初中函数专题

合集下载

初中数学函数专题训练-附详细答案

初中数学函数专题训练-附详细答案

初中数学函数专题训练姓名:______________考号:______________一、解答题(100分)1.(5分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).2.(5分)反比例函数y=kx(1)求反比例函数的解析式及B点的坐标.(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.(k≠0)与一次函数y=ax+b相交于点A(n,-1),B(1,3),过点A作AD⊥y轴于点D,过3.(5分)如图,已知反比例函数y=kx点B作BC⊥x轴于点C,连接CD.(1)求反比例函数的解析式.(2)求四边形ABCD的面积.4.(5分)如图,反比例函数y=m−2的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:x(1)图象的另一支在第象限;在每个象限内,y随x的增大而,常数m的取值范围是.(2)若此反比例函数的图象经过点(-2,3),求m的值.5.(5分)如图,已知直线l 1:y=kx+1,与x 轴相交于点A ,同时经过点B(2,3),另一条直线l 2经过点B ,且与x 轴相交于点P(m ,0).(1)求l 1的解析式.(2)若S △APB =3,求P 的坐标.6.(5分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线y=-12x+3交AB ,BC 于点M ,N ,反比例函数y=kx 的图象经过点M ,N .(1)求反比例函数的解析式.(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.(x>0)的图象过格点(网格线的交点)P.7.(5分)如图,反比例函数y=kx(1)求反比例函数的解析式.(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.8.(5分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=√13.(1)求点B的坐标.(2)若△ABC的面积为4,求直线l2的解析式.9.(5分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式.(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?10.(5分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式.(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A 型、B型电脑各多少台,才能使销售总利润最大?11.(5分)已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标.(2)求两直线交点C的坐标.(3)求△ABC的面积.的图象交于点A(-3,2),B(n,-6)两点.12.(5分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx(1)求一次函数与反比例函数的解析式.(2)求△AOB的面积.(3)请直接写出y1<y2时x的范围.13.(5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式(不要求写出定义域).(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.14.(5分)如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于A(-2,1),B(1,n)两点.x(1)求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.15.(5分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=2x的图象与直线AB交于点M.(1)求直线AB的函数解析式及M点的坐标.(2)若点N是x轴上一点,且△MNB的面积为6,求点N的坐标.16.(5分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式.(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标.(3)利用(2)的点的坐标以及结合得出函数图象得出答案.17.(5分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶x+6,乙离一楼地面的梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式.(2)请通过计算说明甲、乙两人谁先到达一楼地面.18.(5分)根据记录,从地面向上11 km以内,每升高1 km,气温降低6℃;又知在距离地面11 km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃).(1)写出距地面的高度在11 km以内的y与x之间的函数表达式.(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7 km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.19.(5分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值.(2)求小强的速度.(3)求线段AB的函数解析式,并写出自变量的取值范围.(x>0)的图象交于点B(m,2).20.(5分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(1)求反比例函数的表达式.(2)求△AOB的面积.初中数学函数专题训练试卷答案一、解答题1.(1)解:当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)解:由y1<y2,得:30x+200<40x,解,得x>20时,当x>20时,选择方式一比方式二省钱.2.(1)解:把A(1,3)代入y=kx得:k=1×3=3,∴反比例函数解析式为:y=3x;把B(3,m)代入y=3x,得3m=3,解得m=1,∴B点坐标为(3,1).(2)解:如图,作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,-3),∵PA+PB=PA′+PB=BA′,∴此时PA+PB的值最小,设直线BA′的解析式为:y=mx+n,把A′(1,-3),B(3,1)代入得,{m+n=−33m+n=1,解得{m=2n=−5,∴直线BA′的解析式为:y=2x-5,当y=0时,2x-5=0,解得x=52,∴P点坐标为(52,0).3.(1)解:∵反比例函数y=kx(k≠0)的图象经过B(1,3),∴k=1×3=3.∴反比例函数的解析式为y=3x.(2)解:把A(n,-1)代入y=3x ,得-1=3n,解得n=-3,∴A(-3,-1),延长AD,BC交于点E,则∠AEB=90°,∵BC ⊥x 轴,垂足为点C ,∴点C 的坐标为(1,0),∵A(-3,-1),∴AE=1-(-3)=4,BE=3-(-1)=4,∴S 四边形ABCD =S △ABE -S △CDE =12AE×BE −12CE×DE =12×4×4−12×1×1=7.5.4. (1)四 增大 m<2(2)解:把(-2,3)代入y =m−2x 得到:m-2=xy=-2×3=-6,则m=-4.故m 的值为-4.5.(1)解:∵y=kx+1,经过点B(2,3),∴3=2k+1,∴k=1,∴直线l 1对应的函数表达式y=x+1.(2)解:∵A(-1,0)△APB 的面积=12PA·3=3,解得PA=2,当点P 在点A 的左边时,OP=OA+PA=1+2=3,此时m=-3;当点P 在点A 的右边时,OP=PA-OA=2-1=1,此时m=1.综上所述,P(-3,0)或(1,0).6.(1)解:∵B(4,2),四边形OABC 是矩形,∴OA=BC=2,将y=2代入y=-12x+3得:x=2,∴M(2,2),把M 的坐标代入y=k x 得:k=4,∴反比例函数的解析式是y=4x .(2)解:把x=4代入y=4x得:y=1,即CN=1, ∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON=4×2-12×2×2-12×4×1=4, 由题意得:12|OP|×AO=4,∵AO=2,∴|OP|=4,∴点P 的坐标是(4,0)或(-4,0).7.(1)解:∵反比例函数y=k x (x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=4x .(2)解:如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.8.(1)解:∵点A(2,0),AB=√13. ∴BO=√AB 2−AO 2=√9=3∴点B 的坐标为(0,3).(2)解:∵△ABC 的面积为4∴12×BC×AO=4∴12×BC×2=4,即BC=4∵BO=3∴CO=4-3=1∴C(0,-1)设l 2的解析式为y=kx+b ,则{0=2k +b −1=b ,解得{k =12b =−1∴l 2的解析式为y=12x-1.9. (1)解:设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,{150k +b =45b =60,解得:{k =−110b =60, ∴该一次函数解析式为y=-110x+60.(2)解:当y=-110x+60=8时, 解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.10. (1)解:由题意可得,y=100x+150(100-x)=-50x+15000,即y 与x 的函数关系式是y=-50x+15000.(2)解:由题意可得,100-x≤2x ,解得,x≥3313,∵y=-50x+15000,∴当x=34时,y 取得最大值,此时y=13300,100-x=66,即商店购进A 型34台、B 型电脑66台,才能使销售总利润最大.11. (1)解:在y=2x+3中,当x=0时,y=3,即A(0,3);在y=-2x-1中,当x=0时,y=-1,即B(0,-1).(2)解:依题意,得{y =2x +3y =−2x −1, 解得{x =−1y =1; ∴点C 的坐标为(-1,1).(3)解:过点C 作CD ⊥AB 交y 轴于点D ;∴CD=1;∵AB=3-(-1)=4;∴S △ABC =12AB·CD=12×4×1=2.12.(1)解:把A(-3,2)代入y 2=m x ,得m=-3×2=-6,∴反比例函数解析式为y 2=-6x .把B(n ,-6)代入y 2=-6x ,得-6n=-6,解得n=1,∴B 点坐标为(1,-6),把A(-3,2),B(1,-6)代入y 1=kx+b ,得{−3k +b =2k +b =−6,解方程组得{k =−2b =−4, ∴一次函数解析式为y=-2x-4.(2)解:当x=0时,y=-2x-4=-4,则AB 与y 轴的交点坐标为(0,-4),∴△AOB 的面积=12×4×(3+1)=8.(3)解:当-3<x<0或x>1时,y 1<y 2.13.(1)解:设y =kx +b ,则有{b =400100k +b =900, 解得{k =5b =400, ∴y =5x +400.(2)解:绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.14.(1)解:因为A点在反比例函数的图象上,可先求出反比例函数的解析式y=-2x,又B点在反比例函数的图象上,代入即可求出n的值为-2,最后再由A,B两点坐标求出一次函数解析式y=-x-1.(2)解:根据图象可得x的取值范围是x<-2或0<x<1.15.(1)解:设直线AB的函数解析式为y=kx+b(k≠0).把点A(0,3)、点B(3,0)代入得:{b=33k+b=0解得:{k=−1 b=3,∴直线AB的函数解析式为y=-x+3;由{y=2xy=−x+3得:{x=1y=2,∴M点的坐标为(1,2).(2)解:设点N的坐标为(x,0),如图所示:∵△MNB的面积为6,∴12×2×|x-3|=6,∴x=9,或x=-3.∴点N的坐标为(-3,0)或(9,0).16.(1)解:由题意可得:银卡消费:y=10x+150,普通消费:y=20x.(2)解:由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600).(3)解:如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x>45时,金卡消费更划算.17.(1)解:设y 关于x 的函数解析式是y=kx+b , {b =615k +b =3,解得,{k =−15b =6, 即y 关于x 的函数解析式是y =−15x+6.(2)解:当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.18. (1)解:根据题意得:y=m-6x .(2)解:将x=7,y=-26代入y=m-6x ,得-26=m-42,∴m=16 ∴当时地面气温为16℃∵x=12>11,∴y=16-6×11=-50(℃)假如当时飞机距地面12 km 时,飞机外的气温为-50℃.19.(1)解:a=3005×(10+5)=900.(2)解:小明的速度为:300÷5=60(米/分),小强的速度为:(900-60×2)÷12=65(米/分).(3)解:由题意得B(12,780),设AB 所在的直线的解析式为:y=kx+b(k≠0),把A(10,900)、B(12,780)代入得:{10k +b =90012k +b =780,解得{k =−60b =1500, ∴线段AB 所在的直线的解析式为y=-60x+1500(10≤x≤12).20. (1)解:∵点B(m ,2)在直线y=x+1上,∴2=m+1,得m=1,∴点B 的坐标为(1,2),∵点B(1,2)在反比例函数y=k x (x>0)的图象上,∴2=k 1,得k=2, 即反比例函数的表达式是y=2x .(2)解:将x=0代入y=x+1,得y=1,则点A 的坐标为(0,1), ∵点B 的坐标为(1,2),∴△AOB 的面积是:1×12=12.。

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。

专题6.1函数(原卷版)【苏科版】

专题6.1函数(原卷版)【苏科版】

专题6.1函数姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021春•红谷滩区校级期末)在球的体积公式343V R π=中,下列说法正确的是()A .V 、π、R 是变量,43为常量B .V 、π是变量,R 为常量C .V 、R 是变量,43、π为常量D .以上都不对2.(2021春•济南期末)在行进路程s 、速度v 和时间t 的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A .变量只有速度vB .变量只有时间tC .速度v 和时间t 都是变量D .速度v 、时间t 、路程s 都是常量3.(2021春•桥西区期末)刘师傅到加油站加油,如图是所用的加油机上的数据显示牌,则其中的变量是()A .金额B .单价C .数量D .金额和数量4.要画一个面积为215cm 的长方形,其长为x cm ,宽为y cm ,在这一变化过程中,常量与变量分别是()A .常量为15;变量为x ,yB .常量为15,y ;变量为xC .常量为15,x ;变量为yD .常量为x ,y ;变量为155.(2020春•郑州期末)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度()h cm 102030405060708090100小车下滑的时间()t s 4.233.002.452.131.891.711.59 1.50 1.411.35下列说法正确的是()A .当70h cm =时, 1.50t s =B .h 每增加10cm ,t 减小1.23C .随着h 逐渐变大,t 也逐渐变大D .随着h 逐渐升高,小车下滑的平均速度逐渐加快6.变量y 与x 之间的关系式是20.51y x =+,当自变量2x =时,因变量y 的值是()A .2-B .1-C .1D .37.(2021春•红谷滩区校级期末)下列关系式中,y 不是x 的函数的是()A .31y x =+B .2y x=C .12y x=-D .||y x=8.(2021春•郏县期末)某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表):温度/C ︒20-10-0102030声速//m s318324330336342348下列说法错误的是()A .在这个变化中,自变量是温度,因变量是声速B .温度越高,声速越快C .当空气温度为20C ︒时,声音5s 可以传播1740mD .当温度每升高10C ︒,声速增加6/m s9.(2019秋•涪陵区期末)根据如图所示的程序计算函数y 的值,若输入的x 值是1-,则输出的y 值为()A .3-B .2-C .1-D .110.(2020春•天府新区校级期中)在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如表:支撑物高()h cm 1020304050⋯下滑时间()t s 3.25 3.01 2.81 2.66 2.56⋯下列结论错误的是()A .当40h =时,t 约2.66秒B .高度每增加了10cm ,时间就会减少0.24C .随高度增加,下滑时间越来越短D .估计当80h cm =时,t 小于2.56秒二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2021秋•瑶海区期中)在函数23y x =-x 的取值范围是.12.(2019春•沈阳月考)长方形的周长为10,长为x ,宽为y ,则y 与x 的关系式为.13.(2020春•沙坪坝区校级月考)某烤鸭店在确定烤鸭的烤制时间时,主要依据的是如表数据:鸭的质量/千克0.51 1.52 2.53 3.5烤制时间/分钟406080100120140160设鸭的质量为x 千克,烤制时间为t ,估计当 2.2x =千克时,t 的值为.14.(2019春•雁塔区校级期末)某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/kg0.51 1.52 2.53 3.54烤制时间/min406080100120140160180若鸭的质量为3.2kg 时,烤制时间为min .15.(2021•饶平县校级模拟)一辆汽车油箱中现存油50L ,汽车每行驶100km 耗油10L ,则油箱剩余油量()y L 与汽车行驶路程()x km 之间的关系式是.16.当圆的半径r 由小变大时,它的面积S 也越来越大,它们之间的变化关系为2S r π=,在这个变化过程中,自变量为,因变量为,常量为.17.(2017春•西城区校级期中)弹簧挂上物体后会伸长,测得一弹簧的长度y ()cm 与所挂的物体的质量()x kg 之间有下面的关系:/x kg 012345/y cm1010.51111.51212.5下列说法正确的是.①x 与y 都是变量;②弹簧不挂重物时的长度为0cm ;③物体质量每增加1kg ,弹簧长度增加0.5cm ;④所挂物体质量为7kg 时,弹簧长度为13.5cm .18.(2021秋•槐荫区期中)在槐荫区“勾股数学”杯初中校际联赛中,小明的队伍在第一轮中获得积分50分,第二轮共10道题,每答对一道题得10分,则两轮总积分y (分)与第二轮答对题目数量x (道)之间的关系式为(010x ,x 为正整数).三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•济南期末)如图是一位病人的体温记录图,看图回答下列问题:(1)自变量是,因变量是;(2)护士每隔小时给病人量一次体温;(3)这位病人的最高体温是摄氏度,最低体温是摄氏度;(4)他在4月8日12时的体温是摄氏度.20.科学家认为二氧化碳2()CO 的释放量越来越多是全球变暖的原因之一.下表是1950~1990年全世界所释放的二氧化碳量:年份195019601970198019902CO 释放量/百万吨60029475149891928722588(1)上表反映的是哪两个变量之间的关系?(2)说一说这两个变量之间的关系.21.从南京到上海的路程约为300km,一辆汽车从南京开往上海,每小时行驶50km,行驶的时间为()t h,离南京的路程为()s km,回答下面的问题:(1)填写下表:t h123456()s km()(2)用含t的式子表示,并指出其中的常量和变量.22.(2019春•平度市期中)如图,圆柱的高是3cm,当圆柱的底面半径rcm由小到大变化时,圆柱的体积3Vcm 也随之发生了变化.(1)在这个变化中,自变量是,因变量是;(2)写出体积V与半径r的关系式;cm.(3)当底面半径由1cm到10cm变化时,通过计算说明圆柱的体积增加了多少323.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.(1)题中有几个变量?(2)你能写出两个变量之间的关系吗?24.(2021秋•龙凤区期中)长方形的一边长是16,其邻边长为x,周长是y,面积为S.(1)写出x和y之间的关系式;(2)写出x和S之间的关系式;(3)当160S 时,x等于多少?y等于多少?(4)当x增加2时,y增加多少?S增加多少?。

专题3.4 函数的应用(解析版)

专题3.4 函数的应用(解析版)

专题3.4函数的应用1.一次函数模型的应用一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).一次函数是常见的一种函数模型,在初中就已接触过.2.二次函数模型的应用二次函数模型:f (x )=+bx +c (a ,b ,c 为常数,a ≠0).二次函数为生活中常见的一种数学模型,因二次函数可求其最大值(或最小值),故最优、最省等最值问题常用到二次函数模型.3.幂函数模型的应用幂函数模型应用的求解策略(1)给出含参数的函数关系式,利用待定系数法求出参数,确定函数关系式.(2)根据题意,直接列出相应的函数关系式.4.分段函数模型的应用由于分段函数在不同区间上具有不同的解析式,因此分段函数在研究条件变化前后的实际问题中具有广泛的应用.5.“对勾”函数模型的应用对勾函数模型是常考的模型,要牢记此类函数的性质,尤其是单调性:y =ax +(a >0,b >0),当x >0时,在(0,]上递减,在(,+)上递增.另外,还要注意换元法的运一、单选题1.已知函数()22x f x =-,则函数()y f x =的图象可能是()A .B .C .D .【答案】B ()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B .2.设函数()2,01,0x x f x x x -⎧≤=⎨->⎩,则满足()()12f x f x +<的x 的取值范围是()A .(],1-∞B .()1,+∞C .[)1,+∞D .(),1-∞【答案】D 因为()2,01,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时,()2xf x -=显然单调递减;当0x >时,()2f x x =-也是单调递减;且()002101f ==-=,即函数图像连续不断,所以()f x 在其定义域上单调递减,由()()12f x f x +<可得12x x +>,解得1x <.故选:D.3.根据表格中的数据,可以断定方程(2)0( 2.72)x e x e -+=≈的一个根所在的区间是()x -10123ex 0.371 2.727.4020.12x +212345A .(-1,0)B .(0,1)C .(1,2)D .(2,3)【答案】C【解析】设函数()(2)0x f x e x =-+=,(1)0.3710,(0)120,(1) 2.7230f f f -=-<=-<=-<,(2)7.4040f =->,∴(1)(2)0f f <,又()(2)x f x e x =-+在区间(1,2)连续,∴函数()f x 在区间(1,2)存在零点,∴方程根所在的区间为(1,2),故选:C.4.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若实数(0,1)m ∈,则函数()()g x f x m =-的零点个数为()A .0B .1C .2D .3【答案】D【解析】令()()0g x f x m =-=,得()f x m =,根据分段函数()f x 的解析式,做出函数()f x 的图象,如下图所示,因为(0,1)m ∈,由图象可得出函数()()g x f x m =-的零点个数为3个,故选:D.5.某地一天内的气温()Q t (单位:℃)与时刻t (单位:h )之间的关系如图所示,令()C t 表示时间段[]0,t 内的温差(即时间段内最高温度与最低温度的差),则()C t 与t 之间的函数图像大致是A .B .C .D .【答案】D【解析】由题图看出,0=t 时,()0C t =,排除B ;在[]0,4上,()C t 不断增大,在[]4,8上,()C t 先是一个定值,然后增大,在[]812,上,()C t 不断增大,在[]1220,上,()C t 是个定值,在[]20,24上,()C t 不断增大,故选D.6.甲、乙两人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后两人同时到达B地.已知甲骑自行车比乙骑自行车快.若每人离开甲地的距离S与所用时间t的函数用图象表示,则甲、乙对应的图象分别是A.甲是(1),乙是(2)B.甲是(1),乙是(4)C.甲是(3),乙是(2)D.甲是(3),乙是(4)【答案】B【解析】由甲先骑自行车后跑步,故图象斜率先大后小,则甲图象为(1)或(3),由乙先跑步后骑自行车,故图象斜率先小后大,则乙图象为(2)或(4),又甲骑车比乙骑车快,即甲前一半路程图象的中y随x的变化比乙后一半路程y随x的变化要快,所以甲为(1),乙为(4).故选:B.7.某商场对顾客实行购物优惠活动,规定一次购物付款总额:(1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人单独购买A,B商品分别付款168元和423元,假设他一次性购买A,B两件商品,则应付款是A.413.7元B.513.7元C.546.6元D.548.7元【答案】C【解析】依题意可得,因为168200<,所以购买A商品没有优惠,则A商品的价格为168元.当购买价值500元的物品时实际付款为5000.9450423⨯=>,所以购买B商品享受了9折优惠,则B商品的原价为4234700.9=元.若一次性购买两件商品则付款总额为168+470=638元,则应付款(638500)0.75000.9546.6-⨯+⨯=元,故选C8.给下图的容器甲注水,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系:().A .B .B .C .D .【答案】B 试题分析:容器下端较窄,上端较宽,当均匀的注入水时,刚开始的一段时间高度变化较大,随时时间的推移,高度的变化速度开始减小,即高度变化不太明显,四个图像中只有B 项符合特点二、解答题9.2022年第24届北京冬季奥林匹克运动会,于2022年2月4日星期五开幕,将于2月20日星期日闭幕.该奥运会激发了大家对冰雪运动的热情,与冰雪运动有关的商品销量持续增长.对某店铺某款冰雪运动装备在过去的一个月内(以30天计)的销售情况进行调查发现:该款冰雪运动装备的日销售单价()P x (元/套)与时间x (被调查的一个月内的第x 天)的函数关系近似满足()1kP x x=+(k 为正常数).该商品的日销售量()Q x (个)与时间x (天)部分数据如下表所示:x 10202530()Q x 110120125120已知第10天该商品的日销售收入为121元.(1)求k 的值;(2)给出两种函数模型:①()Q x ax b =+,②()|25|Q x a x b =-+,请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量()Q x 与时间x 的关系,并求出该函数的解析式;(3)求该商品的日销售收入()f x (130x ≤≤,*N x ∈)(元)的最小值.【答案】(1)1k =(2)选择②,()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)121元【解析】(1)因为第10天该商品的日销售收入为121元,所以(10)(10)111012110k P Q ⎛⎫⋅=+⋅= ⎪⎝⎭,解得1k =;(2)由表中数据可得,当时间变化时,该商品的日销售量有增有减,并不单调,故只能选②:()|25|Q x a x b=-+代入数据可得:11010251202025a b a b ⎧=-+⎪⎨=-+⎪⎩,解得1a =-,125b =,所以()125|25|Q x x =--,(130x ≤≤,*N x ∈)(3)由(2)可得,()**100,125,N 12525150,2530,N x x x Q x x x x x ⎧+≤<∈=--=⎨-≤≤∈⎩,所以,()()()**10010125,N 150149,2530,N x x x xf x P x Q x x x x x ⎧++≤<∈⎪⎪=⋅=⎨⎪+-≤≤∈⎪⎩,所以当125x ≤<,*N x ∈时,100()101f x x x=++在区间[1,10]上单调递减,在区间[10,25)上单调递增,所以当10x =时,()f x 有最小值,且为121;当2530x ≤≤,*N x ∈时,150()149f x x x=+-为单调递减函数,所以当30x =时,()f x 有最小值,且为124,综上,当10x =时,()f x 有最小值,且为121元,所以该商品的日销售收入最小值为121元.10.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)当20200x ≤≤时,求函数()v x 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)()()f x xv x =可以达到最大,并求出最大值(精确到1辆/小时)﹒【答案】(1)()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.【解析】当020x ≤≤时,()60v x =;当20200x ≤≤时,设()v x ax b =+,由已知得2000,2060,a b a b +=⎧⎨+=⎩解得132003a b ⎧=-⎪⎪⎨⎪=⎪⎩,故函数()v x 的表达式为()60,020,()1200,202003x v x x x ≤≤⎧⎪=⎨-+<≤⎪⎩;(2)依题意并由(1)可得()260,020,()1200,202003x x f x x x x ≤≤⎧⎪=⎨-+<≤⎪⎩,当020x ≤≤时,()f x 为增函数,故当20x =时,其最大值为60×20=1200;当20200x <≤时,()21()100100003f x x ⎡⎤=---⎣⎦,∴当100x =时,()f x 在区间(20,200]上取得最大值1000033333≈,∵3333>1200,∴当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.11.某地空气中出现污染,须喷洒一定量的去污剂进行处理,据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =161,04815,4102x xx x ⎧-≤≤⎪⎪-⎨⎪-<≤⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的㳖度之和,由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(1)若一次喷洒4个单位的去污剂,则去污时间可达几天?(2)若第一次喷洒2个单位的去污剂,6天后再喷洒(14)a a ≤≤个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值.(精确到0.11.4)【答案】(1)8天(2)1.6【解析】(1)解:∵一次喷洒4个单位的净化剂,∴浓度()644,0448202,410x f x y x x x ⎧-≤≤⎪==-⎨⎪-≤⎩<,则当04x ≤≤时,由64448x-≥-,解得0x ≥,∴此时04x ≤≤.当410x <≤时,由2024x -≥,解得8x ≤,∴此时48x <≤.综合得08x ≤≤,若一次投放4个单位的制剂,则有效净化时间可达8天.(2)解:设从第一次喷洒起,经()610x x ≤≤天,浓度()()()1161625114428614a g x x a x a x x =-+-⎡⎤⎛⎫⎢⎥ ⎪=-+-----⎝⎭⎣⎦,∵[]1448x -∈,,而14a ≤≤,∴8[]4,,故当且仅当14x -=时,y有最小值为4a -.令44a -≥,解得244a -≤,∴y a的最小值为24 1.6-.12.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的年收益()f x 与投资额x 成正比,其关系如图1;投资股票等风险型产品的年收益()g x 与投资额x 的算术平方根成正比,其关系如图2.(1)分别写出两种产品的年收益()f x 和()g x 的函数关系式;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大年收益,其最大年收益是多少万元?【答案】(1)()()108f x x x =≥,())0g x x =≥(2)投资债券类产品16万元,股票类投资为4万元,收益最大为3万元【解析】(1)依题意:可设()()10f x k x x =≥,())0g x k x =≥,∵()1118f k ==,()2112g k ==,∴()()108f x x x =≥,())0g x x =≥.(2)设投资债券类产品x 万元,则股票类投资为()20x -万元,年收益为y 万元,依题意得:()()20y f x g x =+-,即)0208x y x =+≤≤,令t =则220x t =-,0,t ⎡∈⎣,则22082t t y -=+,0,t ⎡∈⎣()21238t =--+,所以当2t =,即16x =万元时,收益最大,max 3y =万元.13.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供x ([]0,10x ∈)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅- ⎪+⎝⎭(万件),其中k 为工厂工人的复工率([]0.5,1k ∈),A 公司生产t 万件防护服还需投入成本20950x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.8k =时,政府补贴多少万元才能使A 公司的防护服利润达到最大?并求出最大值.【答案】(1)3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈(2)当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元【解析】(1)由题意得()802095030820y x t x t t x =+-+-=--1236030682018082044k k x k x x x ⎛⎫=---=--- ⎪++⎝⎭,即3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈.(2)由0.8k =,得288288144820812444y x x x x =---=--+++,因()28828888432248326444x x x x +=++-≥⨯-=++,当且仅当2x =时取等号,所以6412460y ≤-+=.故当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元.14.已知函数()()21322m f x m m x -=-+是幂函数.(1)求函数()f x 的解析式;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)判断函数()f x 在()0,∞+上的单调性,并证明你的结论.【答案】(1)()2f x x -=;(2)函数()f x 为偶函数;(3)()f x 在()0,∞+上单调递减,证明见解析.(1)因为函数()()21322m f x m m x -=-+是幂函数,则2221m m -+=,解得1m =,故()2f x x -=.(2)函数()2f x x -=为偶函数.证明如下:由(1)知()2f x x -=,其定义域为{}0x x ≠关于原点对称,因为对于定义域内的任意x ,都有()()()()222211f x x x f x xx ---=-====-,故函数()2f x x -=为偶函数.(3)()f x 在()0,∞+上单调递减.证明如下:在()0,∞+上任取1x ,2x ,不妨设120x x <<,则()()221212221211f x f x x xx x ---=-=-()()2221212122221212x x x x x x x x x x -+-===,()12,0,x x ∈+∞且12x x <,222121120,0,0x x x x x x ∴-<+>>,()()12f x f x >()f x ∴在()0,∞+上单调递减.。

专题06一次函数(原卷版)

专题06一次函数(原卷版)

专题06 一次函数知识点1:变量与常量定义:在一个变化过程中,我们称数值发生改变的量为变量,数值始终不变的量为常量. 一般地,在一个变化过程中,如果有两个变量x 和 y ,并且对于 的每一个确定的值, 都有唯一确定的值与其对应,那么我们就说x 是自变量, y 是因变量,y 是x 的函数.如果 当 x=a 时,y=b ,b 那么 a 叫做当自变量 x 的值为a 时的函数值.知识点2:自变量取值范围初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况: (1)函数关系式为整式形式:自变量取值范围为任意实数; (2)函数关系式为分式形式:分母0 (3)函数关系式含算术平方根:被开方数0; (4)函数关系式含0指数:底数0。

知识点3:函数定义像r 2,40,40s Π===s x y t 这样,用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法,这种式子叫做函数的解析式知识点4:函数的图像 知识点5:正比例函数的定义一般地,形如y=kx(k≠0)函数,叫做正比例函数,其中k叫做比例系数.知识点6:正比例函数图像和性质正比例函数图象与性质用表格概括下:k的符号图像经过象限性质k>0 第一、三象限y随x的增大而增大k<0 第二、四象限y随x的增大而较少知识点7:待定系数法求正比例函数解析式1.正比例函数的表达式为y=kx(k≠0),只有一个待定系数k,所以只要知道除(0,0)外的自变量与函数的一对对应值或图象上一个点的坐标(原点除外)即可求出k的值,从而确定表达式.2.确定正比例函数表达式的一般步骤:(1)设——设出函数表达式,如y=kx(k≠0);(2)代——把已知条件代入y=kx中;(3)求——解方程求未知数k;(4)写——写出正比例函数的表达式知识点8:一次函数的定义如果y=kx+b(k,b是常数,k ≠0 )的函数,叫做一次函数,k叫比例系数。

注意:当b=0时,一次函数y=kx+b 变为y=kx,正比例函数是一种特殊的一次函数。

初中数学中考复习考点知识与题型专题讲解11 一次函数 (解析版)

初中数学中考复习考点知识与题型专题讲解11 一次函数 (解析版)

初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。

常量:在一个变化过程中数值始终不变的量。

【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。

2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。

函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

【函数概念的解读】1、有两个变量。

2、一个变量的数值随另一个变量的数值变化而变化。

3、对于自变量每一个确定的值,函数有且只有一个值与之对应。

函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。

函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。

2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。

函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

专题检测-函数概念与基本初等函数

专题二 函数概念与基本初等函数2.1 函数及其性质一、选择题1.(2022届广西玉林育才中学10月月考,8)函数g(x)=2x-√x +1的最小值为( ) A.-178 B.-2 C.-198 D.-94答案 A 设t=√x +1(t ≥0),则x=t 2-1,则原函数可化为y=2(t 2-1)-t=2t2-t-2=2(t -14)2-178(t ≥0),当t=14时,有最小值-178.故选A.2.(2022届湖北襄阳五中10月月考,2)已知函数y=f(x)的定义域为(-1,1),则函数F(x)=f(|2x -1|)的定义域为( )A.(-∞,1)B.(-1,1)C.(0,+∞)D.[0,1)答案 A ∵y=f(x)的定义域为(-1,1),∴-1<|2x -1|<1,即-1<2x -1<1,∴0<2x <2,解得x<1,∴F(x)=f(|2x -1|)的定义域为(-∞,1).3.(2022届广东普通高中10月质检,3)函数f(x)=1x +4x 在[1,2)上的值域是( ) A.[5,172) B.[4,172)C.(0,172) D.[5,+∞)答案 A 因为f '(x)=-1x 2+4=(2x+1)(2x -1)x 2,所以当x ∈[1,2)时, f '(x)>0, f(x)是增函数,所以f(1)≤f(x)<f(2),即5≤f(x)<172.故选A. 4.(2022届山东鱼台一中月考一,2)已知函数f(x)={(12)x,x≤0,x -2,x >0,设f(1)=a,则f(a)=( )A.2B.12 C.-12 D.-32 答案 A 因为f(x)={(12)x,x ≤0,x -2,x >0,所以f(1)=1-2=-1,所以a=-1,所以f(-1)=(12)-1=2.5.(2022届广东深圳七中月考,7)定义在R 上的函数f(x)满足f(x)={log 9(1-x),x ≤0,f(x -10),x >0,则f(2 018)=( )A.12 B.-12 C.-1 D.1答案A∵f(x)={log9(1-x),x≤0,f(x-10),x>0,∴f(2018)=f(2008)=f(1998)=…=f(8)=f(-2),∴f(2018)=log93=1 2 .故选A.6.(2022届河北保定重点高中月考,7)设定义在R上的函数f(x)=x·|x|,则f(x)()A.既是奇函数,又是增函数B.既是偶函数,又是增函数C.既是奇函数,又是减函数D.既是偶函数,又是减函数答案A∵f(-x)=-x·|-x|=-x·|x|=-f(x),且f(x)的定义域关于原点对称,∴函数f(x)为奇函数,∵f(x)=x·|x|={x2,x≥0,-x2,x<0,∴函数f(x)为增函数,故选A.7.(2022届广东深圳六校联考,3)若定义在R上的函数f(x)不是偶函数,则下列命题正确的是()A.∀x∈R,f(x)+f(-x)=0B.∃x∈R,f(x)+f(-x)=0C.∃x∈R,f(x)≠f(-x)D.∀x∈R,f(x)≠f(-x)答案C∵定义在R上的函数f(x)不是偶函数,∴∃x∈R,f(x)≠f(-x).故选C.8.(2022届北京一六一中学10月月考,3)下列函数中,值域为R的是()A.y=1x B.y=1+1xC.y=x+1x D.y=x-1x答案D对于函数y=1x,因为x≠0,所以y≠0,故它的值域不是R,所以A不满足题意;对于函数y=1+1x,因为x≠0,所以y≠1,故它的值域不是R,所以B不满足题意;对于函数y=x+1x,由对勾函数的性质可知值域为(-∞,-2]∪[2,+∞),所以C不满足题意;对于函数y=x-1x =x2-1x,可得关于x的方程x2-yx-1=0有解,∵Δ=y2+4>0,∴y可以取任意实数,即y∈R,故D满足条件.故选D.9.(2022届北京大峪中学10月月考,2)设函数f(x)={log2(2-x),x<1,2x,x≥1,则f(-2)+f(log26)=()A.2B.6C.8D.14答案C f(-2)+f(log26)=log2(2+2)+2log26=log24+6=2+6=8.故选C.10.(2022届北京一六一中学10月月考,4)已知函数f(x)为奇函数,当x>0时,f(x)=log2(x+1)+ax,且f(-3)=a,则a=()A.12 B.-12C.log23D.2答案B∵函数f(x)为奇函数,∴f(-3)=-f(3)=a.从而f(3)=log24+3a=-a,解得a=-12.故选B.11.(2022届北京九中10月月考,7)已知函数f(x)是定义在R上周期为2的奇函数,当0<x<1时,f(x)=4x,则f(-52)+f(1)等于()A.-2B.0C.2D.1答案A∵函数f(x)是定义在R上的奇函数,且周期为2,∴f(1)=-f(-1)=-f(-1+2)=-f(1),∴f(1)=0,f(-52)=f(-12)=-f(12)=-412=-2,∴f(-52)+f(1)=-2.故选A.12.(2022届人大附中10月月考,9)已知函数f(x)={|2x-1|,x≤2,-x+4,x>2,若实数a,b,c满足a<b<c且f(a)=f(b)=f(c),则2a+b+2b+c的取值范围为()A.(4,8)B.(4,16)C.(8,32)D.(16,32)答案D作出函数f(x)的图象,如图所示.当x<0时,f(x)=|2x-1|=1-2x∈(0,1),由图可知,f(a)=f(b)=f(c)∈(0,1),所以a<0<b<1,3<c<4,则8<2c<16,由f(a)=f(b),得|2a-1|=|2b-1|,即1-2a=2b-1,可得2a+2b=2,因此,2a+c+2b+c=2c(2a+2b)=2×2c∈(16,32).故选D.13.(2022届华中师大琼中附中月考,8)已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f(1)=0,则不等式f(log2x)>0的解集为()A.(0,12)∪(2,+∞) B.(12,1)∪(2,+∞)C.(0,12) D.(2,+∞)答案 A 因为函数f(x)是定义在R 上的偶函数,所以不等式f(log 2x)>0等价于f(|log 2x|)>0,因为函数f(x)在[0,+∞)上是增函数,且f(1)=0,所以f(|log 2x|)>f(1),即|log 2x|>1,即log 2x>1或log 2x<-1,解得x>2或0<x<12.故选A.二、填空题14.(2022届江西新余第一中学二模,13)已知函数f(x)的定义域为(-1,1),则函数g(x)=f (x2)+f(x-1)的定义域是 . 答案 (0,2)解析 由题意得{-1<x2<1,-1<x -1<1,解得0<x<2,∴函数g(x)的定义域为(0,2).15.(2022届北京四中10月月考,12)函数f(x)=√2-x +ln(x+3)的定义域是 . 答案 (-3,2]解析 ∵f(x)=√2-x +ln(x+3), ∴{2-x ≥0,x +3>0,解得-3<x ≤2, ∴函数f(x)的定义域为(-3,2].16.(2022届河南重点中学调研一,14)已知f(x)={x 2-ax,x >0,-x +a +1,x ≤0,若方程f(x)=-x 有实根,则a 的取值范围是 . 答案 {a|a=-1或a>1}解析 当x>0时,由f(x)=-x 得x 2=(a-1)x,所以x=a-1>0,即a>1;当x ≤0时,由f(x)=-x 得a+1=0,所以a=-1,所以a 的取值范围是{a|a=-1或a>1}. 17.(2022届广东深圳三中月考,15)已知函数f(x)={13x 3-ax +1,0≤x <1,alnx,x ≥1,若f(x)≥f(1)恒成立,则正实数a 的取值范围是 . 答案 (0,43]解析 ∵a>0,∴当x ≥1时, f(x)=aln x ≥f(1),当0≤x<1时, f(x)=13x 3-ax+1, f '(x)=x 2-a. (1)若a ≥1,则f '(x)<0, f(x)单调递减, f(x)≥f(1)成立,则13-a+1≥0,解得a ≤43,∴1≤a ≤43,(2)若0<a<1,则当0<x<√a时,f'(x)<0,f(x)单调递减,当√a<x<1时,f'(x)>0,f(x)单调递增,因此x=√a时,f(x)min=f(√a)=13(√a)3-(√a)3+1=-23a32+1,所以-23a32+1≥0,显然成立,∴0<a<1.综上,a的取值范围是(0,43].18.(2022届北京一六一中学10月月考,12)已知函数f(x)=e|x-1|在区间[a,+∞)上是增函数,则实数a的取值范围是.答案[1,+∞)解析将函数y=e|x|的图象向右平移1个单位长度,可得函数f(x)=e|x-1|的图象,因为y=e|x|在[0,+∞)上单调递增,所以函数f(x)在[1,+∞)上单调递增,因为函数f(x)=e|x-1|在区间[a,+∞)上是增函数,所以[a,+∞)⊆[1,+∞),解得a≥1,所以实数a的取值范围是[1,+∞).19.(2022届北京师大附中10月月考,14)已知函数f(x)是定义域为R的奇函数,且x≤0时,f(x)=ae x-1,则a=,f(x)的值域是.答案1;(-1,1)解析因为函数f(x)是定义域为R的奇函数,所以f(0)=ae0-1=a-1=0,所以a=1.当x≤0时,f(x)=e x-1,在(-∞,0]上单调递增,所以f(x)∈(-1,0],因为函数f(x)是定义域为R的奇函数,所以当x>0时,f(x)∈(0,1),综上,f(x)的值域是(-1,1).20.(2022届广东汕头金山中学期中,13)已知函数f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+m,则f(-2)=.答案-3解析因为f(x)为定义在R上的奇函数,所以f(0)=20+m=0,m=-1,所以x≥0时,f(x)=2x-1.则f(-2)= -f(2)=-(22-1)=-3.21.(2022届华中师范大学琼中附中月考,15)已知函数f(x)是R上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2010)+f(2011)的值为.答案1解析∵当x≥0时,都有f(x+2)=f(x),∴函数的周期T=2,又f(x)是R上的偶函数,且当x∈[0,2)时, f(x)=log2(x+1),∴f(-2010)+f(2011)=f(2010)+f(2011)=f(0)+f(1)=log21+log2(1+1)=1.三、解答题22.(2022届北京师大附中10月月考,16)已知函数f(x)=ax2+bx+1(a、b为实数,a≠0,x∈R),函数f(x)的图象与x轴有且只有一个交点(-1,0).(1)求f(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.解析(1)由题意可知f(x)=a(x+1)2=ax2+2ax+a.又f(x)=ax2+bx+1,所以{b=2a,a=1,可得{a=1,b=2,故f(x)=x2+2x+1.(2)g(x)=f(x)-kx=x2+(2-k)x+1(-2≤x≤2),其图象开口向上,对称轴为直线x=k-22.若函数g(x)在[-2,2]上为增函数,则k-22≤-2,解得k≤-2;若函数g(x)在[-2,2]上为减函数,则k-22≥2,解得k≥6.综上所述,实数k的取值范围是(-∞,-2]∪[6,+∞).思路分析(1)分析可知f(x)=a(x+1)2,对比f(x)=ax2+bx+1可求得a、b的值,即可得出函数f(x)的表达式;(2)分两种情况讨论:函数g(x)在[-2,2]上为增函数或函数g(x)在[-2,2]上为减函数.根据g(x)的图象特征可得出关于实数k的不等式,由此可解得实数k的取值范围.23.(2022届北京九中10月月考,16)已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=lo g12(-x+1).(1)求f(3)+f(-1)的值;(2)求函数f(x)的解析式;(3)若f(a-1)<-1,求实数a的取值范围.解析(1)∵f(x)是定义在R上的偶函数,且x≤0时,f(x)=lo g12(-x+1),∴f(3)+f(-1)=f(-3)+f(-1)=lo g124+lo g122=-2-1=-3.(2)当x>0时,-x<0,f(-x)=lo g12(x+1).∴x>0时,f(x)=f(-x)=lo g12(x+1),则f(x)={log12(-x+1),x≤0, log12(x+1),x>0.(3)∵f(x)为定义在R上的偶函数,且f(x)=lo g12(x+1)在(0,+∞)上单调递减,f(1)=-1,∴f(a-1)<-1=f(1),∴|a-1|>1,解得a>2或a<0.∴实数a的取值范围是(-∞,0)∪(2,+∞).24.(2022届福建长汀一中月考二,20)已知a,b∈R且a>0,函数f(x)=4x+b4x-a是奇函数.(1)求a,b的值;(2)对任意x∈(0,+∞),不等式mf(x)-f(x2)>0恒成立,求实数m的取值范围.解析(1)因为f(x)是奇函数,所以f(-x)=-f(x),即2-2ab+(b-a)(4x+4-x)=0恒成立,∴{b-a=0,2-2ab=0,又a>0,所以解得a=b=1.(2)不等式mf(x)-f(x2)>0⇔m(1+24x-1)-(1+24x2-1)>0对任意x∈(0,+∞)恒成立,令2x=t(t>1),则m>t+1t-1t2+1t2-1=(t+1)2t2+1=t2+1+2tt2+1=1+2tt2+1=1+2t+1t对t>1恒成立,∵y=2t+1t在(1,+∞)上单调递减,∴y=1+2t+1t<2,∴m≥2,∴m的取值范围为[2,+∞).。

初中数学函数三大专题复习

初中数学函数三大专题复习
一、函数的定义与性质
1. 函数的定义:函数是一个将一个集合的每一个元素映射到另
一个集合的规则。

2. 函数的性质:
- 定义域:函数定义中的所有可能输入的集合称为定义域。

- 值域:函数所有可能的输出值的集合称为值域。

- 单调性:函数是递增的或递减的,称为函数的单调性。

- 奇偶性:函数在定义域内的奇偶性可以根据函数的对称性来
确定。

二、函数的图像与性质
1. 函数的图像:函数的图像是表示函数值和自变量之间对应关
系的图形。

2. 基本函数的图像:
- 幂函数、指数函数、对数函数、三角函数等函数的图像特点。

- 图像的对称性特点,如奇函数关于原点对称,偶函数关于y
轴对称。

3. 函数的性质与图像:
- 函数的最大值和最小值可以通过图像上的关键点来确定。

- 函数的奇偶性可以通过图像的对称性来判断。

三、函数的运算与应用
1. 函数之间的运算:
- 函数的加法、减法、乘法和除法的定义与性质。

- 复合函数的概念和计算方法。

2. 函数的应用:
- 实际问题中常用的函数模型,如线性函数、二次函数、指数函数等。

- 函数的图像在实际问题中的应用,如求函数的最小值、最大值等。

总结:
初中数学函数的三大专题复习包括函数的定义与性质、函数的图像与性质以及函数的运算与应用。

掌握这些知识可以帮助我们理解函数的基本概念和特点,提高数学问题的解题能力。

初中函数专题试题及答案

初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。

初中数学 函数专题练习及答案

初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。

2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。

3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。

4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。

5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。

6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。

7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。

8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。

9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。

10.一个满足条件的二次函数解析式是 $y=-x^2$。

11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。

12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。

利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。

2.阴影部分的面积相等的是 $①②$。

3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

博桥教育初三复习---函数专题
成绩姓名
一、选择题(共15小题,每小题4分,满分60分)
1.(4分)(2009•成都)在函数中,自变量x的取值范围是()
A .x<
B

x≠﹣C

x≠D

x>
2.(4分)(2012•湘潭)下列函数中,自变量x的取值范围是x≥3的是()
A .y=B

y=C

y=x﹣3 D

y=
3.(4分)(2009•山西)如果反比例函数的图象经过点(﹣2,﹣3),那么k的值为()
A .B

C

﹣6 D

6
4.(4分)(2008•达州)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x 的取值范围是()
A .﹣1<x<3 B

x>3 C

x<﹣1 D

x>3或x<﹣
1
5.(4分)(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()
A .第二,三象限B

第一,三象限C

第三,四象限D

第二,四象限
6.(4分)已知点P(m,n)在某反比例函数的图象上,则此图象上还有点()
A .(0,0)B

(﹣m,﹣n)C

(m,﹣n)D

(﹣m,n)
7.(4分)(2009•资阳)若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()
A .k<0 B

k>0 C

b<0 D

b>0
8.(4分)(2007•舟山)如果函数y=ax+b (a <0,b <0)和y=kx (k >0)的图象交于点P ,那么点P 应该位于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
9.(4分)(2011•张家界)关于x 的一次函数y=kx+k 2
+1的图象可能正确的是( ) A .
B .
C .
D .
10.(4分)(2009•安徽)已知函数y=kx+b 的图象如图,则y=2kx+b 的图象可能是( )
A

B

C

D

11.(4分)若a <0,b >0,c <0,则抛物线y=ax 2
+bx +c 的大致图象为( )
12.(4分)将抛物线y=2x 2
向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为( )
A .y=2(x +1)2
+3
B .y=2(x -1)2
-3 C .y=2(x +1)2
-3 D .y=2(x -1)2
+3
13.(4分)(2009•青岛)一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )
与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,那么此用电器的可变电阻应( )
A . 不小于4.8Ω
B .
不大于4.8Ω C .
不小于14Ω
D .
不大于14Ω
14.(4分)(2010•东营)如图所示,反比例函数y 1与正比例函数y 2的图象的一个交点坐
标是A (2,1),若y 2>y 1>0,则x 的取值范围在数轴上表示为( )
A .
B .
C .
D .
15.(4分)(2005•中原区)已知二次函数y=ax 2
+bx+c 的图象如图所示,则关于x 的不等式bx+a >0的解集是( )
A . x <
B . x < C

x > D

x > 二、填空题(共5小题,每小题4分,满分20分) 16. (4分)若反比例函数x
k y 3
-=
的图象位于一、三象限内,正比例函数x k y )92(-=过二、四象限,则k 的整数值是________;
17.(4分)(2007•天水)已知二次函数y=ax 2
+bx+c (a≠0)的部分图象如图所示,它的顶
点的横坐标为﹣1,由图象可知关于x 的方程ax 2
+bx+c=0的两根为x 1=1,x 2= _________ .
18.(4分)(2007•兰州)抛物线:y=ax 2
+2ax+a 2
+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是 _________ .
19.(4分)(2006•滨州)已知抛物线y=x2+(m﹣1)x+(m﹣2)与x轴相交于A、B两点,且线段AB=2,则m的值为_________.
20.(4分)(2009•包头)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0)、(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;
②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正确结论的个数是_________个.
三、解答题(共8小题,满分70分,解答时写出必要的文字说明,证明过程或演算步骤.)
21.(10分)(2009•重庆)已知:如图,在平面直角坐标系xOy中,直线AB分别与x、y 轴交于点B、A,与反比例函数的图象分别交于点C、D,CE⊥x轴于点E,tan∠ABO=,
OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求直线AB的解析式.
22.(8分)(2010•巴中)如图,一次函数y=kx+b的图象与反比例函数的图象交于
A(﹣2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB的面积.
23.(9分)(2009•江津区)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于点
A(m,2),点B(﹣2,n),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求C点的坐标;
(3)求△AOC的面积.
24.(8分)(2010•红河州)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.
(1)画出经过两次平移后所得到的图象,并写出函数的解析式;
(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?
25.(9分)(2008•徐州)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)
①求该函数的关系式;
②求该函数图象与坐标轴的交点坐标;
③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.
26.(12分)(2009•肇庆)已知一元二次方程x2+px+q+1=0的一根为2.
(1)求q关于p的关系式;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点,求使△AMB面积最小时的抛物线的解析式.
27.(14分)某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:
(1) 一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2) 求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3) 你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?。

相关文档
最新文档