单个正态总体的假设检验
正态总体均值的假设检验

2 用 分布
检验
下,若能求得检验统计量的 极限分布,依据它去决定临界值C.
例 1 (用例中数据,但未知)
n=10, =0.05, 0=10 t10-1(/2)=t9(0.025)=2.2622
X 10.05,S2 0.05, S 0.224 X 10 0.05 , 即未落入拒绝域为 S 10 2.262 0.160 S 10 2.262
抽取 样本
检验 假设
拒绝还是不能 拒绝H0
P(T W)=
类错误的概率, W为拒绝域
对差异进行定量的分析, 确定其性质(是随机误差 显著性 水平
还是系统误差. 为给出两 者界限,找一检验统计量T, 在H0成立下其分布已知.)
-----犯第一
一般说来,按照检验所用的统计量的分布, 分为 U 检验 用正态分布
以上检验法叫U检验法.
X ~tn 1 S/ n
0
于是当原假设 H0:μ =μ X 0 ~tn 1 S/ n
成立时,有:
X 0 P tn 1 2 S / n S 即P X 0 tn 1 n 2 S 拒绝域为 X 0 tn 1 n 2 以上检验法叫t检验法.
第八章 第二节
正态总体均值的假设检验
一、单个正态总体N(,2)均值的检验
(I) H0:μ = μ
0
H1:μ ≠ μ
0
设X1,X2, ,Xn为来自总体N(,2)的样本. 求:对以上假设的显著性水平=的假设检验. 方差2已知的情况
根据第一节例1,当原假设 H0:μ =μ , 有:
8.2-0单正态假设检验

u X 0 . S/ n
拒绝域为| u | u / 2 .查表得 u / 2 = u0.025 = 1.96 .
由于
| u | | x 0 | 0.4 50 1.22 1.96 , s/ n 4
所以接受H0,即认为总体的均值μ=0.
147,150,149,154,152,153,148,151, 155
假设零件长度服从正态分布,问这批零件是否
合格(取 = 0.05)?
解 这里是在总体方差 2 未知的情况下,检验假设 H0: 0 150 ,H1: 150 .
在H0成立时,检验统计量
T X 0 ~ t(n 1) .
| t | | x 0 | 1.096 2.306 .
s/ n
所以接受H0,即认为这批零件合格.
三、正态总体方差的假设检验— 2 检验
设总体 X ~ N (, 2 ) 平 .
, (X1,X2,…,Xn)为X 的样本,给定显著性水
1.当 已知时,方差 2的假设检验
H0: 2
(5)由数据计算得x 112.8, s 1.1358
故T 112.8 112.6 0.4659 2.4469 1.1358 7
故接受H 0 ,即可认为用热敏电阻测温仪间接测量温度无系统 误差。
例2 某车间加工一种零件,要求长度为150mm, 今从一批加工后的这种零件中抽取 9 个,测得长度如 下:
2
2 (n)
或 2
2 1
2 (n)
2
2 0
2
2 0
2
2
单正态总体的参数假设检验

单正态总体的参数假设检验一、引言在统计学中,参数假设检验是一种常用的统计推断方法,用于对总体参数的假设进行验证。
在本文中,我们将讨论单正态总体的参数假设检验方法。
单正态总体是指样本来自一个服从正态分布的总体。
二、参数假设检验的基本步骤参数假设检验的基本步骤包括以下几个方面:1. 提出假设:在进行参数假设检验时,首先需要提出原假设和备择假设。
原假设(H0)是对总体参数的一个特定取值或一组取值的陈述,备择假设(H1)是对原假设的补充或对立假设。
2. 选择检验统计量:检验统计量是一个用于判断是否拒绝原假设的量。
在单正态总体的参数假设检验中,常用的检验统计量有样本均值、样本比例等。
3. 确定显著性水平:显著性水平是在进行假设检验时所允许的犯第一类错误的概率。
通常情况下,显著性水平取0.05或0.01。
4. 计算检验统计量的观察值:根据样本数据,计算检验统计量的观察值。
5. 确定拒绝域:拒绝域是一组检验统计量的取值,如果观察到的检验统计量的取值落在这个区域内,则拒绝原假设。
6. 做出决策:根据观察到的检验统计量的取值和拒绝域的关系,做出接受或拒绝原假设的决策。
三、单正态总体均值的参数假设检验在单正态总体均值的参数假设检验中,常用的检验方法有Z检验和t检验。
1. Z检验:当总体的标准差已知时,可以使用Z检验。
Z检验的检验统计量为样本均值与总体均值之差除以标准差的样本标准差。
根据中心极限定理,当样本容量较大时,检验统计量近似服从标准正态分布。
2. t检验:当总体的标准差未知时,使用t检验。
t检验的检验统计量为样本均值与总体均值之差除以标准误差的样本标准差。
根据学生t分布的性质,当样本容量较小时,检验统计量服从t分布。
四、实例分析为了更好地理解单正态总体的参数假设检验方法,我们以某电商平台的订单发货时间为例进行分析。
假设我们关注的是该电商平台订单的平均发货时间。
我们提出如下的原假设和备择假设:原假设(H0):订单的平均发货时间为3天。
正态总体的假设检验

n
(Xi μ)2
P { i1
σ
2 0
χ
2 1
α 2
(
n)}
P{
i 1
σ
2 0
χ
2
α
(
n)}
α
2
所以拒绝域为: W
{
χ2
χ
2 1
α 2
(
n)
,χ
2
χ
2
α
(n)
}
2
2. μ未知时,总体方差σ2的假设检验 χ2 检验法
类型 原假设 备择假设
H0
H1
检验统计量
双边 检验
σ2
σ
2 0
σ2
得s=0.007欧姆.设总体服从正态分布,参数均未知,
问在显著性水平α=0.05下,能否认为这批导线的
标准差显著地偏大?
解: s2 0.0072 0.0052
原假设 H 0 : σ 2 0.0052,备择假设 H1 : σ 2 0.0052
检验统计量: χ 2 (n 1)S 2
σ2
拒绝域:
第二节 正态总体的假设检验
一、单一正态总体均值μ的假设检验
二、单一正态总体方差σ2的假设检验 三、两个正态总体均值的假设检验 四、两个正态总体方差的假设检验
一、单一正态总体均值μ的假设检验
设总体X~N (, 2). X1 , X2 , … , Xn是取自X的样本,
样本均值 X样,本方差S2
1.已知
T t(α n 1)
例1. 设某次考试的考生的成绩服从正态分布,从中随
机地抽取36位考生的成绩,算得平均成绩为66.5分,标 准差为15分,问在显著性水平0.05下,是否可以认为在 这次考试中全体考生的平均成绩为70分?
单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0
n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。
解
①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0
N ( , ) ,
n
Z
n
X 0
n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即
正态总体参数的假设检验

578, 572, 570, 568, 572, 570, 570, 572, 596, 584 试判断新生产的铜丝的折断力有无提高(取α=0.05)?
解
H0 : 0 570 H1 : 0
用U检验法,这时拒绝条件为U u , 计算知 X 575.2,
U X 0 575.2 570 2.05 u u0.05 1.645
N (0,1) U u
| T | t / 2 T t T t
2法
2
2 0
2
2
2 0
2
2 0
2 0
2
(n 1)S 2
2 0
2
2 0
2
2 0
0
2
2 1
/
2
或
提出检验假设 H0 : p p 0 0.17 H1 : p 0
用大样本U 检验法,这时拒绝条件为|U| u / 2 将 n 400, x 56 / 400 0.14, p(1 p) 0.17(1 0.17) 0.376代入,得
| u |
U法
( 2已知)
0
0 0
0
T法
( 2未知)
0
0
假设H1
0 0 0
0 0 0
检验统计量
U X 0 / n
T X 0
S/ n
抽样分布 拒绝条件 A (P( A) )
9.2 正态总体参数的假设检验
一、一个正态总体参数的假设检验 二、非正态总体均值的假设检验 三、两个正态总体参数的假设检验 四、两个非正态总体均值的假设检验
单个正态总体均值的假设检验

使 P t t 2 5
(4) 将样本值代入算出统计量 t 的实测值, 没有落入 | t |=2.997<4.0322 拒绝域 故不能拒绝H0 .
这并不意味着H0一定对,只是差异还不够显
著, 不足以否定H0 .
练习 生产葡萄糖的重量X ~ N 5, 2 , 观察 25个样本 的重量,得X 5.5, S 1, 问生产机器是否正常? 取 0.05
2. 从某批矿砂中,抽取10样本,检验这批砂矿的含 铁量是否为3%? 双侧检验
H 0 : 0 3%, H1 : 3%
3.某学校学生英语平均分65分, பைடு நூலகம்抽取某个班的平均 分,看该成绩是否显著高于全校整体水平? 单侧检验
H 0 : 0 65, H1 : 65
解 提出假设 H 0 : 5 H1 : 5 X 5 确定统计量 T ~ t 24 S 25 确定临界值 t 2 24 t0.025 24 2.0639 得否定域W : T 2.0639
由样本值计算T 2.5 t0.025 24
=0.01下, 新生产织物比过去的织物强力是否有提高
? 解 提出假设, H 0 : 21 H1 : 21
X 21 取统计量 U ~ N (0,1) n
否定域为W : U u0.01 =2.33
单侧检验
{U > u0.01}是 小概率事件
解 提出假设, H 0 : 21 H1 : 21
假设强力指标服从假设强力指标服从n2且??12公斤问在显著性水平??001下新生产织物比过去的织物强力是否有提高新生产织物比过去的织物强力是否有提高
正态总体均值的假设检验

假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
3.大样本单个正态总体均值的检验
设总体为 X ,它的分布是任意的,方差 2 未知, X1 ,X2 , ,Xn 为 来自总体 X 的样本,H0 : 0( 0 已知).当样本容量 n 很大( n 30 )
时,无论总体是否服从正态分布,统计量 t X 0 都近似服从正态分 S/ n
解 依题意,建立假设 由于 2 未知,故选取统计量
H0 : 0 72,H1 : 72 . t X 0 , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | | t |
x 0
s/ n
t
/
2
(n
1)
.
又知 n 26,x 74.2,s 6.2,查表得 t /2 (25) t0.025 (25) 2.06 ,则有 | t | x 0 74.2 72 1.81 2.06 , s/ n 6.2/ 26
解 依题意,建立假设 由于 2 未知,取检验统计量
H0 : 0.8,H1 : 0.8 .
t X 0 ~ t(n 1) , S/ n
已知 0.05 ,故此检验问题的拒绝域为
W t | t x 0 s/ n
t (n 1) .
又知 n 16 ,x 0.92,s 0.32 ,查表得 t0.05 (16 1) t0.05 (15) 1.75,则有 t x 0 0.92 0.8 1.50 1.75 , s/ n 0.32/ 16
假设检验 H0 : 0 ,H1 : 0 的拒绝域为 W {t | t t (n 1)}.
(7-8) (7-9)
假设检验
正态总体均值的假设检验
1.1 单个正态总体均值的假设检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问:是否可信这批延期药的静止燃烧时间T的方差为 2 0.0252. ( 0.05) 我们的任务是根据所得的样本值检验
我们先讨论一般的检验法。
提出假设
解: H0:≤10620; H1:>10620
H0 真时 :
T X 0
Sn
X 10631.4
拒绝域为 Tt0.05(9)=1.8331
这里
10631.4 10620
T0
81
0.45 1.8331
10
接受H0
例2(续)某厂生产镍合金线,其抗拉强度X的均值为 10620 (kg/mm2)今改进工艺后生产一批镍合金线,抽 取10根,测得抗拉强度(kg/mm2)为: 10512, 10623, 10668, 10554, 10776, 10707, 10557, 10581, 10666, 10670. 认为 X ~ N(, 2) ,取=0.05 ,问 新生产的镍合金线的抗拉强度是否比过去生产的合 金线抗拉强度要高?
第八章
假设检验
一 、假设检验的基本概念 二、正态总体均值与方差
的假设检验
§8。2 正态总体均值与方差的假设检验
设总体 X ~ N(, 2 ) X1, X 2, , X n 为X的样本。
我们对μ,σ2作显著性检验 1、单个正态总体均值的假设检验
已知 X ~ N(, 2 ), 2 已知,检验假设
的过程分为五个步骤: 第一步: 提出原假设和备择假设
若
或
则否定H0。
若
则H0相容。
本题
2 1
(n
1)
2
根据样本值算得
2 0.975
(9)
2.7
02
9 0.0232 0.0252
2
(n
1)
2
7.6176
02.025(9)
19.023
显然 2.7 02 19.023 则H0相容,接受H0 。
可信这批延期药的静止燃烧时间T的方差为
例2 某次统考后随机抽查26份试卷, 测得平均成绩:
由于S2集中了σ2的信息,自然想用S2与σ2进行比较 若 S 2 / 2 过大或过于接近0,则说明σ2 偏离σ02较大。 因此有理由否定H0。
取统计量
P{
2
2 1 2
(n
1)}
2
这说明 或
[
2
2 1
(n
1)]
2
[ 2 2 (n 1)]
2
是小概率事件。
P{
2
2
2
(n
1)}
2
因此, 在样本值
下计算
原假设的设立带有一定的倾向性,可从下列问题来体会
有一生产厂家向超市供货,质量指标服从正态分布 N (, 2 ), 越大质量越好,而0为合格界限
超市对于供应商的商品进行检验,检验员是假定这批次商品
0还是 0呢?
对于原假设 : 0
即x 0 t (n 1)
s n
否定域为T= x-0
s/ n
试分析该次考试成绩标准差是否为
已知该次考试成绩
(=0.05)
解: 提出假设
取统计量
查表
根据样本值算得
显然
则H0相容,故接受H0 。
表明考试成绩标准差与12无显著差异。
四.单边检验及其拒绝域
双边假设检验
H0 : 0 H1 : 0
单边检验
双边备择假设
H0 : 0 (=0)H1 : 0
H0 : 0 (=0)H1 : 0
这里
2
9S 2
σ
2 0
9121.8 13.7 80
接受 H0
感谢下 载
H0: 0 ;H1: <0,
说明:有些教材上 用“H0: =0 ;H1: <0 ,”表示
统计量 : T X 0
Sn
由 P{T t (n 1)}
得水平为的拒绝域为
T t (n 1)
·右边检验问题
H0: ≤ 0 ;H1: >0 或 H0: =0 ;H1: >0,
统计量 : T X 0
问是否可以认为整批保险丝的熔化时间的方差大于
80?(=0.05) , 熔化时间 X ~ N(, 2)
解
H0: 2 80;H1: 2 80
2 80 时 2 9S 2 ~χ 2 (9)
80
由 p{ 2 χ2 (9)}
得水平为 =0.05 的拒绝域为
2
χ2
(9)
χ2 0.05
(9)
19.023
解: H0 : 4.55 ( 4.55)
统计量 Z X 4.55 0.11 5
H1 : 4.55
由 p{Z z } α
得水平为的拒绝域为
Z z 1.645
这里
Z0
4.364 4.55 0.11 5
3.78
1.645
拒绝H0
例2 某厂生产镍合金线,其抗拉强度X的均值为 10620 (kg/mm2)今改进工艺后生产一批镍合金线,抽 取10根,测得抗拉强度(kg/mm2)为: 10512, 10623, 10668, 10554, 10776, 10707, 10557, 10581, 10666, 10670. 认为 X ~ N(, 2) ,取=0.05 ,问 新生产的镍合金线的抗拉强度是否比过去生产的合 金线抗拉强度要高?
第四步: 将样本值代入算出统计量 T0的实测值,
T0 2.997 4.0322
故不能拒绝H0 .
没有落入 拒绝域
这并不意味着H0一定对,只是差异还不够显著, 不足以否定H0 .
例5 对一批新的某种液体存储罐进行耐裂试验,
重复测量5次,测得爆破压力数据为(单位斤/寸2): 545 545 530 550 545
”是一个小概率事件 . 或
代入算出统计量
则H0相容,接受H0 则否定H0,接受H1
由于取用的统计量服从t分布,故称其为t 检验法。
例3 某工厂生产的一种螺钉, 标准要求长度是32.5 毫米. 实际生产的产品其长度 X 假定服从正态分布 ,
X ~ N(, 2 ), 2 未知,现从该厂生产的一批产品中
Sn
由 P{T t (n 1)}
得水平为的拒绝域为
T t (n 1)
例1 已知某炼铁厂的铁水含碳量 X 在正常情况下
X ~ N(4.55, 0.112 ) 某日测得5炉铁水含碳量如下:
4.28, 4.40, 4.42, 4.35, 4.37. 如果标准差不变,
该日铁水的平均含碳量是否显著偏低? =0.05
由样本算得
这里
|
T0
||
543 7.58
549
|
1.77
t0.025(4) 2.776
5
H0相容,接受H0。
即这批罐的平均爆破压力与过去无显著差别。
二、关于σ2假设检验
在显著性水平条件下检验假设 其中σ0是已知常数,
例1 已知某种延期药静止燃烧时间T, T ~ N(, 2 )
今从一批延期药中任取10副测得静止燃烧时间(单位
右边检验 左边检验
H0 : 0 (=0)H1 : 0
否定域分析, (即 o的条件) Z X ~ N(0,1)
/ n ~ N( 0 ,1) / n
Z0
x
0
n
Z x n
于是P{Z0 Z } P{Z Z }
否定域为z 0
z
关于单边假设检验否定域的另一种理解
为了解释方便,假设 H0 : 0 H1 : 0
抽取6件, 得尺寸数据如下:
32.56, 29.66, 31.64, 30.00, 31.87, 31.03 问这批产品是否合格? (=0.01)
解 已知
未知.
第一步: 提出原假设和备择假设
第二步: 取一检验统计量,在H0 成立下求出它的分布
第三步: 对给定的显著性水平 临界值,使
查表确定
得否定域
如假设: H0: 10620; H1:<10620 结论如何?
H0 真时 :
T X 0
Sn
X 10631.4
拒绝域为 T -t0.05(9)=-1.8331
这里
T0
10631.4 81
10620
0.45>-1.8331
接受H0
10
同一个问题,因为不同的假设结论完全相反,怎么解释?
这涉及到如何进行原假设的设计问题
对于单边问题H0:
2
(02
2
02);H1:
2
2,
0
可解得拒绝域:
2
2 1
(n
1);
而对单边问题
H0: 2
(02
2
02);H1: 2
2,
0
可解得拒绝域: 2 2 (n 1)。
2=(n012)s2
例5 电工器材厂生产一批保险丝,取10根测得其熔化
时间(min)为 42, 65, 75, 78, 59, 57, 68, 54, 55, 71.
另外 x 如要接受H1 : 0
Z X 0 应该比较小 否定域在左边, 形式为Z<? / n
z 0
z
思考
例4 某织物强力指标X的均值
公斤. 改进
工艺后生产一批织物,今从中取30件,测得
公斤.假设强力指标服从正态分布 X ~ N(, 2 ),且已知
1.2 公斤,问在显著性水平 0.01 下,新生产
过去该种液体存储罐的平均爆破压力为549斤寸(可 看作真值), 试问这批新罐的平均爆破压力与过去有无