向量的坐标表示与运算公式

合集下载

高二数学空间向量运算的坐标表示

高二数学空间向量运算的坐标表示
3.1.5空间向量运算的坐标表示
一、向量的直角坐标运算
设a (a1, a2 , a3 ),b (b1 , b2 , b3 )则
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a b (a 1 b1 , a2 b2 , a3 b3 ) ;
a (a1 , a2 , a3 ),( R) ;
F A1 B1 E D1 C1
D
C
A
B
练习三:
如图:直三棱柱ABC A1 B1C1 , 底面ABC 中, CA=CB=1,BCA=90o,棱AA1=2,M、 N分别为A1B1、AA1的中点, 1)求BN的长; 2)求 cos BA1 , CB1 的值; 3)求证:A1B C1M。
(3)当cos a , b 0 时,a b 。 思考:当 0 cos a , b 1 及 1 cos a , b 0时, 的夹角在什么范围内?
练习一:
1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1, 0 , 0) ;
解:设正方体的棱长为1,如图建
C1
z
D1 A1
F1 E1 B1
立空间直角坐标系 O xyz ,则
3 B(1,1, 0) , E1 1, ,1 , 4
C
D
O
B
y
1 D(0 , 0 , 0) , F1 0 , ,1 . 4
A
x
1 3 BE1 1, ,1 (1,1, 0) 0 , ,1 , 4 4
(1)线段 AB 的中点坐标和长度; 解:设 M ( x , y , z ) 是 AB 的中点,则

向量的坐标运算公式

向量的坐标运算公式

向量的坐标运算公式向量是数学中重要的概念之一,广泛应用于各个领域,如物理学、工程学、计算机科学等。

在进行向量运算时,我们经常需要进行向量的坐标运算。

向量的坐标运算包括向量的加法、减法、数量乘法和点乘运算。

在本文中,我们将详细介绍向量的坐标运算公式及其应用。

1. 向量的加法向量的加法是将两个向量的对应分量相加得到一个新的向量。

设有两个向量A和B,其坐标分别为(A<sub>1</sub>,A<sub>2</sub>, A<sub>3</sub>)和(B<sub>1</sub>,B<sub>2</sub>, B<sub>3</sub>),则它们的加法结果为:A +B = (A<sub>1</sub> + B<sub>1</sub>,A<sub>2</sub> + B<sub>2</sub>, A<sub>3</sub> +B<sub>3</sub>)向量的加法满足交换律和结合律,即A + B = B + A 和 A + (B + C) = (A + B) + C。

向量的加法在几何上表示两个向量的相对位移,例如在物理学中,可以用来计算物体在不同力的作用下的位移。

2. 向量的减法向量的减法是将一个向量的对应分量减去另一个向量的对应分量得到一个新的向量。

设有两个向量A和B,其坐标分别为(A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>)和(B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub>),则它们的减法结果为:A -B = (A<sub>1</sub> - B<sub>1</sub>, A<sub>2</sub> - B<sub>2</sub>, A<sub>3</sub> - B<sub>3</sub>)向量的减法也满足交换律和结合律,即A - B ≠ B - A 和 A - (B - C) ≠ (A - B) - C。

高中数学知识点:平面向量的坐标运算

高中数学知识点:平面向量的坐标运算

高中数学知识点:平面向量的坐标运算
1.平面向量坐标的加法、减法和数乘运算
记aλa=(λx,2.如何进行平面向量的坐标运算
在进行平面向量的坐标运算时,应先将平面向量用坐标的形式表示出来,再根据向量的直角坐标运算法则进行计算.在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标.但同时注意以下几个问题:(1)点的坐标和向量的坐标是有区别的,平面向量的坐标与该向量的起点、终点坐标有关,只有起点在原点时,平面向量的坐标与终点的坐标才相等.
(2)进行平面向量坐标运算时,先要分清向量坐标与向量起点、终点的关系.
(3)要注意用坐标求向量的模与用两点间距离公式求有向线段的长度是一样的.
(4)要清楚向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关,只与其相对位置无关.。

空间向量的直角坐标及其运算

空间向量的直角坐标及其运算
证:(1)∵ AP AB 1,2,12,1,4 0, AP AD 1,2,14,2,0 0 ,
∴ AP AB , AP AD,又 AB AD A , AP 平面 ABCD,
∴ AP 是平面 ABCD的法向量; 解:(2) AB 22 12 42 21 , AD 42 22 02 2 5 ,
∴ SABC
1 2
AB
AC
sin
A
101 。 2
7、在棱长为1的正方体 ABCD A1B1C1D1 中,E, F 分别是 DD1、DB 中点,G 在棱CD 上,
CG
1 4
CD

H

C1G
的中点;
(1)求证: EF B1C ;(2)求 EF 与C1G 所成的角的余弦;(3)求 FH 的长。
解:如图以 D 为原点建立直角坐标系 D xyz ,
(3)证明线面平行:若直线的方向向量与平面的一个法向量垂直,则这直线与该平面平行;
(4)证明面面平行:若两个不重合平面的法向量平行,则这两个平面就互相平行。 11、用向量求异面直线所成角:
找出两条异面直线各自的一个方向向量,计算这两个向量的夹角 ,则 (或 的补角)
即为两条异面直线所成的角。
设 a、b 是异面直线, d1 是直线 a 的一个方向向量, d2 是直线b 的一个方向向量,异面
一、基本概念:
1、空间直角坐标系:
(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用 i, j,k
表示;
(2)在空间选定一点O 和一个单位正交基底 i, j,k ,以点O 为原点,分别以 i, j,k 的方向
为正方向建立三条数轴:x 轴、 y 轴、z 轴,它们都叫坐标轴;我们称建立了一个空间 直角坐标系 O xyz ,点O 叫原点,向量 i, j, k 都叫单位向量;通过每两个坐标轴的平

向量坐标平行和垂直公式

向量坐标平行和垂直公式

向量坐标平行和垂直公式向量是数学中一个重要的概念,它可以表示空间中的一个点或一个物理量。

在三维空间中,向量通常由三个分量表示,分别表示在x、y、z轴上的投影。

在向量的运算中,有两个重要的概念,分别是平行和垂直。

我们来看平行向量。

两个向量如果方向相同或相反,则称它们为平行向量。

具体来说,如果向量A(x1, y1, z1)和向量B(x2, y2, z2)平行,那么它们的比值应该相等,即x1/x2 = y1/y2 = z1/z2。

这个比值称为向量的分量比。

我们可以通过判断两个向量的分量比是否相等来确定它们是否平行。

接下来,我们来看垂直向量。

两个向量如果互相垂直,则称它们为垂直向量。

具体来说,如果向量A(x1, y1, z1)和向量B(x2, y2, z2)垂直,那么它们的点积(内积)应该为0,即x1*x2 + y1*y2 + z1*z2 = 0。

这个点积为0的条件可以用来判断两个向量是否垂直。

在实际应用中,判断两个向量是否平行或垂直是非常重要的。

例如,在几何学中,我们经常需要判断两条直线是否平行或垂直。

如果两条直线的方向向量平行,则两条直线平行;如果两条直线的方向向量垂直,则两条直线垂直。

又如在物理学中,力和位移的关系可以通过判断两个向量的平行或垂直来确定。

除了判断向量的平行和垂直关系外,我们还可以通过向量的坐标进行运算。

例如,可以将两个向量相加或相减,得到一个新的向量。

具体来说,如果向量A(x1, y1, z1)和向量B(x2, y2, z2)相加,得到的新向量C(x1+x2, y1+y2, z1+z2)。

如果向量A和向量B平行,则它们相加的结果也是一个平行向量。

如果向量A和向量B垂直,则它们相加的结果是一个斜向量。

除了向量的加法和减法,我们还可以通过向量的数量积(点积)和向量积(叉积)进行运算。

向量的数量积用来计算两个向量之间的夹角,具体公式为:cosθ = (x1*x2 + y1*y2 + z1*z2) / (|A| * |B|),其中θ是两个向量之间的夹角,|A|和|B|分别是向量A和向量B的模长。

向量公式大全

向量公式大全

向量公式大全『ps.加粗字母表示向量』1.向量加法AB+BC=ACa+b=(x+x',y+y')a+0=0+a=a运算律:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)2.向量减法AB-AC=CB 即“共同起点,指向被减”如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3.数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣当λ>0时,λa与a同方向当λ<0时,λa与a反方向当λ=0时,λa=0,方向任意当a=0时,对于任意实数λ,都有λa=0『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍数乘运算律:结合律:(λa)•b=λ(a•b)=(a•λb)向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ4.向量的数量积定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π两个向量的数量积(内积、点积)是一个数量,记作a•b若a、b不共线,则a•b=|a|•|b|•c os〈a,b〉若a、b共线,则a•b=+-∣a∣∣b∣向量的数量积的坐标表示:a•b=x•x'+y•y'向量数量积运算律a•b=b•a(交换律)(λa)•b=λ(a•b)(关于数乘法的结合律)(a+b)•c=a•c+b•c(分配律)向量的数量积的性质a•a=|a|2a⊥b〈=〉a•b=0|a•b|≤|a|•|b|向量的数量积与实数运算的主要不同点『重要』1、(a•b)•c≠a•(b•c) 例如:(a•b)2≠a2•b22、由a•b=a•c (a≠0),推不出b=c3、|a•b|≠|a|•|b|4、由|a|=|b| ,推不出a=b或a=-b5、向量向量积定义:两个向量a和b的向量积是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉.a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.性质∣a×b∣是以a和b为边的平行四边形面积a×a=0a//b〈=〉a×b=0运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)(a+b)×c=a×c+b×c.『ps.向量没有除法“向量AB/向量CD”是没有意义的』6.向量的三角形不等式∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣①当且仅当a、b反向时,左边取等号②当且仅当a、b同向时,右边取等号∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣①当且仅当a、b同向时,左边取等号②当且仅当a、b反向时,右边取等号————————————————————————————————三点共线定理若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线三角形重心判断式在△ABC中,若GA +GB +GC=O,则G为△ABC的重心向量共线的重要条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb,xy'-x'y=0『零向量0平行于任何向量』向量垂直的充要条件a⊥b的充要条件是a•b=0 xx'+yy'=0『零向量0垂直于任何向量』7.定比分点定比分点公式P1P=λ• PP2设P1、P2是直线上的两点,P是直线上不同于P1、P2的任意一点则存在一个实数λ,使P1P=λ• PP2,λ叫做点P分有向线段P1P2所成的比若P1(x1,y1),P2(x2,y2),P(x,y),则有OP=(O P1+λO P2)(1+λ) (定比分点向量公式)x=(x1+λx2)/(1+λ)y=(y1+λy2)/(1+λ) (定比分点坐标公式)仅供个人用于学习、研究;不得用于商业用途。

向量坐标表示及运算

向量坐标表示及运算

y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)

向量的数量积坐标表示公式

向量的数量积坐标表示公式

向量的数量积坐标表示公式
向量的数量积是两个向量之间的一种运算,它表示两个向量之间的相似程度,也称为点积或内积。

向量的数量积的坐标表示公式如下:设A(x1, y1, z1)和B(x2, y2, z2)是两个向量,则它们的数量积可以表示为:
A·B=x1x2+y1y2+z1z2
其中,x1、y1、z1分别是向量A的三个坐标分量,x2、y2、z2分别是向量B的三个坐标分量。

这个公式的意义是将向量的坐标分量分别相乘,然后将这些乘积相加得到向量的数量积。

这个结果是一个数,代表了向量A和向量B 之间的相似程度。

向量的数量积有很多应用,例如在力学、电磁学和几何学中都有广泛的应用。

在几何学中,向量的数量积可以用来计算向量的夹角和向量的长度。

在力学中,向量的数量积可以用来计算力的功和力矩。

在电磁学中,向量的数量积可以用来计算电场强度和磁场强度。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量的坐标表示与运算公式
向量的坐标表示:
1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。

2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。

向量的运算公式:
1. 向量的加法:
- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。

- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。

2. 向量的数乘:
- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。

- 几何意义:数乘就是把向量按比例放大或缩小。

3. 向量的减法:
- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。

- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的
向量。

4. 向量的数量积(点乘):
- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。

- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。

5. 向量的向量积(叉乘):
- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于
A 和
B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。

- 几何意义:向量积表示一个向量相对于另一个向量的旋转。

以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。

相关文档
最新文档