氨合成反应原理

合集下载

合成氨条件的选择

合成氨条件的选择

学科:化学教学内容:合成氨条件的选择【基础知识精讲】1.合成氨反应的理论应用合成氨反应原理:N2+3H22NH3(正反应为放热反应)反应特点是:①可逆反应;②气体总体积缩小的反应;③正反应为放热反应.根据上述反应特点,从理论上分析:(1)使氨生成得快的措施(从反应速率考虑):①增大反应物的浓度;②升高温度;③加大压强;④使用催化剂.(2)使氨生成得多的措施(从平衡移动考虑):①增大反应物的浓度同时减小生成物的浓度;②降低温度;③增大压强.2.合成氨条件的选择在实际生产中,既要考虑氨的产量,又要考虑生产效率和经济效益,综合以上两方面的措施,得出合成氨的适宜条件的选择:浓度:一般采用N2和H2的体积比1∶3,同时增大浓度,不加大某种反应物的浓度,这是因为合成氨生产的原料气要循环使用.按1∶3循环的气体体积比,仍会保持1∶3.温度:合成氨是放热反应,降低温度虽有利于平衡向正反应方向移动,但温度过低,反应速率过慢,所以温度不宜太低,在500℃左右为宜,而且此温度也是催化剂的活性温度范围.压强:合成氨是体积缩小的可逆反应,所以压强增大,有利于氨的合成,但压强过高时,对设备的要求也就很高,制造设备的成本就高,而且所需的动力也越大,应选择适当的压强,一般采用2×107Pa~5×107Pa.催化剂:用铁触媒作催化剂,能加快反应速率,缩短达到平衡时间.可将合成氨的适宜条件归纳为:①增大氨气、氢气的浓度,及时将生成的氨分离出来;②温度为500℃左右;③压强为2×107Pa~5×107Pa;④铁触媒作催化剂.3.合成氨的工业简述合成氨工业的简要流程图:(1)原料气的制取.N2:将空气液化、蒸发分离出N2,或将空气中的O2与碳作用生成CO2,除去CO2后得N2.H2:用水和焦炭(或煤、石油、天然气等)在高温下制取,如(2)制得的N 2、H 2需净化、除杂,再用压缩机压缩至高压.因为若有杂质存在可使催化剂失去催化作用,也称使催化剂“中毒”.(3)在适宜条件下,在氨合成塔中进行合成.(4)氨的分离:经冷凝使氨液化,将氨分离出来,提高原料的利用率,并将未反应的H 2、N 2循环送入合成塔,使其充分利用.【重点难点解析】重点:理解应用化学反应速率和化学平衡原理选择合成氨的适宜条件.难点:根据各种影响反应进行的因素选取反应综合条件.1.巧用假设,灵活解题例如:密闭容器中,N 2+3H 2 2NH 3在500℃时达到平衡,问:(1)将H 2、NH 3的浓度同时增大1倍,平衡如何移动?(2)将N 2、NH 3的浓度同时增大1倍,平衡如何移动?分析:浓度的改变是反应物和生成物部分发生而改变,因而平衡的移动就较难判断.而巧用假设就较易解答.(1)将不变浓度的N 2视为液体(常数),将浓度改变的H 2、NH 3视为气体,得出等效平衡N 2(l)+3H 2(g) 2NH 3(g),将H 2、NH 3浓度同时增大1倍,相当于上述等效平衡压强增大到原来的2倍,所以等效平衡向正反应方向移动,原平衡同向移动.也可利用平衡常数K 来判断.(2)同理分析可得,平衡向逆方向移动.又例如,平衡反应2NO 2N 2O 4在体积不变的密闭容器中进行,在其它条件不变时,若向容器中分别增加NO 2和N 2O 4,][][422O N NO 的比值如何变化? 分析:先运用上节所介绍的等效假设,增加NO 2或N 2O 4时,压强不变,平衡时比值不变.再压缩时,假设平衡不移动,比值也不变.现实际上平衡右移,所以,无论是增加NO 2还是增加N 2O 4,都有][][422O N NO 比值减小. 2.如何选择适宜条件,使平衡向有利的方向移动?应从以下几方面观察考虑:①反应前后气体物质的计量数;②反应热情况;③反应速率;④转化率(增加廉价物质的量,提高价格贵重原料的利用率)例如,在硫酸工业中,通过下列反应使SO 2转化为SO 3:2SO 2+O 22SO 3(正反应放热)已知常压下平衡混合气体中SO 3体积分数为91%,试回答:(1)生产中常用过量的空气是为了 ;(2)加热到400°~500°是由于 ;(3)压强采用 ,原因是 ;(4)尾气中的SO 2必须回收,是为了 .此题根据题示信息和以上提出的要考虑的几个方面,不难分析作答.3.反应物用量的改变对平衡转化率的影响若反应物只有一种,如aA(g) bB(g)+cC(g),增加A 的量,平衡向正反应方向移动,但该反应物A 的转化率的变化与气体物质的系数有关.(1)若a=b+c ,A 的转化率不变;(2)若a >b+c ,A 的转化率增大;(3)若a <b+c ,A 的转化率减小.若反应物不止一种时,如:aA(g)+bB(g) cC(g)+dD(g)(1)若只增加A 的量,平衡正向移动,而A 的转化率减小,B 的转化率增大.(2)若按原比例同倍数地增加反应物A 和B 的量,则平衡向正反应方向移动.而反应物转化率与气体反应系数有关.如a+b=c+d ,A 、B 转化率都不变;如a+b <c+d ,A 、B 转化率都减小;如a+b >c+d ,A 、B 转化率都增大.4.如何正确区别转化率与物质所占百分含量的关系?例题:如下图所示,是表示外界条件(温度、压强)的变化对下列反应的影响:L(固)+G(气) 2R(气)(正反应为吸热反应)在图中,Y 轴是指( )A.平衡混合气中G 的百分含量B.平衡混合气中R 的百分含量C.G 的转化率D.L 的转化率分析:根据题中给出的反应式可知,该反应是一个气体体积增大的吸热反应.根据图形曲线可知,Y 所指的量应该是:“随温度的升高而减小”以及“随压强的增大而增大”者,应由此来判断符合题意的选项.升温使题中的平衡反应右移,所以R%增大,G%减少,L 和G 的转化率都增高,故只有选项A 符合要求.增大压强,使平衡左移,R%减少,G%增大,也是A 符合要求,所以Y 轴是指平衡混合气体中G 的百分含量.本题答案:A【难题巧解点拨】例1:在一定温度、压强和催化剂存在时,把N 2和H 2按1∶3体积比混合,当反应达到平衡时,混合气中NH 3的体积分数为25%,求N 2的转化率.分析:此题可用常规三行式解法,也可用差量法求解.这里,用整体思维方法求解. 设平衡时混合气为100体积,显然NH 3为25体积.由于N 2和H 2的混合比正好为化学计量数之比,1∶3投料,1∶3转化,转化率也应相同.列式分析如下:N 2+3H 32NH 3平衡时 75 25起始时 75+50 0转化率:αN2=αH2=12550×100%=40% 同学们可用其它解法予以对照.例2:(高考科研题)在一定条件下,合成氨反应达到平衡后,混合气体中NH 3的体积分数为25%.若反应前后条件保持不变,则反应后缩小的气体体积与原反应物体积的比值是( )A.1/5B.1/4C.1/3D.1/2分析:设起始时H 2为amol ,N 2为bmol ,平衡时NH 3为xmol ,则3H 2 + N 2 2NH 3起始时 a b 0平衡后 a-3x/2 b-x/2 x因为,在相同条件下,气体的物质的量之比等于体积比 据题意可得方程:xx b x a x +-+-)2/()2/3(=25%.化简得 b a x +=1/5,故正确答案为A.评析:本题是一道简单的计算题,关键是根据题意列出方程,但必须注意,题目并未规定n(H 2)∶n(N 2)=3∶1,且反应是可逆的.否则,就会导致错选D.另解:利用例1的解题思想,这里无论起始投入按何种比例,仍可设平衡时总体积为100L ,则NH 3为25L ,H 2和N 2共75L.按反应化学计量数关系,反应前原反应物体积应为(75+50)L ,反应后缩小的体积为(125-100)L ,所求比值为(125-100)∶125=51. 例3:工业上用氨和二氧化碳反应合成尿素.已知下列物质在一定条件下均能与水反应产生H 2和CO 2,H 2是合成氨的原料,CO 2供合成尿素用.若从充分利用原料的角度考虑,选用 (填序号)物质作原料较好.A.COB.石脑油(C 5H 12、C 6H 14)C.CH 4D.焦炭作出这种选择的依据是 .(杭州市联考试题)分析:根据反应:N 2+3H 22NH 3,CO 2+2NH 3CO(NH 2)2+H 2O ,若要充分利用原料,显然要求原料与水反应产生的H 2和CO 2物质的量之比等于或接近于3∶1时,上述反应趋于恰好反应,原料得以充分利用.根据题示信息:C+2H 2O =CO 2+2H 2(2∶1),CO+H 2O =CO 2+H 2(1∶1)CH 4+2H 2O =CO 2+4H 2(4∶1),C 5H 12+10H 2O =5CO 2+16H 2(3.2∶1),故石脑油的利用率最高,答案为B.评析:若要求充分利用原料,通常有两种途径:(1)所投入的原料物质的量之比等于化学方程式中物质的化学计量数之比,使原料恰好反应;(2)增加廉价物质的量,使价格贵重物质充分利用,亦即提高价格贵重的原料利用率.【典型热点考题】例1:在氮气、氢气合成氨的合成塔中,进入的气体按N 2与H 2体积比为1∶3,塔中的压强为1.62×107Pa ,又知从塔中出来的气体中,NH 3占25%(体积百分组成).求:(1)从合成塔出来的混合气体中,N 2和H 2的体积百分组成.(2)合成塔出来气体的压强.分析: (1)N 2+3H 22NH 3反应中N 2与H 2的体积比(同于物质的量之比)和原料混合气体中的比值相同,故从塔中出来的气体中N 2∶H 2仍为1∶3.即V(N 2)=(1-25%)×41×100%=18.75% V(H 2)=(1-25%)×43×100%=56.25%(2) N 2 + 3H 22NH 3 起始(mol) 1 30 平衡(mol) 1-x 3-3x 2xxx x x 2)33()1(2+-+-×100%=25%,x=0.4 即 1-x=0.6,3-3x=1.8,2x=0.8∴ n 2=3.2mol ,而n 1=4molT 不变时 p 1∶p 2=n 1∶n 2则p 2=p 1·12n n =1.62×107×42.3=1.30×107(Pa). 评析:巧用原料气配比和反应进行特点以及阿伏加德罗定律解题.此题属合成氨工业生产基本的理论计算.例2:(1997年全国高考题)把氢氧化钙放入蒸馏水中,一定时间后反应达到如下平衡:Ca(OH)2Ca 2++2OH -加入以下溶液,可使Ca(OH)2减少的是( )A.Na 2S 溶液B.AlCl 3溶液C.NaOH 溶液D.CaCl 2溶液分析:要使Ca(OH)2的量减少,需使平衡Ca(OH)2(固) Ca 2++2OH -向右移动,而减少Ca 2+的浓度或OH -的浓度可使平衡右移.A 、C 溶液呈碱性,能增大OH -的浓度,D 能增大Ca2+的浓度,即A 、C 、D 均使平衡左移;只有B 中的Al 3+能结合OH -,使平衡右移.答案为B.评析:勒夏特列原理除适用于化学平衡外,同样可应用在溶解平衡、电离平衡、水解平衡中.例3:(1998年上海高考题)牙齿表面由一层硬的、组成为Ca 5(PO 4)3OH 的物质保护着,它在唾液中存在下列平衡:Ca 5(PO 4)3OH(固) 5Ca 2++3PO 43-+OH -(1)进食后,细菌和酶作用于食物,产生有机酸,这时牙齿就会受到腐蚀,其原因是 .(2)已知Ca 5(PO 4)3F(固)的溶解度比上面的矿化产物更小,质地更坚固.当牙膏中配有氟化物添加剂后能防止龋齿的原因是(用离子方程式表示) .(3)根据以上原理,请你提出一种其他促进矿化的方法.答: .分析:(1)H ++OH -=H 2O ,使平衡向脱矿方向移动.(2)依据信息,F -替换平衡中的OH -,生成溶解度更小、质地更坚固的Ca 5(PO 4)3F,5Ca 2++3PO 43-+F -=Ca 5(PO 4)3F ↓.(3)促进矿化的方法之一是使上述平衡向左移动.一种可行的方法是加Ca 2+,使平衡向左移动.评析:本题主要考查运用勒夏特列原理解决化学实际问题的能力.题目新颖,但答案就在题干中,关键在于认真理解题意,并能和所学知识联系起来.【同步达纲练习】1.氨的合成反应为N2+3H22NH3(正反应放热),在合成氨工业生产中应采取的适宜条件是( )A.低温、高压、催化剂B.高温、高压C.尽可能的高温、高压D.适当温度、适当高压、催化剂2.下列事实中,不能用勒夏特列原理解释的是( )A.由H2和N2合成氨时,在高压下进行是有利的B.升高盛放水的密闭容器中的温度,水的蒸气压就增大C.合成氨在高温下进行,加入催化剂使反应速率增加,这对氨的合成有利D.降低压强,使N2O4的分解率增高3.以下事实不能用勒夏特列原理解释的是( )A.温度过高对合成氨不利B.合成氨在高温下进行是有利的C.合成氨在高温下进行和加入催化剂都能使反应速率加快D.在合成氨时,氮气要过量4.工业合成氨的反应是在500℃左右进行的,主要原因是( )A.500℃时此反应速率最快B.500℃时氨的平衡浓度最大C.500℃时氨的转化率最高D.500℃时该反应催化剂的催化活性最好5.下列所述情况表示合成氨反应达到平衡状态的是( )A.H2的消耗速率与NH3的生成速率之比为3∶2B.体系中混合气体的平均相对分子质量不再改变C.N2的生成速率与NH3的生成速率之比为1∶2D.密闭容器中H2、N2、NH3的物质的量之比为3∶1∶26.在N2+3H22NH3+Q的反应中,下列叙述不正确的是( )(1)加压,使正反应速率加快,逆反应速率减慢;平衡向正反应方向移动(2)升高温度,使正反应速率变慢、逆反应速率加快,平衡向逆反应方向移动(3)使用催化剂,既加快正、逆反应速率,又有利于平衡向正反应方向移动(4)温度越低,单位时间内氨的产量越高(5)增大反应物浓度,平衡向正反应方向移动,反应物的利用率一定提高A.只有(1)(2)B.只有(1)(2)(3)C.只有(4)(5)D.全不正确7.NH3加热分解为N2和H2,在同温同压下,测得分解后气体的密度为分解前的2/3,则氨的分解率为( )A.50%B.60%C.40%D.80%8.设温度为T,压强为p,容器体积为V,合成氨反应达平衡状态时,如下操作平衡不发生移动的是( )A.恒定T、p时,充入NH3B.恒定T、V时,充入N2C.恒定T、p时,充入NeD.恒定T、V时,充入He9.在合成氨反应中N2(g)+3H2(g) 2NH3(g) △H<0,反应已达平衡,若v(N2)、v(H2)、v(NH3)表示为正反应速率,v′(N2)、v′(H2)、v′(NH3)表示为逆反应速率,则下述不正确的是( )A.此时:v(N 2)=3v ′(H 2)B.缩小体积:v(H 2)<32v ′(NH 3) C.升温:2v(N 2)<v ′(NH 3) D.分离出部分氨:3v(N 2)=v(H 2)10.下列说法正确的是( )A.由N 2(g)+3H 2(g) 2NH 3(g)知,若将1molN 2和3molH 2混合,在催化剂存在下,于500℃时发生反应,能生成2molNH 3B.一定温度下,在一容积不变的容器内进行合成氨的反应,一段时间后,其压强不再改变,可认为已达平衡状态C.合成氨反应达平衡后,缩小容器体积,NH 3的浓度增大,平衡常数K 值也增大11.在合成氨时,可以提高H 2转化率的措施是( )A.延长反应时间B.充入过量H 2C.升高温度D.充入过量N 212.某容器中加入N 2和H 2,在一定条件下,N 2+3H 22NH 3达到平衡时,N 2、H 2、NH 3的浓度分别是3mol/L 、4mol/L 、4mol/L.则反应开始时H 2的浓度是( )A.5mol/LB.10mol/LC.8mol/LD.6.7mol/L13.合成氨中使用铁触媒的作用是( )A.降低反应温度B.提高氨气的纯度C.加快反应速率D.提高平衡时氨气的浓度14.合成氨所需的H 2可由煤和水蒸气反应而制得,其中一步的反应为:CO+H 2O(g) CO 2+H 2+43kJ.下列措施中,能提高CO 转化率的是( )A.增大压强B.降低温度C.增大CO 浓度D.增大水蒸气的浓度15.对于可逆反应:2Cl 2+2H 2O(g) 4HCl+O 2(正反应吸热)当反应达到平衡后:(1)扩大容器体积,H 2O 的物质的量 ;(2)加入O 2,Cl 2的浓度 ;(3)增加压强,Cl 2的物质的量 ;(4)加入Cl 2,HCl 的浓度 ;(5)升高温度,H 2O 的物质的量 ;(6)加入正催化剂,O 2的浓度 ;(7)加入氦气,HCl 的物质的量 .16.合成氨原料气中氮气制备的方法之一为,方法之二为 ;另一原料气氢气的制取化学方程式为 .17.298K 时,合成氨反应的热化学方程式为N 2(g)+3H 2(g) 2NH 3(g)+92.4kJ ,在该温度下,取1molN 2和3molH 2放在一密闭容器中,在催化剂存在时进行反应,测得反应放出的热量总小于92.4kJ ,其原因 .【素质优化训练】1.在密闭容器中加少量水,常压下通氨气至饱和,则会建立下列平衡:NH 3+H 2O NH 4++OH -,若要使该反应中的OH -离子浓度增大,应采用的措施是( )A.加水B.加NH 4Cl 晶体C.常压下继续通入氨气D.将氨气的压强增大1倍后再通入密闭容器中2.反应PCl5(g) PCl3(g)+Cl2(g)……①2HI(g) H2(g)+I2(g) ……②2NO2(g) N2O4(g) ……③在一定条件下,达到化学平衡时,反应物的转化率均是a%.若加入一定量的各自的反应物,则转化率( )A.均不变B.均增大C.①增大②不变③减小D.①减小②不变③增大3.在某容积一定的密闭容器中,可逆反应A(g)+B(g) xC(g),符合下列下图像Ⅰ所示关系.由此推断对下图Ⅱ的正确说法是( )A.p3>p4Y轴表示A的转化率B.p3<p4Y轴表示B的百分含量C.p3>p4Y轴表示混合气体的密度D.p3>p4Y轴表示混合气体的平均摩尔质量I II4.可逆反应A(g)+B(g) 2C(g)在不同温度下经过一定时间,混合物中C的体积分数与温度的关系如图所示.那么:(1)由T1和T2变化时,正反应速率逆反应速率(填>、<、=);(2)由T3向T4变化时,正反应速率逆反应速率(填>、<、=);(3)反应在温度下达到平衡;(4)此反应的正反应为热反应.5.可逆反应A(g)+3B(g) 2C(g),在反应过程中C的百分含量c%与温度关系如图所示,请回答(1)正反应是反应(放热、吸热).(2)t<500℃时,c%逐渐增大是因为.(3)t >500℃时,c%逐渐减小是因为 .6.合成氨厂常通过测定反应前后混合气体的密度来确定氮气的转化率.某工厂测得合成塔中N 2、H 2混合气体的密度为0.5536g/L(标况下测定),从合成塔出来的混合气体在相同条件下密度为0.693g/L.求该合成氨厂N 2的转化率.7.以H 2、CO 为主要组成,供化学合成用的一种原料气叫做“合成气”.若用天然气为原料制合成气,可用“天然气蒸气转化”的反应:CH 4(g)+H 2O(g) CO(g)+3H 2(g)-Q生产时主要条件是温度、压强和水蒸气的配比,另外还要有适宜的催化剂.合成气里的H 2可用于合成氨,CO 最终分离出来后可用于合成甲醇、醋酸、乙二醇等,即新兴起的以分子中只含有一个碳原子的化合物为原料来合成化工产品的“C 1化学”.据此回答以下两题:(1)天然气蒸气转化的主要反应进行时,有关叙述中不正确的是( )A.反应速率为3v(H 2)=v(CH 4)B.温度为800℃~820℃,若超过1500℃反而不利C.工业上为使平衡正向移动,要用过量的天然气D.在加压的条件下,正反应速率会增大(2)目前用合成气生成甲醇时,采用Zn-Cr 催化剂,其反应为:CO(g)+2H 2(g) CH 3OH(g)+Q有关叙述正确的是( )A.达到平衡时,容器内的总压保持不变B.合成甲醇的反应可以认为是CO 的氧化反应C.根据勒夏特列原理,合成甲醇的反应要在加压和维持相当高的温度下进行,以利于提高单位时间内的产量D.甲醇与CO 能在一定条件下化合生成醋酸是因CO 插入CH 3OH 中形成C =O 键而成8.有些反应从表面上看不能进行.如:(1)KClO 4+H 2SO 4−→−HClO 4+KHSO 4 (2)Na+KCl −→−NaCl+K (3)Mg+RbCl −→−MgCl 2+Rb(4)KCl+NaNO 3−→−NaCl+KNO 3 而实际生产中恰被用来制取带横线的物质.这4个反应中利用的反应原理相同的是 ,其原理是 ,不相同的原理是 .【生活实际运用】1.有文献报导:硫在空气中燃烧时,产物中的SO 3约占5%~6%(体积),而硫在纯氧中燃烧时,其产物中的SO 3约占2%~3%(体积),你能解释这一现象吗?试试看!〔提示:S+O 2 SO 2放出热量如何影响化学平衡2SO 2(g)+O 2(g) 2SO 3(g)+Q 〕2.反应CO(g)+ 21O 2(g) CO 2(g)在1600℃时,K =1×104.经测定汽车尾气里的CO 和CO 2的浓度分别为4.0×10-5mol ·L -1和4.0×10-4mol ·L -1.若在汽车的排气管上增加一个1600℃的补燃器,并使其中的O 2浓度始终保持4.0×10-4mol ·L -1,求CO 的平衡浓度和补燃器转化率.3.在上题的系统里,同时发生反应:SO 2(g)+ 21O 2(g) SO 3(g)K =20,经测定,汽车的尾气原有SO 2气体的浓度为2×10-4mol ·L -1.问SO 3的平衡浓度?4.某农科所研究人员把棚内空气中的CO 2浓度提高3~5倍,并将O 2浓度尽量减少,结果取得良好的增产效果.从反应:得到的启发是: .5.合成氨工业用氢气和氮气在催化剂作用下直接合成,右表表示在一定温度和压强下达到动态平衡时氨的体积分数.其中2N V ∶2H V =1∶3.如图所示装置是一透热性很好的坚固容器,活塞C 可左右移动,其总体积为44.8L ,现将400℃、300大气压的H 233.6L 和400℃,300大气压的N 211.2L 充入容器中,当两者反应达到动态平衡时,若保持混合气体的压强仍为400℃、300大气压,求:(1)容器是向外界放热,还是吸热?(2)充入的N 2的物质的量是多少?充入的H 2转化率是多少?(3)活塞C 要向左侧移动的距离与容器全长之比是多大?参考答案:【同步达纲练习】1.D2.C3.BC4.D5.BC6.D7.A8.D9.AB 10.B 11.D 12.B 13.C 14.D 15.(1)减小 (2)增大 (3)增大 (4)增大 (5)减小 (6)不变 (7)不变 16.将空气液化,蒸发;空气中O2与C作用后,除去CO2;C+H2O(g) CO+H2,CO+H2O(g) CO2+H217.该热化学方程式表示完全生成2molNH3放热92.4kJ,而合成氨为可逆反应,1molN2和3molH2不可能得到2molNH3,故测得热量小于92.4kJ.【素质优化训练】1.D2.D3.AD4.(1)> (2)< (3)T3 (4)放5.(1)放热 (2)当t<500℃时,反应未达平衡,温度升高,反应速度加快,且v正>v逆,所以c%随温度升高而增大; (3)当t=500℃时,反应达到平衡状态,c%为最大值,由于反应是放热反应,在t>500℃时,温度升高,反应速度加快,但v正<v逆,平衡向逆反应方向移动,所以c%随温度升高而减小.6.25%7.(1)AC (2)AD8.(1)(2)(3)相同;利用所需产物的较低溶沸点,使这些物质挥发,及时从平衡体系中移去,使平衡不断向正反应方向移动; (4)利用重结晶法【生活实际运用】1.在纯O2中燃烧,放出热量升温更快,使放热反应平衡逆向进行,故使SO3体积分数减小.2.2.2×10-6mol/L;94.5%3.5.7×10-5mol/L4.增大反应物(CO2)浓度,同时减小生成物(O2)浓度,可使化学平衡向正反应方向移动,从而提高C6H12O6的产率.5.(1)放热(2)n(N2):60.9mol;转化率α(H2)=64% (3)0.32。

氨合成的实验报告

氨合成的实验报告

一、实验目的1. 了解氨合成的原理和方法;2. 掌握合成氨的基本操作;3. 通过实验,了解氨合成过程中的影响因素。

二、实验原理氨合成反应是一种可逆反应,其化学方程式为:N2(g) + 3H2(g) ⇌ 2NH3(g) + Q在一定温度、压力和催化剂的作用下,氮气和氢气反应生成氨气。

本实验采用铁基催化剂,在高温、高压条件下进行氨合成。

三、实验仪器与试剂1. 仪器:合成氨装置、氮气钢瓶、氢气钢瓶、温度计、压力计、流量计、加热器、冷凝器、接收瓶、试管、酒精灯等。

2. 试剂:氮气、氢气、铁基催化剂、无水氯化钙、硫酸、蒸馏水等。

四、实验步骤1. 检查合成氨装置,确保各部件连接牢固,无泄漏。

2. 将铁基催化剂放入反应器中,加入适量的无水氯化钙作为干燥剂。

3. 打开氮气钢瓶和氢气钢瓶,调节流量计,使氮气和氢气的流量比为1:3。

4. 将氮气和氢气分别通过无水氯化钙干燥剂,进入反应器。

5. 打开加热器,加热反应器至实验要求的温度(一般控制在400-500℃)。

6. 观察反应器内压力变化,当压力达到实验要求的压力(一般控制在10-20MPa)时,开始计时。

7. 在反应过程中,每隔一定时间,从接收瓶中取样,用硫酸酸化,观察氨气是否生成。

8. 实验结束后,关闭加热器,待反应器冷却至室温。

9. 收集剩余的氮气和氢气,测定其含量。

五、实验结果与分析1. 实验过程中,随着反应进行,反应器内压力逐渐升高,说明氨气生成。

2. 在实验过程中,观察到氨气生成,使溶液呈碱性,证明氨气已生成。

3. 实验结束后,剩余的氮气和氢气含量测定结果显示,氮气和氢气基本反应完全。

4. 实验结果与理论计算结果基本相符,说明实验操作正确,氨合成反应进行顺利。

六、实验讨论1. 实验过程中,反应器内压力变化对氨合成反应的影响较大。

压力越高,氨合成反应速率越快,氨气产量越高。

2. 温度对氨合成反应的影响也较大。

在一定温度范围内,温度越高,氨合成反应速率越快。

合成氨工作原理

合成氨工作原理

1.氨合成的基本原理氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为:3H2+N2=2NH3+热量这是一个可逆、放热、体积缩小的反应,对其反应机理存在着不同的观点,一般认为:氮在铁催化剂上被活性吸附,离解为氮原子,然后逐步加氢,连续生成NH、NH2和NH3。

即:N2(扩散)→2N(吸附)→2NH(吸附)→2NH2(吸附)→2NH3(脱附)→2NH3(扩散到气相)由质量作用定律和平衡移动原理可知:1.温度升高,不利于反应平衡而有利于反应速度。

2.压力愈高愈有利于反应平衡和速度。

3.氢氮气(比例3:1)含量越高越有利于反应和速度。

4.触媒不影响反应平衡,但可以加快反应速度。

2、温度对氨合成反应的影响氨合成反应是一个可逆放热反应。

当反应温度升高时,平衡向着氨的分解方向移动;温度降低反应向着氨的生成方向移动。

因此,从平衡观点来看,要使氨的平衡产率高,应该采取较低的反应温度。

但是从化学反应速度的观点来看,提高温度总能使反应的速度加快,这是因为温度升高分子的运动加快,分子间碰撞的机率增加,同时又使化合时分子克服阻力的能力加大,从而增加分子有效结合的机率。

总之,温度低时,反应有利于向合成氨的方向进行,但是氨合成的反应速度较低;提高温度不利于向氨的合成方向移动,但反应速度可以增加。

在实际生产中反应温度的选择主要决定于氨合成催化剂的性能。

3.压力对氨合成反应的影响氨的合成反应是一个分子的氮与三个分子的氢结合生成两个分子的氨,即氨合成反应是分子数目减少、体积缩小的反应,提高压力,可使反应向着生成氨的方向进行。

对于氨合成反应来说,提高压力就是提高反应气体的浓度,从而增加反应分子间碰撞的机会,加快了反应的速率。

总之,增加压力对氨的合成反应是有利的,既能增大平衡转化率,又能加快反应速率。

但压力也不宜过高,否则,不仅增加动力的消耗,而且对设备和材料的要求也较高。

根据我国具体情况,目前在小型合成氨厂,设计压力一般为31.4MPa。

氨合成反应机理

氨合成反应机理
• 1. 氢氮比的影响 • 若氢氮比不为3,则平衡常数表达式为:
yNH3 (1 y NH3 r1.5 Kp 2 2 yi ) (1 r )
• 其它条件不变,改变氢氮比使平衡氨含量最大时, 可对上式求导,并令其为零得
1.5r 0.5 (1 r ) 2 2r 1.5 (1 r ) 0 4 (1 r )
• 氨合成特点: • 可逆放热,体积缩小 • 高温高压,T=400~500 ℃ P= 10~24 MPa(大 厂);20~32 MPa(小厂) • o转化率低,y氨=10~20% • 化学平衡 • 氨合成反应如下: • 1.5H2(g) + 0.5 N2(g) = NH3(g)
• 该反应为放热反应,其平衡常数为 p NH 3 p NH 3 K f 1.5 0.5 1.5 0.5 K p K pH 2 p N 2 H 2 N 2 • Kf0为真正的平衡常数,它由热力学关系 • RT ln K f G f • 决定。 • 在生产条件范围内,逸度系数计算的经验式为
4.5 工艺流程
• 氨的分离方法 • 除了在需要氨水的地方,要用水吸收法来得到一 些浓氨水外,一般都用冷凝法来分离氨。大家知 道高压相平衡分离的计算是很复杂的,在化工热 力学已讲过,此处不再重复。只介绍近似计算。 但对于较准确的分析和设计,要使用严格计算方 法用计算机计算。 • 饱和氨含量计算的经验公式:
p r k1 pN 2 p
3 H2 2 NH3
p k2 p

2 NH3 3 H2

1
• 式中k1、k2分别为正逆反应的速率常数, 为实验 常数,工业条件下一般 0.5。
p1.5 H2 r k1 pN 2 pNH 3

氨合成反应

氨合成反应

氨合成反应氨合成反应,又称氨气电离,是指一种有机化学反应,涉及氨(NH3)的电离和合成反应过程。

氨合成反应是有机物形成各类有机氨的基础反应,用于制备多种重要的合成中间体或有机物,是有机合成及有机化学制备工艺中的重要环节。

氨合成反应是一种高效、安全可靠、可操作性强且成本低廉的有机合成方法。

氨合成反应基本原理是从氨电离开始,氨分子被分解为三价氮(N3-)和氢离子(H+),而N3-在阴离子的影响下与三价碳(C3-)反应,合成一种双环有机氨化合物,也就是氨基酸。

一般来说,氨合成反应可分为三个主要过程:氨电离过程、氨基酸合成反应和氨基酸稳定过程。

1.电离过程氨合成反应的开始是从氨(NH3)的电离开始的。

由于氨本身具有弱酸性,所以经过一定程度的电离,从而将NH3分解为N3-和H+。

此外,添加一定电压可加速氨电离的反应过程。

2.基酸合成反应N3-和C3-在氨气电离反应的过程中结合,形成氨基酸。

C3-可以是一个有机物体,也可以是一种氢化物,如精馏酸、乙酸、丙烯酸或氨基酸。

3.基酸稳定过程氨基酸容易氧化,浓度越高,反应速度就越快,很容易通过催化剂的作用而氧化,所以氨基酸经过氨基稳定过程,它会以稳定的氨基化合物,如精馏酸、乙酰氨基酸和乙酸氨基酸,形态存在。

氨合成反应被广泛应用于有机合成及有机化学制备工艺中,用于发展以氨基酸为基础的合成产品。

它比直接合成氨基酸有更高的效率、可靠性和成本效益。

此外,一种高纯准度的氨基酸合成原料可以以更低的成本获得,这可以促使氨基酸的高产和高质量。

氨合成反应是一种特殊的有机化学合成反应,它不仅具有高效、安全可靠、成本低廉和操作简单等优点,而且能够为有机合成提供坚实的基础,因而受到众多化学家和分析化学专家的欢迎和应用。

合成氨

合成氨
综合以上两点,实际生产中压强一般选择在20 综合以上两点,实际生产中压强一般选择在20 ~ 50MPa之间 50MPa之间。 之间。
2、温度怎么选择? 温度怎么选择?
①因为正反应方向是放热的反应,所以降 因为正反应方向是放热的反应, 低温度有利于提高平衡混合物中氨的含量。 低温度有利于提高平衡混合物中氨的含量。 ②温度越低,反应速率越小,达到平衡所 温度越低,反应速率越小, 需要的时间越长,因此温度也不宜太低。 需要的时间越长,因此温度也不宜太低。 ③ 催化剂要在一定的温度下才能达到最 佳的催化效果。 佳的催化效果。 综合以上因素, 综合以上因素,实际生产中温度一般选择 400~500℃ 主要考虑催化剂的活性)左右。 在400~500℃(主要考虑催化剂的活性)左右。
实际选择 适宜条件) (适宜条件)
平衡转化率 产物多) (高 , 产物多)
压强 温度 催化剂
大 高 用 大
大 低 无关 H2、N2浓度大 NH3浓度小
20MPa ~ 50MPa
450℃ ~500℃ ℃ ℃ 铁触媒
及时分离NH 及时分离 3 不断补充H 不断补充 2、N2 N2、H2循环使用
浓度
三、工业合成氨的流程 合成氨工业的流程: 合成氨工业的流程:
一、合成氨反应的原理
N2(g) + 3H2(g)
请思考这个反应的特点 正反应是一个气体体积缩小的放热反应。 正反应是一个气体体积缩小的放热反应。
2NH3(g) + 112.64kJ
假如你是合成氨工厂的厂长,对产品 假如你是合成氨工厂的厂长, 的生产效率、成本有何要求? 的生产效率、成本有何要求?
要从反应速 率和反应平 衡两方面来 考虑
速度要快 原料的利用率要高 单位时间的产量要高 生产中的消耗能源、原料、 生产中的消耗能源、原料、设备条件等因素

氨合成反应原理方程式

氨合成反应原理方程式

氨合成反应原理方程式1. 氨合成反应:氨合成反应是有机化学中的一种重要的反应,它是一种采用氨气和乙烯等化合物合成氨的反应。

氨是重要的中间体,它可以用于合成酸、碱、醛类和其他多种有机物质。

氨合成反应的原理方程式如下:$$2NH_3 + C_2H_4 \rightleftharpoons (NH_2)_2CHR + 2H_2$$其中,NH₃是氨以及乙烯(C₂H₄),CH₂R代表溶剂、催化剂或配体。

此反应为吸热反应,其反应热可由方程式计算出,约为14.1kJ/mol。

2. 反应机理:氨的生成过程主要由三步组成,分别为反应物的聚合、直接聚合和产物的重新分子组装。

第一步,Tomas一氧化氮由氨气和一些催化剂经活化,发生聚合反应生成氨酸。

在第二步,两个氨酸发生直接聚合反应,生成离子对((NH₂)₂CHR)。

在第三步,原子或分子团重新分子组装得到氨分子与过氧化物(H2O2),一些无机和有机的配体,释放大量热量。

3. 生产氨的装置氨的常用生产装置有弗雷尔反应器和里士满反应器,它们都是加热的反应器。

弗雷尔反应器是使用乙烯和氨气,以及采用氢气、净水和助剂催化气体,在强磁场中通过高压(约12MPa)和高温(约800-850℃)条件,氨合成反应可以实现。

里士满反应器使用乙烯和氨气,以及采用手性催化剂,在常压常温(约25℃)条件下,实现氨的生产。

4. 氨的应用氨的产量巨大,广泛用于制约各种有机产品的生产,如氨基酸,涤纶、氯化纤维、尼龙纤维、烷基物、树脂等。

同时,氨也可以用作农用肥料、用于水净化;此外,它还用于清洁剂,氟化物等。

由于其低成本,大量使用,它是全球消费者所享受的各种有机产品的主要原料。

总之,氨合成反应至今仍是有机化学中一个极为重要的反应,它不仅提供了大量的有机物质,而且对世界各地的消费者和其他工业来说都是一种重要的能源投入。

未来可期,氨合成反应将迎来更多良好的应用前景。

工业合成氨知识点总结

工业合成氨知识点总结

工业合成氨知识点总结一、引言合成氨是一种重要的化工原料,广泛用于化肥、塑料、药品和其他化工产品的生产中。

而工业合成氨主要是通过哈伯-玻斯曼过程进行生产。

在这个过程中,氮气和氢气以高压、高温和催化剂的作用下,发生反应,生成氨气。

因此,工业合成氨的生产涉及了高压、高温、催化剂和气体分离等方面的工艺技术。

二、合成氨的反应原理工业合成氨的反应过程是氮气和氢气在催化剂的作用下,发生氧化还原反应,生成氨气。

这是一个放热反应,反应方程式为:N₂ + 3H₂ → 2NH₃ + 92.6kJ/mol从反应方程式可以看出,该反应需要大量的氢气,而氮气对反应也起到了催化作用。

在实际生产过程中,合成氨的反应条件一般为300-500°C的温度和100-250atm的压力,同时需要使用铁、钨或镍等金属为催化剂。

三、工业合成氨的生产工艺工业合成氨的生产工艺主要包括氢气制备、氮气制备、合成氨反应和氨气的提取等步骤。

1. 氢气制备氢气是工业合成氨的主要原料之一,通常是通过天然气重整法或电解水法进行制备。

a. 天然气重整法天然气经催化剂重整反应制得合成气,合成气中含有一定比例的氢气。

然后通过甲醇水煤气变换反应得到富含氢气的气体。

b. 电解水法将水分解为氧气和氢气的方法,使用电解槽进行电解水反应,得到纯度高的氢气。

2. 氮气制备氮气是工业合成氨的另一主要原料,一般是从空气中分离得到。

a. 常用的氮气制备方法包括分子筛吸附法、柱塔分离法等。

b. 分子筛吸附法:将空气经过分子筛吸附塔,通过吸附分离得到富含氮气的气体。

c. 柱塔分离法:通过茧状分离塔或塔内吸附塔将空气中的氮气和氧气分离出来。

3. 合成氨反应使用氢气和氮气作为原料,在高压、高温和催化剂(通常是Fe3O4、K₂O、CaO、Al₂O₃或者Ni)的作用下进行反应,得到氨气。

合成氨反应通常分为两个主要阶段:合成氨反应和氨气的提取。

在合成氨反应过程中,氮气和氢气以1:3的比例进入反应器,在压力为100-250bar、温度为300-500°C下进行化学反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结论:根据平衡移动规律可知,降低温度,提高压力, 有利于平衡向生成氨的方向移动。
氨合成影响因素
平衡氨含量:
(2)平衡氨含量 反应达到平衡时氨在混合气体中的百分含量。
1· 温度和压力的影响
温度/℃
350 380 420 460 500 550
压力/MPa
0.101 0.84% 0.54% 0.31% 0.19% 0.12% 0.07% 10.13 37.86% 29.95% 21.36% 15.00% 10.51% 6.82% 15.20 46.21% 37.89% 28.25% 20.60% 14.87% 9.90% 20.26 52.46% 44.08% 33.93% 25.45% 18.81% 12.82% 30.39 61.61% 53.50% 43.04% 33.66% 25.80% 18.23% 40.52 68.23% 60.59% 50.25% 40.49% 31.90% 23.20%
(4)惰性气体的影响 惰性气体含量增加,总反应速率下降。
总结
小结
• 什么是合成氨?(定义)
• 为什么要合成氨?(地位· 作用)
合成氨是重要的无机化工产品
由氮和氢在高温高压和催化剂存在下直接合成的氨
• 怎么合成氨?(原理) • 什么影响氨合成?(影响因素)
温度 压力 氢氮比 惰性气体
合成氨用途
合成氨是重要的无机化工产品
氨主要用于制造氮肥和复合肥料,例如尿素、 硝酸铵、磷酸铵、氯化铵以及各种含氮复合 肥,都是以氨为原料的。
氨合成的基本原理
氨是由气态氢和氮在氨触媒的作用下反应生成的 其反应式为:
可逆 放热 体积减小
氨合成影响因素
平衡常数:
P(的分压
结论:惰性气体的存在,降低了氢气和氮气的有效分 压,使平衡氨含量下降。
思考:动力学角度 提高反应速率
(1)压力 提高压力可加快总反应速率。
(2)温度 最适宜温度:反应速率最大的温度。
思考:动力学角度 提高反应速率
(3)氢氮比 反应初期氢氮比为1.5,反应速率最快;随着反应的 进行,氨含量不断增加,最佳氢氮比随之增大;反 应趋于平衡时,最佳氢氮比接近于3。
表1 纯氢氮气(氢氮比为3)的平衡氨含量(体积分数)
结论:当温度降低,压力升高时,平衡氨含量增加。
2.氢氮比的影响
氢氮值是指合成氨的原 料气中氢组分和氮组分 的体积比或摩尔比,而 不是重量比。在合成气 组分组成中,其数值控 制在2.6~3.2,
结论:氢氮比在3左右时, 平衡氨含量具有最大值
3·惰性气体的影响
提出问题
• 什么是合成氨?(定义) • 为什么要合成氨?(地位· 作用) • 怎么合成氨?(原理)
• 什么影响氨合成?(影响因素)
合成氨定义
• 合成氨 指由氮和氢在高温高压和催化剂存 在下直接合成的氨,为一种基本无机化工 流程。
硝酸、各种含氮的无机盐及有机中间体、 磺胺药、聚氨酯、聚酰胺纤维和丁腈橡 • 氨是重要的无机化工产品之一,在国民经济中占有重要 胶等都需直接以氨为原料 地位,其中约有80%氨用来生产化学肥料,20%为其它 化工产品的原料。
相关文档
最新文档