气相色谱基本知识

合集下载

气相色谱(GC)基础知识——基本原理PPT课件分析 共99页

气相色谱(GC)基础知识——基本原理PPT课件分析 共99页
范弟姆特方程
B H A Cu
u 流动相 线速度
1) 涡流扩散项A
A2dp
固定相颗粒越小,填充的越均匀 A越小,H越小,柱效越高,色谱峰越窄。
2) 分子扩散项B/u(纵向扩散项)
流动相
B2Dg
产生原因:浓度梯度
影响因素:流动相流速;
气体扩散系数 (Dg
1) M载气
柱内谱带构型 相应的响应信号
最小板高:
H最小=A+2(BC)1/2 =0.08+2(0.65×0.003)1/2=0.17cm
四 分离度
定义: R tr2tr1 2(tr2tr1)
12(W1W2) (W1W2) tr2, tr1: 组分2和组分1的保留时间 W2, W1: 组分2和组分1的峰底宽度
R=1.5 完全分离
(50%三氟丙基)甲 基聚硅氧烷
聚乙二醇
非极性 脂肪烃化合物, 石化产品
中等极性 极性化合物,如 高级脂肪酸
中强极性 极性化合物,如 醇、羧酸酯等
2 气固色谱固定相
分离对象
永久性气体 惰性气体 低沸点有机化合物
固体吸附剂
硅胶-强极性 氧化铝-弱极性 活性炭-非极性 分子筛-强极性 高分子多孔微球(GDX)
红色
{ 硅藻土 白色
{ { 担体(载体)
组成
固定液
非硅藻土
对载体的要求
a. 具有多孔性,即比表面积大。
b. 化学惰性,表面没有活性,有较好的 浸润性。
c. 热稳定性好。
d. 有一定的机械强度,使固定相在制备 和填充过程中不易粉碎。
担体的表面处理
a. 酸洗-浓盐酸浸泡,除去碱性作用基团 b. 碱洗-氢氧化钾甲醇溶液浸泡,除去酸

气相色谱知识大全(整理)

气相色谱知识大全(整理)

气相色谱知识大全(整理)色谱分析法基本原理色谱法,又称层析法。

根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。

吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。

常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。

分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。

其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。

常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。

离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。

常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。

排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。

常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。

色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。

色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。

色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。

分离后各成分的检出,应采用各单体中规定的方法。

通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。

纸色谱或薄层色谱也可喷显色剂使之显色。

薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。

用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。

柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处的各种检测器检测。

柱色谱还可分部收集流出液后用适宜方法测定。

柱色谱法所用色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤维塞住,管内装有吸附剂。

气相色谱法知识汇总

气相色谱法知识汇总

气相色谱法知识汇总1.气相色谱法(GC):是以气体为流动相的色谱分析法。

2.气相色谱要求样品:气化,不适用于大部分沸点高和热不稳定的化合物,对于腐蚀性能和反应性能较强的物质更难于分析。

大约有15%~20%的有机物能用气相色谱法进行分析。

3.气相色谱仪的组成:气路系统、进样系统、分离系统、检测系统、温控系统、记录系统。

4.气路系统:包括气源、净化器和载气流速控制;常用的载气有:氢气、氮气、氦气。

5.进样系统:包括:进样装置和气化室,气体进样器(六通阀):试样首先充满定量管,切入后,载气携带定量管中的试样气体进入分离柱;液体进样器:不同规格的微量注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。

6.进样方式:分流进样:样品在汽化室内气化,蒸气大部分经分流管道放空,只有极小一部分被载气导入色谱柱;不分流进样:样品直接注入色谱的汽化室,经过挥发后全部引入色谱柱。

7.分离系统:色谱柱:填充柱(2~6mm直径,1~5m长),毛细管柱(0.1~0.5mm直径,几十米长)。

8.温控系统的作用:温度是色谱分离条件的重要选择参数;气化室、色谱柱恒温箱、检测器三部分在色谱仪操作时均需控制温度;气化室:保证液体试样瞬间气化;检测器:保证被分离后的组分通过时不在此冷凝;色谱柱恒温箱:准确控制分离需要的温度。

9.检测系统:作用:将色谱分离后的各组分的量转变成可测量的电信号;指标:灵敏度、线性范围、响应速度、结构、通用性,通用型——对所有物质均有响应;专属型——对特定物质有高灵敏响应;检测器类型:浓度型检测器:热导检测器、电子捕获检测器;质量型检测器:氢火焰离子化检测器、火焰光度检测器。

10.热导检测器的主要特点:结构简单,稳定性好;对无机物和有机物都有响应,不破坏样品;灵敏度不高。

11.氢火焰离子化检测器的特点:优点:(1)典型的质量型检测器;(2)通用型检测器(测含C有机物);(3)氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速、死体积小、线性范围宽等特点;(4)比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1;缺点:(1)对载气要求高;(2)检测时要破坏样品,无法回收样品;(3)不能检测永久性气体、水及四氯化碳等。

气相色谱基本原理相关知识

气相色谱基本原理相关知识

气相色谱基本原理相关知识气相色谱(Gas Chromatography,简称GC)是一种常用的色谱分析技术,它利用气体载气相和固定相之间的相互作用,将混合物中的各种组分分离、检测和定量分析。

GC的基本原理是将待测物质溶解在载气中,通过固定在柱内的固定相或液定相中进行分离。

在载气的作用下,样品进入柱内,固定相将样品分为不同的组分,这些组分根据它们与固定相的亲缘性和扩散系数的不同,以不同的速度通过柱子,从而实现了样品的分离。

随后,通过检测器测量进入检测器的各个组分的峰面积或峰高,根据峰的相对位置和相对大小,可以对待测样品进行定性和定量分析。

在气相色谱中,载气是一个非常重要的环节。

不同的分析目标和需要使用不同的载气。

常见的载气有惰性气体(如氮气、氦气等)、氢气和空气等。

选择载气时需考虑载气的吸附能力、溶解度、成本以及对分析仪器设备的影响等因素。

固定相是气相色谱的另一个关键环节,它决定了样品的分离效果和分离速度。

固定相一般由多孔吸附剂或液体填充剂组成。

常见的固定相有聚硅氧烷、交联聚苯乙烯等。

液定相是一种特殊的固定相,常用于极性物质的分离。

气相色谱主要包括注射口、柱子和检测器。

注射口是将样品进样到柱子的地方,常用的有进样阀、分注器和进样针等。

柱子是GC中非常重要的部分,选择合适的柱子有助于提高分离效果。

常用的GC柱子有毛细管柱、填充柱和开放管道柱等。

检测器则负责对通过柱子的各个组分进行检测和信号输出。

常用的检测器有火焰离子化检测器(FID)、热导率检测器(TCD)、质谱检测器(MS)等。

在气相色谱的操作中,需要注意以下几个方面。

首先,要注意样品的制备过程,避免样品中的杂质可能对分析结果产生干扰。

其次,要正确选择和调整分析条件,包括合适的柱子、载气流速、柱温等。

同时还需根据需要选择合适的检测器,并根据检测器的特点调整相应的参数。

最后,需要定期对仪器进行校准和维护,以保证仪器的正常运行和准确的分析结果。

气相色谱广泛应用于食品、环境、医药、化工等领域的分析和质量控制中。

气相色谱法的基本知识

气相色谱法的基本知识

样品组份分离
色谱法发展的历史: 1906年俄国植物学家Tswett命名自己发明的分离植物 色素的新方法为色谱法。因为他并不是一个著名的学 者,因此他发表出来的文章并没有得到重视。 1931年,德国的Kuhn和Lederer重复了Tswett的实验, 得到很好的结果,色谱法因此得到很大的推广。 1940年,Martin和Synge提出了液液分配色谱法,又把 塔板的 概念引入色谱法中,初步建立了塔板理论。
(2)外标法
外标法也称为标准曲线法。 特点及要求: 外标法不使用校正因子,准 确性较高,
操作条件变化对结果准确性
影响较大。 对进样量的准确性控制要求 较高,适用于大批量试样的快 速分析。
(3)内标法
内标物要满足以下要求: (a)试样中不含有该物质; (b)与被测组分性质比较接近; (c)不与试样发生化学反应; (d)出峰位臵应位于被测组分附近,且无组分峰影响。 试样配制:准确称取一定量的试样W,加入一定量内标物mS 计算式: mi f i' Ai f i' Ai ' ; mi m s ' ms f s AS f s AS
2.最低检测限(最小检测量)
噪声水平决定着能被检测到的浓度(或质量)。
从图中可以看出:如果要把信号从本底噪声中识别出来,
则组分的响应值就一定要高于N。
检测器响应值为2倍噪声水平时载气中的试样浓度(或质量 ),被定义为检测限(或检测度、敏感度)。而对应的进样量 称为该物质的最小检测量。
4.线性度与线性范围
(4)使用方便。
七、检测器特性
specific property of detector
1.检测器类型 浓度型检测器: 测量的是载气中通过检测器组分浓度瞬间的变化,检测 信号值与组分的浓度成正比。热导检测器; 质量型检测器: 测量的是载气中某组分进入检测器的速度变化,即检测 信号值与单位时间内进入检测器组分的质量成正比。FID; 广普型检测器: 对所有物质有响应,热导检测器; 专属型检测器: 对特定物质有高灵敏响应,电子俘获检测器;

气相色谱仪基础知识

气相色谱仪基础知识

21
21
6.数据分析• 数据不良时的Fra bibliotek查措施22
22
6.数据分析
• 计算方法
23
23
6.数据分析
• 定性参数
24
24
6.数据分析
• 定量方法(一)
25
25
6.数据分析
• 面积归一法
26
26
6.数据分析
• 校准面积归一法
27
27
6.数据分析
• 定量方法(二)
28
28
6.数据分析
• 外标法
气相色谱仪基础知识
1
气相色谱仪基础知识
1 色谱原理和基本构成 2 载气部分 3 进样口部分 4 色谱柱 5 检测器 6 数据分析
2
2
1.色谱原理和基本构成
• 色谱起源
3
3
1.色谱原理和基本构成
• 色谱定义
4
4
1.色谱原理和基本构成
• 气相色谱构成示意图
5
5
1.色谱原理和基本构成
• 气相色谱基本流路图
13
13
3.进样口部分
• 不分流进样2
14
14
4.色谱柱
• 色谱柱类型
15
15
4.色谱柱
• 载气控制方式
16
16
5.检测器
• 常用检测器
17
17
5.检测器
• FID检测器
18
18
5.检测器
• FID检测器进样过程
19
19
5.检测器
• FID检测器使用事项
20
20
6.数据分析
• 数据可靠性判断

气相色谱基本知识

气相色谱基本知识
适合多组分难分离的物质分离 5)顶空进样 6)微相固萃取进样
SSI 分流模式流路图
SSI 不分流模式流路图
SSI分流流量计算
隔垫吹扫填充进样口
对于毛细管柱:
1.增加了隔垫吹扫的功能
隔垫吹扫的作用:由于要让进去的液体或固体样品在汽化室汽化, 这里必然 有高温,高温会使隔垫上的一些易挥发的物质出来,同时 由于进样针的插入,有可能会使垫圈上的物质脱落,若没有隔垫吹 扫,则会使色谱图上出现鬼峰,采用隔垫吹扫,这些物质可以从隔垫 吹扫气路吹走.
原理)
二、气相色谱的定义与分类
定义:
气相色谱法是以惰性气体(N2、He、Ar、H2等)为流动相 的柱色谱分离技术,其应用于化学分析领域,并与适当的检 测手段相结合,就构成了气相色谱分析法。
分类:根据固定相的状态不同,可将其分为气固色谱和气
液色谱。
3.气相色谱流程
气相色谱法用于分离分析样品的基本过程如下图:
3.进样的速度
1)对于有的样品,进样速度要快 2)留针:对于粘滞的样品,先刺入隔垫,进针2/3,推针不马上进
行,待升温使其溶解后再推针.
4. 泄漏:
进样垫和柱泄漏会改变保留时间和峰面积。样品可能从泄 漏处跑掉,空气会扩散入进样口造成柱损伤。定期更换进 样垫并在第一次发生问题时检查柱连接。
5.进样口温度、分流比等设置不正确
典型色谱图
问题色谱图
#1 #2 #3 #4 #5 #6 #7 #8 #9
毛细管柱问题2
鬼峰:残留或柱污染
典型色谱图
问题色谱图
#1 #2 #3 #4 #5 #6 #7 #8 #9
毛细管柱问题3
RT 和面积完全不同:用错了柱子
典3 #4 #5 #6 #7 #8 #9

气相色谱基础知识培训资料(PPT 62页)

气相色谱基础知识培训资料(PPT 62页)
气相色谱法
26.10.2019
1
第一部分 GC基础知识
26.10.2019
2
1.1 概 述
色谱法是一种分离方法,它利用物质在两相 中分配系数的微小差异进行分离。当两相做 相对移动时,使被测物质在两相之间进行多 次分配,这样原来的微小差异产生了很大的 效果,使各组分分离,以达到分离分析及测 定一些物理化学常数的目的。
b. 保留时间tr:试样从进样到出现峰极大值时的时间。它包括组份随 流动相通过柱子的时间t0和组份在固定相中滞留的时间。
c. 调整保留时间tr’ :某组份的保留时间扣除死时间后的保留时间, 它是组份在固定相中的滞留时间。即
tr’= tr -tM 4)色谱峰底宽W :由色谱峰的两边拐点做切线,与基线交点的距离 。
由于分离度正比于柱长的平方根,所以增加柱长对分离是有利的。 但增加柱长会使各组分的保留时间增加,延长分析时间。因此,在满足 一定分离度的条件下,应尽可能使用较短的柱子。
26.10.2019
33
4.3 色谱柱的老化
为什么必须进行色谱柱老化? 新色谱柱含有溶剂和高沸点物质,所以基线不
稳 ,出现鬼峰和噪声;旧柱长时间未用,也存在 同样问题。一般采用升温老化,即从室温程序升 温到最高温度,并在高温段保持数小时。 新柱老化时,最好不要连接检测器。 每天都要进行老化吗?
26.10.2019
25
4.2.4 色谱柱的选择
根据极性来选择适合的固定相,从来选择适 当的色谱柱。
26.10.2019
26
4.2.5 气相色谱毛细管柱常用固定相
26.10.2019
27
4.2.7 内径
内径选择的基本原则: ★ 0.10mm口径柱适用于快速气相色谱分析。 ★ 0.25mm口径柱具有较高的柱效,用于标准的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱根本知识气相色谱是色谱中的一种,就是用气体做为流动相的色谱法,在别离分析方面,具有如下一些特点:1、高灵敏度:可检出10-10克的物质,可作超纯气体、高分子单体的痕迹量杂质分析和空气中微量毒物的分析。

2、高选择性:可有效地别离性质极为相近的各种同分异构体和各种同位素。

3、高效能:可把组分复杂的样品别离成单组分。

4、速度快:一般分析、只需几分钟即可完成,有利于指导和控制生产。

5、应用范围广:即可分析低含量的气、液体,亦可分析高含量的气、液体,可不受组分含量的限制。

6、所需试样量少:一般气体样用几毫升,液体样用几微升或几十微升。

7、设备和操作比拟简单。

气相色谱法的一些常用术语及根本概念解释:1、相、固定相和流动相:一个体系中的某一均匀局部称为相;在色谱别离过程中,固定不动的一相称为固定相;通过或沿着固定相移动的流体称为流动相。

2、色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。

3、基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。

4、峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。

色谱峰高一半处的宽为半峰宽,一般以x1/2表示。

5、峰面积:流出曲线〔色谱峰〕与基线构成之面积称峰面积,用A表示。

6、死时间、保存时间及校正保存时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。

从进样到出现色谱峰最高值所需的时间称保存时间,以tr表示。

保存时间与死时间之差称校正保存时间。

以Vd表示。

7、死体积,保存体积与校正保存体积:死时间与载气平均流速的乘积称为死体积,以Vd 表示,载气平均流速以Fc表示,Vd=tdxFc。

保存时间与载气平均流速的乘积称保存体积,以Vr表示,Vr=trxFc。

8、保存值与相对保存值:保存值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。

以一种物质作为标准,而求出其他物质的保存值对此标准物的比值,称为相对保存值。

9、仪器噪音:基线的不稳定程度称噪音。

气相色谱仪气相色谱仪一般由气路系统、进(取)样系统、色谱柱、检测器、信号放大处理系统和记录系统等局部组成。

样品分析流程:N2或H2等载气〔用来载送试样而不与待测组分作用的惰性气体〕由高压载气瓶供应,经减压阀〔表头a指示瓶压,表头b指示输出压力〕减压后进入净化枯燥器,以除去载气中杂质和水分,再由针形阀控制载气流量〔由流量计指示〕和压力〔由压力表指示〕,然后通过汽化室进入色谱柱。

待载气流量,汽化室、色谱柱、检测器的温度以及基线稳定后,试样可由进样器进入汽化室,那么液体试样立即汽化为气体并被载气带入色谱柱。

因色谱柱中的固定相对试样中不同组分的吸附能力或溶解能力也不同,从而使试样中各种组分彼此别离而先后流出色谱柱。

并进入检测器,检测器得到不同组分的浓度〔或质量〕变化转变为电信号,并经放大器放大后,通过记录仪即可得到其色谱图。

下面分别简述各局部的构造及其原理。

1 气路系统气路系统一般由氢气发生器(或高压载气瓶)、减压阀、气流调节阀和有关连接气路组成。

它提供载气和气体通路,所用的载气是由氢气发生器(或高压载气瓶)提供。

载气常用氢气、氮气、氦气、氩气和二氧化碳等,有时也用干净的空气,但一般使用氢气和氮气为多。

对气体纯度选择的一般原那么1. 从分析角度讲,微量分析比常量分析要求高。

也就是说,气体中的杂质含量必须低于被分析组分的含量,如果用TCD分析10ppm的CO,那么载气中的杂质总含量不得超过10ppm,因为99.999%纯度的气体那么含0.001%的杂质,相当于10ppm所以对于10ppm的痕量分析,载气的纯度应高于99.999%;对于FID使用气体,碳氢化合物含量必须很低,载气中的大量氧杂质只要不对色谱柱造成影响,就不影响FID的性能。

2. 毛细管柱分析比填充柱分析要求高;3. 程序升温分析比恒定温度分析要求高;4. 浓度型检测器比质量型检测器要求高;5. 从仪器寿命和保持仪器的高灵敏度讲,中高档仪器比低当仪器要求高;TCD:氦做载气:至少纯度为99.995%。

杂质含量分别为:氖<10ppm; 氮<10ppm;氧<2.5 ppm; 氩<0.1 ppm; 二氧化碳<0.25 ppm。

氢做载气:至少纯度为99.995%。

杂质含量分别为:氮<1 ppm; 氧<5 ppm; 二氧化碳<1 ppm; 水<5 ppm; 总烃<1 ppm;。

FID:氮做载气:至少纯度为99.998%。

杂质含量分别为:氢<1 ppm; 氧<1 ppm; 氩<10ppm; 二氧化碳<1 ppm; 水<5 ppm; 甲烷<1 ppm。

氢气:同TCD空气:呼吸级杂质:氩,氪,水,氦,氖均小于1%;二氧化碳<500 ppm; 一氧化碳<10ppm; 总烃<0.02 ppm; 甲烷<20 ppm。

载气流速一般要求:填充柱:10~60mL/min,毛细管:0.5~5mL/min检测器气体流速一般要求:氢气24~60mL/min,空气200~600mL/min,柱+尾吹气10~60mL/min2 进样系统进样器:液体采用微量注射器进样,进样量0.5~10μL,气体采用气体定量管〔六通阀〕、特种气相注射器进样,进样量0.5~3mL。

气化室温度要求:a、气化室温度控制在使样品瞬间气化而不造成样品分解为最正确。

b、气化温度取决于样品的挥发性、沸点、稳定性以及进样量,一般选择稍高于样品沸点,但不要超过沸点50%以上,以防分解。

一般比柱温高10~50℃3 色谱柱色谱柱是气相色谱仪的核心部件,柱子一般采用不锈钢或玻璃管制成U 形或螺旋形。

它又可分为填充柱和空心毛细管柱。

填充柱一般内径为2~6mm,长为1~6m,管内装有颗粒担体或吸附剂,主要用于一般混合物的分析,其别离效能较低,但柱容量较大。

毛细管柱一般内径为0.1~O.5mm,长3O~300m,空心管壁涂有固定液,主要用于复杂混合物的分析。

其别离效能高,但柱容量较低,允许进样量小。

柱温不能高于色谱柱的最高使用温度〔色谱柱标明最高使用温度〕。

4 检测器(又称鉴定器)检测器是气相色谱仪的重要部件,从色谱柱流出的各个组分,通过检测器将其浓度变化转换成易于测量的电信号。

4.1 检测器的种类色谱仪的检测器种类很多,根据其检测原理的不同可分为浓度型检测器和质量型检测器。

浓度型检测器给出的信号大小取决于进入检测器的载气中组分的浓度,也就是响应信号与载气中组分的浓度成正比。

浓度型检测器有热导池、电子捕获及气体密度天平等检测器。

质量型检测器给出的信号大小取决于单位时间内由载气带入检测器中的组分质量,既响应信号与单位时间内通过检测器的组分的量成正比。

质量型检测器有氢焰离子化、氩离子化及火焰光度检测器等。

4.2 检测器的性能指标一般都希望检测器能具有灵敏度高、噪声小、稳定性好、响应速度快及线性范围宽等特点。

其衡量指标主要有灵敏度和敏感度。

4.3 热导池检测器(TCD)热导池一般采用金属(不锈钢或黄铜)作池体,内装二根或四根阻值相等的铼钨丝、钨丝或铂丝作热敏元件,分别构成热导池的参考臂和工作臂,即构成惠斯顿电桥。

由电源给电桥提供恒定的电流或电压,以加热热敏元件,当两臂都只有纯载气通过时,由于载气带走两臂的热量是一样的,所以两臂的温度是一样的,电桥处于平衡状态。

即根据电桥平衡原理,此时电桥AB两端的电位差为零,无信号输出,记录仪记录的是一平直的基线。

当参加样品后,此时参考臂仍然仅有纯载气通过,其电阻值不变;而工作臂有载气和样品(导热系数不同)通过,使电阻值改变,电桥失去平衡,在AB之间产生电位差,电桥有信号输出,记录仪记录相应的色谱信号峰值,当组分全部通过后,两臂又XX为纯载气通过。

电桥恢复平衡。

记录恢复基线状态。

热导池检测器是利用组分蒸气和载气导热系数不同来测定各组分的,因此当载气的导热系数与组分的导热系数相差越大时,其灵敏度就越高,故通常以导热系数较大的氢气或氦气作载气为好。

假设以氮气作载气,由于它的导热系数与许多被测组分相近,故灵敏度较低,有时甚至会出现负峰。

热导池检测器在使用时应选择适宜的桥电流,增大电流可以提高灵敏度,但电流过大时噪声将会增高。

造成基线不稳。

一般桥电流100~150mA之间为宜,一般不能超过200mA。

使用考前须知:影响热导池灵敏度的主要因素有:电路电流、载气性质、热敏元件灵敏度、池体温度稳定性等。

使用考前须知1. 确保热丝不被烧断!在检测器通电之前,一定要确保载气已经通过了检测器,否那么,热丝可能被烧断,致使检测器报废!同时,关机时一定要先关检测器电源,然后关载气。

任何时候进展有可能切断通过TCD载气流量的操作,都要关闭检测器电源。

这是TCD操作必须遵循的规那么!2. 载气中含有氧气时,会使热丝寿命缩短,所以有TCD时载气必须彻底除氧。

而且不要使用聚四氟乙烯作载气输送管,因为它会渗透氧气。

3. 载气种类对TCD的灵敏度影响较大。

原那么是讲,载气与被测物的传热系数之差越大越好,故氢气或氦气作载气时比氮气作载气时的灵敏度高。

当然,要测定氢气时就必须用氮气作载气。

4.氢气做载气时尾气一定要排到室外。

4.4 氢焰离子化检测器(FID)氢焰离子化检测器是利用有机物在氢气——空气火焰中产生离子化反响而生成许多离子对,在加有一定电压的两极间形成离子流。

测量离子流的强度就可对该组分进展检测。

它具有灵敏度高、响应快、线性范围宽、死体积小等优点,是目前广泛使用的一种检测器。

4.4.1 FID检测器构造与检测原理氢焰离子化检测的核心局部是离子室,一般用不锈钢制作,主要包括气体人口、火焰喷嘴、极化极和收集极等构成。

在离子室底部,氢气与载气在进入喷嘴前混合。

助燃气——空气由侧方引入,在喷嘴口点火燃烧形成氢焰。

火焰上方有一筒状收集电极,下方有一圆环状极化电极(也称发射极)。

两极间施以恒定的电压,使热分解形成的离子在两极问作定向流动而产生电流。

当没有有机物通过检测器时,氢气在空气中燃烧形成的离子极少,即基流很小,记录仪记录基线。

当有有机物进入检测器时,由于有机物的离子化产生大量离子,使产生的电流大大的增强,记录仪记录相应的色谱峰。

产生电流的大小与有机物的进入量成正比。

由于离子室输出的电流较弱,需经高电阻转为电压输出后,再经放大记录其检测结果。

4.4.2 氢焰离子化机理有机物的气态分子是不导电的,必须在能量作用下,使之产生离子化,氢火焰即为所提供的能源。

氢焰使有机物离子化的机理尚不十分清楚,但目前多认为是一个化学电离过程。

下面以苯为例,其化学电离过程如下:C6H6→6CH 6CH +302-→6CHO++6e 6CHO++6H2O→6CO +6H3O+即苯在氢火焰作用下,首先裂解为CH 自由基,与进入火焰的O2反响,生成CHO 及电子,CHO 又与火焰中生成的水蒸气分子碰撞产生O正离子,此时H3O及CHO和电子在电场作用下产生电流。

相关文档
最新文档