 行线使它们与已知平面相交,关键:找平行线,使得所作平面与已知平面的交线。 (08浙江卷)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE//CF ,∠BCF=∠CEF=?90,AD=3,EF=2。求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 与平面DCF 的交线,那么只要证明AE//DG 证明:过点E 作EG CF ⊥交CF 于G ,连结DG 可得四边形BCGE 为矩形, 又ABCD 为矩形, 所以AD EG ∥,从而四边形ADGE 故AE DG ∥. 因为AE ?平面DCF ,DG ?平面DCF , 所以AE ∥平面DCF . 方法二:直线与直线外一点有且仅有一个平面,关键:找第三个点, 使得所作平面与已知平面的交线。 (06北京卷)如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.求证://PB 平面AEC . 分析:由D 、P 、B 三点的平面与已知平面AEC 的交线最易找,第三个点选其它的点均不好找交线. 证明:连接BD ,与 AC 相交于 O ,连接 ∵ABCD 是平行四边形, ∴O 是 BD 的中点 又 E 是 PD 的中点 ∴EO ∥PB. 又 PB ?平面 AEC ,EO ?平面 AEC , ∴PB ∥平面 AEC.

方法三:两个平面是平行, 其中一个平面内的直线和另一个平面平行, 关键:作平行平面,使得过所证直线作与已知平面平行的平面 (08安徽卷)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析:M 为OA 的中点,找OA(或AD)中点,再连线。 证明:取OB 中点E ,连接ME ,NE ME CD ME CD ∴,‖AB,AB ‖‖ 又,NE OC MNE OCD ∴平面平面‖‖ MN OCD ∴平面‖

高中数学-推理与证明

推理与证明 一、合情推理 1.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的全部对象都具有这种性质的推理叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理 (1)特点:由部分到整体、由个别到一般 (2)归纳推理的思维过程大致如图: 实验、观察概括、推广猜测一般性结论 (3)归纳推理的特点: ○1归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象○2由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具 ○3归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题 2.类比推理:根据两类事物之间具有某些类似(一致)性,推测一类事物具有另一类事物类似(或相同)的性质的推理 (1)特点:由特殊到特殊 (2)类比推理的一般步骤: ○1找出两类事物的相似性或一致性 ○2用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想) ○3一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的 ○4一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠 (3)共性:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理 二、演绎推理 1.定义:由概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,通常

叫做演绎推理.简言之,演绎推理是由一般到特殊的推理 2.“三段论”是演绎推理的一般模式,包括: (1)大前提——已知的一般原理 (2)小前提——所研究的特殊情况 (3)结论——根据一般原理,对特殊情况作出的判断 三、直接证明 直接证明:是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法 1.综合法:从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法 (1)特点:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是要寻找它的必要条件 (2)步骤的符号表示:P0(已知)?P1?P2?P3?P4(结论) 2.分析法:从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实的方法,是一种从结果追溯到产生这一结果的原因的思维方法(1)特点:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件 (2)步骤的符号表示:B(结论)?B1?B2…?B n?A(已知) 四、间接证明:间接证明是不同于直接证明的又一类证明方法,反证法是一种常用的间接证明方法 1.反证法的定义:一般地,由证明p?q 转向证明:非q?r?…?t,t 与假设矛盾,或与某个真命题矛盾,从而判定非q 为假,推出q 为真的方法,叫做反证法 2.用反证法证明的一般步骤: (1)反设——假设命题的结论不成立 (2)归谬——根据假设进行推理,直到推出矛盾为止 (五)结论——断言假设不成立,从而肯定原命题的结论成立 五、数学归纳法:它是一个递推的数学论证方法 1.证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n0(n0∈N+)时命题成立

相关文档
最新文档