二年级奥数第七讲-------找规律(二)
奥数二年级讲义小二教案基础教师第七讲排队问题

第七讲排队问题课前复习1. 几个小动物排一排,从前往后数或从后往前数,小熊都排第10个.这一排一共有多少只小动物?【答案】10+(10-1)=19(只)这一排一共有19只小动物.2. 18个同学排成一队做操,从左边数小文排在第11个,从右边数小文排在第几个?【答案】(18-(11-1)=8(个)从右边数小文排在第8个.3. 同学们排着队去参观,小华前面有7个同学,他后面有9个同学,这一队一共有多少同学?【答案】7+9+1=17个)这一队一共有17个同学.同学们,前面(一年级时)我们已经学习过简单的排队问题,今天这节课我们将继续来研究排队中的一些较复杂的数学问题(如:重叠、方阵等),希望同学们能通过学习,掌握一些关于解决这类问题的方法和技巧.大家加油吧!实践应用【例1】二(1)小朋友站成两排做操,小林站在第二排,顺着数他在第8个,倒着数他在第10个. 二(1)班一共有几个同学?【分析】要知道二(1)班一共有多少个同学,首先要计算出小林这一队有几个同学,顺着数他排第8个,倒着数他排第10个,这队一共有8+(10-1)=17(人)或(8-1)+10=17(人).二(1)小朋友排成两队做操,一共就有17×2=34(个).列式:8+(10-1)=17(人)17×2=34(个)【例2】幼儿园40个小朋友站成4列做游戏,每列人数一样多.小杰站在第二列,顺着数他排第4,倒着数他排第几?【分析】幼儿园40个小朋友站成4排做游戏,我们先要计算出每排有几人,40÷4=10(人),小杰站在第二排,第二排也是10人,顺着数他排第4,倒着数就是第10-(4-1)=7.列式:40÷4=10(人)10-(4-1)=7 或 10-4+1=7拓展训练1、把二(2)班学生平均分成五组来排座位,小颖坐在第四组,从前面数,她是第4个,从后面数,她是第3个.二(2)一共有几个同学?【分析】一组的人数:4+(3-1)=6(个),二(2)一共的人数:6×5=30(人).2、动物王国开运动会,36个小动物平均排成四列入场,从前面数小猴站在第二列的第4个,从后面数,它站在第几个?【分析】每队的人数:36÷4=9(人),从后面数,小猴站在第几个:9-4+1=6.【例3】几个小朋友排成“十”字队形做游戏,不论是从前往后数,从后往前数,还是左往右数,从右往左数,小青全排在第5个.请问:一共有多少小朋友在做游戏?【分析】根据题意画出图,方法一:从图中可以知道小青的前、后、左、右分别都有4个人.求总人数的方法是:5-1=4(人)4×4+1=17(人)方法二:5×4-3=17(人)答:一共有17个小朋友在做游戏.【例4】小朋友排成方队做操,不管是从前边还是从后边数,或是从左边还是从右边数,青青都排在第5个.这个方队里一共有多少个小朋友?列式: 5+5-l=9(个) 9×9=81(个)拓展训练同学们排成方队表演体操,小强排在正中间,他前、后、左、右都有5个同学.这一方队一共有多少个同学?【分析】小强左、右都有5个同学,那么每排就有5+5+1=11(个)同学,小强前、后也都有5个同学,那么一共有5+5+1=11(排),这样这一方队一共就有同学11×11=121(个)【例5】一群鸭子排队一溜走在田埂地上,鸭子中有两只是白鸭子,其余是黑鸭子,从前数第一只白鸭子排第6,从后数第二只白鸭子也排第6,两只白鸭中间还有6只黑鸭子,这群鸭子共有多少只?从前数第6只从后数第6只【分析】这道题通过画图分析可知,从前数第一只白鸭子排第6,也就是说它是第6只,它前面还有5只黑鸭子.从后数第二只白鸭子排第6,它后面还有5只黑鸭子.而两只白鸭中间还有6只黑鸭子,那么这群鸭子共有6+6+6=18(只)列式:6+6+6=18(只)答:这群鸭子共有18只.【例6】一队小朋友排队上车,从前往后数,小华排第18个,从后往前数,小明排第16个.已知小华的前面是小明.这队小朋友共有多少人?【分析】这道题有多种解法:方法一:从图中可以看出:因为18和16里面都算了小明和小华,所以求全队人数要从18与16的和中再减去2.列式:18+16-2=32(人)想一想:还可以怎样解答?方法二:通过读题我们知道,从前往后数,小华排第18个,从后往前数,小明排第16个,小华的前面是小明.那么从后往前数,小华就排在第15个,经过这样分析,现在我们只需要比较小华的位置,就能求出总人数了.“从前往后数,小华排第18个,从后往前数,小华就排在第15个”,这队小朋友的总人数就是:18+(15-1)=32(人).方法三:同理,从前往后数,小华排第18个,从后往前数,小明排第16个,小华的前面是小明.那么从前往后数,小明就排在第17个.现在我们只需要比较小明的位置,就能求出总人数了.这队小朋友的总人数是:17+(16-1)=32(人)拓展训练一队小朋友排队上车,从前往后数,小华排第18个,从后往前数,小明排第16个.已知小华的后面第二个是小明.这队小朋友共有多少人?【分析】排队问题一般可以通过画图来观察,如图我们会发现,小华和小明中间还隔了一个人,所以这队小朋友的总人数是:18+16+1=32(人).【例7】 10个小朋友排一队,从前面数小红排在第2个,小军排在小红后面第4个,那么小军从后往前数排第几个?列式:2+4=6(个)10-6+l=5(个)答:小军从后往前数是第5个.【例8】 16位解放军叔叔排成一队报数,从左边报起小王报10.从右边报起小张报12.求:从小王开始往左数,数到小张为止一共有几位解放军叔叔?【分析】排队问题一般都有很多种解决问题的方法,老师要多引导学生从不同的角度来思考.方法一:16-6-4=6(个) 方法二: 16-12-4=6(个)方法三:16-10-6=6(个)答:从小王开始数到小张,一共有6个解放军叔叔.【例9】有10个小朋友站成一排,从左往右数小冬排第9个,从右往左数小春排第8个.小冬和小春之间隔着几个人?【分析】引导学生画图分析:方法一:从图中可以知道小冬和小春之间相隔5个人.怎样列式计算呢?这样想:先用8+9=17(人),这17人中从小春开始到小冬每人都算了两遍.再用17-10=7(人),这7人表示了从小春到小冬共有的人数.最后再减去小冬和小春两个人,就算出了小春和小冬之间隔着的人数了.8+9-10=7(人)7-2=5(人)方法二:从图中可知小冬的右边有1人,小春的左边有2人.所以用总人数减去小春、小冬左右的3人,再减去小冬、小春两人就可以求得小春和小冬之间隔着的人数了.10-9=1(人) 10-8=2(人)10-1-2-2=5(人)方法三:10-9=1(人)8-1-1-1=5(人)方法四:10-8=2(人)9-2-1-1=5(人)答:小冬和小春之间隔着5个人.拓展训练一排小动物共有20只,从左往右数大象排第16,从右往左数小猫排第18.大象和小猫之间相隔多少只动物?【分析】方法一:小猫的前面有:20-18=2(个)动物,大象的后面有:20-16=4(个)动物,从小猫到大象一共有20-2-4=14(个)动物,那么大象和小猫之间相隔12只动物,14-2=12(个)方法二:从左往右数大象排第16,,那么大象前面有15个动物.从右往左数小猫排第18,那么从左往右数小猫排第20-(18-1)=3,大象和小猫之间相隔15-3=12(个)动物.方法三:从右往左数小猫排第18,那么小猫后面有17个动物.从左往右数大象排第16,那么从右往左数大象排第20-(16-1)=5,大象和小猫之间相隔17-5=12(个)动物.方法四:16+18-20-1-1=12(个)附加题(以下提供的内容,供老师参考使用)1. 两位老师带着32个学生去看电影,他们正好坐在同一排,从左边数起第9个是王老师,从右边数起第10个是李老师,求:两位老师中间坐着几个同学?【分析】32-9-10=13(个),两位老师中间坐着13个同学.2. 李老师用红花摆成了一个“十”字形.正中心的一朵花从前往后,从后往前,还是从左往右,从右往左数都有6个.算一算,摆这个“十”字形一共用了多少朵红花?【分析】这道题可以和例7进行比较,因为正中心的一朵花从前往后,从后往前,还是从左往右,从右往左数都有6个,可以看出这朵花一次也没有数,所以在计算的时候应该在最后把这朵花加起来.列式:6×4+1=25(个),摆这个“十”字形一共用了25朵红花.3.校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【分析】从左往右数茉莉花摆在第6,那么从右往左数茉莉花就是第:10-(6-1)=5(朵)花,从右往左数,月季花摆在第8,从左往右数月季花摆在第:10-(8-1)=3(朵),一串红花全都摆在了茉莉花和月季花之间,一串红花一共有:10-5-3=2(盆).4.二(1)班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班.其中4人两个班都参加.二(1)班一共有多少人?解:20+26=46(个)46-4=42(个)答:二4(1)班一共有42个人.练习七1.李老师把同学们的画排成一行展览,从左边起第8张是方方的画,从方方的画开始再往右数还有8张.一共展出了多少张画?【答案】8+8-1=15(张)一共展出了15张画.2.一本书共100页,从前面数第30页是一幅漂亮的插图,如果倒过来数这张插图是第几页?【答案】100-(30-1)=71(张),如果倒过来数这张插图是第71页.3.30个小朋友排队去参观,平均分成2队.小华排在第一队,她的前面有3人,她的后面有几人?【答案】30÷2=15(人)15-(3+1)=11(人)她的后面有11人.4.20只小动物排一排,从左往右数第16只是小兔,从右往左数第10只是小鹿,求从小鹿数到小兔,一共有几只小动物?【答案】小兔右边的小动物有:20-16=4(个)小鹿左边的小动物有:20-10=10(个)从小鹿数到小兔,一共的小动物:20-4-10=6(个)5.二(2)班同学排成6列做早操,每列人数同样多.小红站在第一列,从前面数,从后面数都是第5个.二(2)班一共有多少个同学在做操?【答案】5+5-1=9(人) 9×6=54(人)二(2)班一共有54个同学在做操.6.小王用围棋子摆成了一个方阵.不论从前往后数,从后往前数,还是从左往右数,从右往左数,正中心的一颗棋子都排在第4.算一算,这个围棋子摆的方阵共用了多少个棋子?【答案】4+4-1=7(人) 7×7=49(人)这个围棋子摆的方阵共用了49个棋子.数学故事智查毒品国际贩毒组织派一名走私罪犯带着一批毒品,企图进入森林国.黑猫警长奉命来到A海关,要截获这批毒品.一天,一位打扮漂亮的狐狸小姐携带五箱药品来到A海关.黑猫警长询问了狐狸小组携带物品的情况,并打开箱子查看.只见五只箱子里都是同样的金属盒装PM药品,且包装得十分精细.警长拿起一盒仔细端详,见盒上有使用说明,上面写着“每盒重100克”、“开封后必须当天使用”等字样.黑猫警长将药盒放回原处,心想:“再开封检查是不行了.但这批药品十分可疑,其中的一箱极有可能是毒品海洛因.”黑猫警长知道,PM药品要比同样体积的海洛因重.根据这种包装盒的大小.估计装有海洛因的一盒的重量要比装有PM药品的一盒的重量轻10克.于是,警长决定要称一称这些药品.见警长要称这些药品,狐狸小姐着急地说:“飞机就要起飞了,时间很紧,请您只称一次好吗?”“好,就称一次.”警长十分干脆地说.听到警长说只称一次,狐狸小姐的脸上露出了一丝不易被人发现的奸笑.然而,黑猫警长只称了一次,就查出第二箱里装的是毒品.请小朋友想一想,黑猫警长是怎样称的呢?。
二年级奥数找规律题讲解习题及答案

二年级奥数找规律题讲解、习题及答案二年级奥数找规律题讲解、习题及答案观察、搜集已知事实,从中发现具有规律性的线索,用以探索未知事件的奥秘,是人类智力活动的主要内容.数学上有很多材料可用以来模拟这种活动、培养学生这方面的能力.例1?观察数列的前面几项,找出规律,写出该数列的第100项来?12345,23451,34512,45123,…解:为了寻找规律,再多写出几项出来,并给以编号:仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项,…也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项.100÷5 20.可见第100项与第5项、第10项一样项数都能被5整除,即第100项是51234.例2?把写上1到100这100个号码的牌子,像下面那样依次分发给四个人,你知道第73号牌子会落到谁的手里?解:仔细观察,你会发现:分给小明的牌子号码是1,5,9,13,…,号码除以4余1;分给小英的牌子号码是2,6,10,14,…,号码除以4余2;分给小方的牌子号码是3,7,11,…,号码除以4余3;分给小军的牌子号码是4,8,12,…,号码除以4余0 整除 .因此,试用4除73看看余几?73÷4 18…余 1可见73号牌会落到小明的手里.这就是运用了如下的规律:用这种规律预测第几号牌子发给谁,是很容易的,请同学们自己再试一试.例3?四个小动物换位,开始小鼠、小猴、小兔和小猫分别坐在1、2、3、4号位子上如下图所示 .第一次它们上下两排换位,第二次左右换位,第三次又上下交换,第四次左右交换.这样一直交换下去,问十次换位后,小兔坐在第几号座位上?解:为了能找出变化规律,再接着写出几次换位情况,见下图.盯住小兔的位置进行观察:第一次换位后,它到了第1号位;第二次换位后,它到了第2号位;第三次换位后,它到了第4号位;第四次换位后,它到了第3号位;第五次换位后,它又到了第1号位;…可以发现,每经过四次换位后,小兔又回到了原来的位置,利用这个规律以及10÷4 2…余2,可知:第十次换位后,小兔的座位同第二次换位后的位置一样,即在第二号位.如果再仔细地把换位图连续起来研究研究,可以发现,随着一次次地交换,小兔的座位按顺时针旋转,小鼠的座位按逆时针旋转,小猴的座位按顺时针旋转,小猫的座位按逆时针旋转,按这个规律也可以预测任何小动物在交换几次后的座位.例4?从1开始,每隔两个数写出一个数,得到一列数,求这列数的第100个数是多少?1,4,7,10,13,…解:不难看出,这是一个等差数列,它的后一项都比相邻的前一项大3,即公差 3,还可以发现:第2项等于第1项加1个公差即4 1+1×3.第3项等于第1项加2个公差即7 1+2×3.第4项等于第1项加3个公差即10 1+3×3.第5项等于第1项加4个公差即13 1+4×3.…可见第n项等于第1项加 n-1 个公差,即按这个规律,可求出:第100项 1+ 100-1 ×3 1+99×3 298.例5?画图游戏先画第一代,一个△,再画第二代,在△下面画出两条线段,在一条线段的末端又画一个△,在另一条的末端画一个○;画第三代,在第二代的△下面又画出两条线段,一条末端画△,另一条末端画○;而在第二代的○的下面画一条线,线的末端再画一个△;…一直照此画下去见下图,问第十次的△和○共有多少个?解:按着画图规则继续画出几代,以便于观察,以期从中找出图形的生成规律,见下图.数一数,各代的图形包括△和○的个数列成下表:可以发现各代图形个数组成一个数列,这个数列的生成规律是,从第三项起每一项都是前面两项之和.按此规律接着把数列写下去,可得出第十代的△和○共有89个见下表:这就是著名的裴波那契数列.裴波那契是意大利的数学家,他生活在距今大约七百多年以前的时代.例6?如下图所示,5个大小不等的中心有孔的圆盘,按大的在下、小的在上的次序套在木桩上构成了一座圆盘塔.现在要把这座圆盘塔移到另一个木桩上.规定移动时要遵守一个条件,每搬一次只许拿一个圆盘而且任何时候大圆盘都不能压住小圆盘.假如还有第三个木桩可作临时存放圆盘之用.问把这5个圆盘全部移到另一个木桩上至少需要搬动多少次? 下图所示解:先从最简单情形试起.①当仅有一个圆盘时,显然只需搬动一次见下页图 .②当有两个圆盘时,只需搬动3次见下图 .③当有三个圆盘时,需要搬动7次见下页图 .总结,找规律:①当仅有一个圆盘时,只需搬1次.②当有两个圆盘,上面的小圆盘先要搬到临时桩上,等大圆盘搬到中间桩后,小圆盘还得再搬回来到大圆盘上.所以小的要搬两次,下面的大盘要搬1次.这样搬到两个圆盘需3次.③当有三个圆盘时,必须先要把上面的两个小的圆盘搬到临时桩上,见上图中的 1 ~ 3 .由前面可知,这需要搬动3次.然后把最下层的最大圆盘搬一次到中间桩上,见图 4 ,之后再把上面的两个搬到中间桩上,这又需搬3次,见图中 5 ~ 7 .所以共搬动2×3+1 7次.④推论,当有4个圆盘时,就需要先把上面的3个圆盘搬到临时桩上,需要7次,然后把下面的大圆盘搬到中间桩上 1次,之后再把临时桩上的3个圆盘搬到中间桩上,这又需要7次,所以共需搬动2×7+1 15次.⑤可见当有5个圆盘时,要把它按规定搬到中间桩上去共需要:2×15+1 31次.这样也可以写出一个一般的公式叫递推公式对于有更多圆盘的情况可由这个公式算出来.进一步进行考察,并联想到另一个数列:若把n个圆盘搬动的次数写成an,把两个表对照后,可得出有了这个公式后直接把圆盘数代入计算就行了,不必再像前一个公式那样进行递推了.1.先计算下面的前几个算式,找出规律,再继续往下写出一些算式:①1×9+2 ②9×9+712×9+3 98×9+6123×9+4 987×9+51234×9+5 9876×9+4……2.先计算下面的奇妙算式,找出规律,再继续写出一些算式:19+9×9118+98×91117+987×911116+9876×9111115+98765×9…3.先计算下面的前几个算式,找出规律,再继续写出一些算式:1×111×11111×1111111×111111111×11111…4.有一列数是2、9、8、2、…,从第三个数起,每一个数都是它前面的两个数相乘积的个位数字比如第三个数8就是2×9 18的个位数字 .问这一列数的第100个数是几?5.如果全体自然数按下表进行排列,那么数1000应在哪个字母下面?6.如果自然数如下图所示排成四列,问101在哪个字母下面?7.3×3的末位数字是9,3×3×3的末位数是7,3×3×3×3的末位数字是1.求35个3相乘的结果的末位数字是几?习题解答1解.①1×9+2 1112×9+3 111123×9+4 11111234×9+5 1111112345×9+6 111111123456×9+7 11111111234567×9+8 1111111112345678×9+9 111111111.②9×9+7 8898×9+6 888987×9+5 88889876×9+4 8888898765×9+3 888888987654×9+2 88888889876543×9+1 88888888.2解.19+9×9 100118+98×9 10001117+987×9 1000011116+9876×9 100000111115+98765×9 10000001111114+987654×9 1000000011111113+9876543×9 100000000111111112+98765432×9 10000000001111111111+987654321×9 1XXXXXXXXXX.3解.1×1 111×11 121111×111 123211111×1111 123432111111×11111 123454321111111×111111 1XXXXXXXXXX1111111×1111111 1XXXXXXXXXX2111111111×11111111 1XXXXXXXXXX4321111111111×111111111 1XXXXXXXXXX6543214.解:按数列的生成规律再多写出一些数来,再仔细观察,找出规律:2、9、8、2、6、2、2、4、8、2、6、2、2、4、8、2、6、2、2、4、…可见,除最前面的两个数2和9以外,8、2、6、2、2、4这六个数依次重复出现.因此,可利用这个规律,按下面的方法找出第100个数出来:100-2 98,98÷6 16…2.即第100个数与这六个数的第2个数相同,即第100个数是2.5.解:不难发现,每个字母下面的数除以7的余数都是相同的.如第1列的三个数1、8和15,除以7时的余数都是1;第2列的三个数2、9和16,除以7时的余数都是2;第3列的三个数3、10和17,除以7的余数都是3;….利用这个规律,可求出第1000个自然数在哪个字母下面:1000÷7 142 (6)所以1000在字母F的下面.6.解:可以这样找出排列的规律性:全体自然数依次循环排列在A、B、C、D、D、C、B、A八个字母的下面,即依上题解题方法:101÷8 12…5.可知101与5均排在同一字母下面,即在D的下面.7.解:从简单情况做起,列表找规律:仔细观察可发现,乘积的末位数字的出现有周期性的规律:看相乘的3的个数除以4的余数,余1时,积的末位数字是3,余2时,积的末位数字是9,余3时,积的末位数字是7,整除时,积的末位数字是1,35÷4 8 (3)所以这个积的末位数字是7.矿泉水中锶偏硅酸等矿物质对身体有那些好处。
二年级数学奥数讲义-图形找规律通用版

图形找规律
图形探秘之乐乐宝典图形探乐乐典秘籍1: 数量秘籍2: 颜色秘籍3: 形状
秘籍4: 位置/方向5:秘籍5: 组合
【例1】(★★)
请按规律填出空白图形⑴
⑵⑶
⑷
根据下面图形排列的规律空白的地方应该画什么图形?根据下面图形排列的规律,空白的地方应该画什么图形?⑴
⑵
【例3】(★★★)
找规律,空白处应该画什么?
如图,根据图中已知3个方格表中阴影的规律,画出第4个方格表,并计算第⑹个方格表中阴影部分的小正方形内的几个数之和。
下面各种各样的娃娃头,你能找到它们排列的规律吗?根据规律把最后一个画出来。
⑴⑵
【例5】★★★★★
⑴
⑵
⑶
【例5拓展】(★★★★★)
⑴按顺序观察给出图形的变化,按照这种变化规律,在空格中填上应有的图形
⑵找规律画图。
二年级上册数学-奥数找规律填数 全国通用(32张)

二年级上册数学-奥数找规律填数 全国通用(32张)
二年级上册数学-奥数找规律填数 全国通用(32张)
12345 51234 45123 3451 23451
整体观察法。
二年级上册数学-奥数找规律填数 全国通用(32张)
二年级上册数学-奥数找规律填数 全国通用(32张)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
6 0 1 2 3 4 5
7 8 9 10 11 12 13 14
6 8 0 1 2 3 4 5
7
9 10 11 12 13 14
6 8 10 0 1 2 3 4 5
7
9
11 12 13 14
6 8 10 12 0 1 2 3 4 5
在日常生活中,我们经常会碰到 许多按一定的顺序排列的数。比如: 自然数、年份等。只要我们从不同角 度去分析研究,善于观察、分析、总 结,就能发现规律,找到解决问题的 方法。
按一定的规律排列的一列数叫做数 列。
1,2,3,4,5,6, 7,8,9,10,11……就是自 然数排成的数列,每个数比前一个大1, 第n个数就是n。
数列中的每一个数叫做这个数列的 项。其中第1个数称为这个数列的第1项, 第2个数称为第2项,第n个数称为第n项。
找规律填数关键是根据已知的数, 找出数与数之间的规律。
常用的观察方法:看相邻两数的 差(相减)、和(相加)、积(相乘)、商(相除)。
一个数列,从第2项起,后一项 减去前面一项所得的差都相等, 那么这个数列就叫做等差数列。
7
5
3
11
1
11
9
7
5
3
1
二年级数学奥数讲义练习第7讲火柴棒游戏(全国通用版,含答案)

二年级数学奥数讲义练习第7讲火柴棒游戏(全国通用版,含答案)【专题简析】用火柴棒做游戏,小朋友们感兴趣吗?火柴棒游戏中有很多窍门,让我们共同了解火柴棒中的数学,了解数学的其妙,使小朋友们在有趣的数学游戏中变得更加聪明。
用火柴棒摆成的算式,可以根据算式中给的数的特点,移动火柴棒使它变成另一个数,或改变一个运算符号,使等式成立,如果是图形,可以直接拿掉或移动多余的几根火柴棒,还要考虑让火柴棒重复使用,这样可增加图形的个数【例题1】下面是用火柴棒摆成的两道算式,但都不能成立,请你只移动一根火柴棒,使算式成立。
(1)(2)思路导航:移动火柴棒时,要保证火柴棒的根数没有变化。
如“”与“”、“”与“”、“”与“”之间都可以相互转化。
第(1)题中,等号左边的计算结果是21,而右边只是1,所以应通过移动火柴棒,使左边减小右边增大。
把左边的“+”变成“-”,左边移动一根火柴棒到右边,使“1”变成“7”,等式成立。
第(2)题中,观察算式两边。
等号左边的计算结果是641,右边的计算结果是141,所以应从等号左边移一根火柴棒到右边,把等号左边的减数121变成21,则左边的计算结果是741。
等号右边141中,添上移过来的一根火柴棒,恰好变成741,于是等式成立。
解;(1)17-7=7或4+7=11(2)741+21-21=741或141+121-121=141练习11,下面的算式是用火柴棒摆成的,等号两边不相等,请移动其中一根使等式成立。
(1)(2)2,移动一根火柴棒使等式成立。
(1)(2)3,只许移动一根火柴棒,使等式成立。
(1)(2)【例题2】有一把椅子如图(1)所示,椅子翻倒还掉了一条腿。
请移动2根火柴,使椅子翻过来,且看上去也不缺少腿。
(1)(2)思路导航:要把椅子翻过来,就要使下面有四条腿,上面有靠背。
移动后的结果如图(2)所示,虚线表示移走的火柴。
解;见图(2)练习21,下面是用火柴棒摆成头朝上的龙虾,移动3根,使它头朝下。
[二年级数学]二年级奥数上册
![[二年级数学]二年级奥数上册](https://img.taocdn.com/s3/m/b4caf25beff9aef8951e065f.png)
[二年级数学]二年级奥数上册1二年级奥数上册:第一讲速算与巧算一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=1112这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-63=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减 1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如: 41,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是 5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是 5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是 6=30 共有5个数5(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=806共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+987解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是 5.习题一1.计算:(1)18+28+72=(2)87+15+13=(3)43+56+17+24=8(4)28+44+39+62+56+21=2.计算:(1)98+67=(2)43+28=(3)75+26=3.计算:(1)82-49+18=(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+359(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5 10二年级奥数上册:第一讲速算与巧算习题解答111213141516171819第一层 1个第二层 2个第三层 3个第四层 4个第五层 5个20第六层 6个第七层 7个第八层 8个第九层 9个第十层 8个第十一层7个第十二层6个第十三层 5个第十四层 4个第十五层 3个第十六层 2个第十七层 1个总数1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1 =(1+2+3+4+5+6+7+8+9)+(8+7+6+5+4+3+2+1) =45+36=81(利用已学过的知识计算).21第一层 1个第二层 3个第三层 5个第四层 7个第五层 9个第六层 11个第七层 13个第八层 15个第九层 17个总数:1+3+5+7+9+11+13+15+17=81(利用已学过的知识计算).22×101+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想: 1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×5231+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×8×91+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×101+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.?由方法2和方法3也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×5241+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.解:(1)我们已知,两点间的直线部分是一条线段.以A点为共同端点的线段有: AB AC AD AE AF 5条.以B点为共同左端点的线段有:BC BD BE BF 4条.以C点为共同左端点的线段有:CD CE CF 3条.25以D点为共同左端点的线段有:DE DF 2条.以E点为共同左端点的线段有:EF1条.总数5+4+3+2+1=15条.26272829二年级奥数上册:第三讲数数与计数(二)习题3031323334二年级奥数上册:第四讲认识简单数列35363738二年级奥数上册:第四讲认识简单数列习题39二年级奥数上册:第四讲认识简单数列习题解答404142二年级奥数上册:第五讲自然数列趣题第五讲自然数列趣题本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它.例1 小明从1写到100,他共写了多少个数字“1”,解:分类计算:“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19共10个;“1”出现在百位上的数有:100共1个;共计10+10+1=21个.43例2 一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字,解:分类计算:从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);从第10页到第99页,共90页,每页用2个铅字,共用2×90=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是: 9+180+3=192(个).44解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是: (1+2+3+4+5+6+7+8+9)×10=45×10=450.窄竖条带中,每条都包含有一种十位数字,共有9条,数字之和是:1×10+2×10+3×10+4×10+5×10+6×10+7×10+8×10+9×10=(1+2+3+4+5+6+7+8+9)×10=45×10,450.另外100这个数的数字和是1+0+0=1.所以,这一百个自然数的数字总和是:45450+450+1=901.顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力.比如说这道题就还有更简洁的解法,试试看,你能不能找出来,二年级奥数上册:第五讲自然数列趣题习题1.有一本书共200页,页码依次为1、2、3、,,、199、200,问数字“1”在页码中共出现了多少次,2.在1至100的奇数中,数字“3”共出现了多少次,3.在10至100的自然数中,个位数字是2或是7的数共有多少个,4.一本书共200页,如果页码的每个数字都得用一个单独的铅字排版(比如,“150”这个页码就需要三个铅字“1”、“5”和“0”),问排这本书的页码一共需要多少个铅字,5.像“21”这个两位数,它的十位数字“2”大于个位数字“1”,问从1至100的所有自然数中有多少个这样的两位数,6.像“101”这个三位数,它的个位数字与百位数字调换以后,数的大小并不改变,问从100至200之间有多少个这样的三位数,467.像11、12、13这三个数,它们的数位上的各个数字相加之和是(1+1)+(1+2)+(1+3)=9.问自然数列的前20个数的数字之和是多少,8.把1到100的一百个自然数全部写出来,用到的所有数字的和是多少,9.从1到1000的一千个自然数的所有数字的和是多少,习题五解答1.解:分类计算,并将有数字“1”的数枚举出来.“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91,101,111,121,131,141,151,161,171,181,191 共20个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19110,111,112,113,114,115,116,117,118,119 共20个;47“1”出现在百位上的数有:100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 共100个;数字“1”在1至200中出现的总次数是:20+20+100=140(次).2.解:采用枚举法,并分类计算:48“3”在个位上:3,13,23,33,43,53,63,73,83,93共10个;“3”在十位上:31,33,35,37,39共5个;数字“3”在1至100的奇数中出现的总次数:10+5=15(次).3.解:枚举法:12,17,22,27,32,37,42,47,52,57,62,67,72,77,82,87,92,97共18个.4.解:分段统计,再总计.页数铅字个数1,9共9页1×9=9(个)(每个页码用1个铅字)10,90共90页2×90=180(个)(每个页码用2个铅字)100,199共100页3×100=300(个)(每个页码用3个铅字)第200页共1页3×1=3(个)(这页用3个铅字)总数:9+180+300+3=492(个).5.解:列表枚举,分类统计:10 1个4920 21 2个30 31 32 3个40 41 42 43 4个50 51 52 53 54 5个60 61 62 63 64 65 6个70 71 72 73 74 75 76 7个80 81 82 83 84 85 86 87 8个90 91 92 93 94 95 96 97 98 9个总数1+2+3+4+5+6+7+8+9=45(个).6.解:枚举法,再总计:101,111,121,131,141,151,161,171,181,191共10个.5051二年级奥数上册:第六讲找规律(一)525354二年级奥数上册:第六讲找规律(一)习题5556二年级奥数上册:第六讲找规律(一)习题解答575859二年级奥数上册:第七讲找规律(二) 60。
高斯小学奥数含答案二年级(下)第07讲数列规律

第七讲数列规律前续知识点:二年级第一讲;XX 模块第X 讲后续知识点:X 年级第X 讲;XX 模块第X 讲看,这里有扇门!芝麻开门!土豆开门!白菜开门!冬瓜开门!……真傻,这年代,谁还用这么土的密码啊!快打开看看,上面写上什么了?大家快来看,门下有张羊皮纸!小高小高卡莉娅萱萱卡莉娅小高萱萱墨莫墨莫卡莉娅小高阿呆把里面的人物换成相应红字标明的人物.按一定次序排列的一列数称为数列.本讲将带领小朋友们探索数列的规律.找数列的规律,最基本的方法就是找前后相邻的两个数之间的关系.例题1找规律,填空:8 15 22 29 36 5796 92 88 84 80 68【提示】相邻两个数的差有什么特点?练习1找规律,填空:10 13 16 19 22 3165 58 51 44 37 16例题2甜甜要把100块糖装在10个纸盒里.她在第一个盒子里放1块,第二个盒子里放2块,第三个盒子里放4块,第四个盒子里放8块,……照这样一直放下去,要放满这10个盒子,甜甜这100块糖够不够?【提示】相邻两个数的倍数关系有什么特点?练习2有一种细菌,每过1分钟每一个细菌就分裂成2个.奇奇在瓶子里装1个这样的细菌,6分钟后瓶子里共有多少个细菌?在找数列的规律时,相邻两个数之间的差或商是非常重要的.并且相邻两个数的差或者商都相等的数列有着特殊的名称。
任何相邻的两个数中,后一个数减去前一个数的差都相等的数列,叫做等差数列,如例题1.任何相邻的两个数中,后一个数除以前一个数的商都相等的数列,叫做等比数列,如例题2.接下来,我们探索一些更为复杂的规律吧!观察下面的数列,是等差数列还是等比数列,或者都不是?你能说出这些数列中藏着的秘密吗?例题3 找规律,填空.【提示】相邻两个数差的规律是什么?练习3 找规律,填空.3 5 9 17 653 4 6 9 13 312571分钟1 4 9 16 25 641 3 7 15 63 255下面我们学习斐波那契数列,斐波那契数列中的斐波那契数经常出现在我们眼前,例如:松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的是向日葵花瓣)、蜂巢、蜻蜓翅膀等.斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34……这个数列的特点是:从第三个数开始,每一个数都等于前两个数的和.有时,我们又把斐波那契数列称为“兔子数列”.听老师讲讲“兔子数列”的故事,然后自己去发现其中的规律吧!例题4观察数列的变化规律,在括号里填上适当的数.(1)1,2,3,5,8,(),()(2)88,77,11,66,55,(),()【提示】从第三个数起,每个数与它前两个数的和或差有什么关系?练习4观察数列的变化规律,在括号里填上适当的数.(1)2,4,6,10,16,(),()(2)65,57,8,49,41,(),()由斐波那契数列的规律引申出很多有类似规律的数列.如例题4中的(2),它的规律是:从第三个数开始,每一个数都等于前两个数的差.有的时候,数列的规律不局限于相邻两个数之间.当我们在相邻两数间找不到规律的时候,就要考虑这个数列可能是由两组不同规律的数列组合成的.例题5找规律,填空.(1)1,2,4,4,7,8,10,16,13,32,( ),( ),19,128(2)1,2,3,3,6,5,10,8,15,13,(),(),28,34【提示】隔着看,找规律!像例题5这样隔着看、有规律排列的数列被称作“间隔数列”,其实“间隔数列”就是由两个简单的数列交叉合并得到的.例题6如下图所示,有一个五边形点阵图,它的中心是一个点作为第一层,第二层每边有2个点,第三层每边有3个点,……按照这个规律,第10层共有..()个点.【提示】由内到外写出每一层的点数,再找规律!课堂内外兔子数列从前,有一个穷光棍,平时只知好吃懒做,不肯踏踏实实做事情,还经常想入非非做发财梦.一天,他在路边捡到一个鸡蛋,他非常高兴,捧着鸡蛋就在脑子里盘算开了:“我借别人的母鸡把这个蛋孵成小鸡,等小鸡长大了,就可以生蛋,我再把生的蛋孵成鸡,这些鸡又可以生更多的蛋,蛋又可变成更多的鸡,……过不了几年,我就可以把蛋和鸡去换许多钱,然后可以盖新房,还可以娶个漂亮媳妇,生儿育女,……”他越想越高兴,不禁得意忘形手舞足蹈,忽听“啪”的一声,鸡蛋掉在地上,碎了!懒汉看着摔碎了的鸡蛋,放声痛哭:“哎呀,我的宝贝!我的房子呀!……”上面这则笑话流传已久,对我们很有教育意义,然而恐怕谁都没有认真计算过:如果鸡蛋没有打碎,几年后这个懒汉究竟有多少只鸡,多少个蛋呢?不过,公元1202年,一位意大利比萨的商人斐波那契(Fibonacci,约1170-1250?)在他的《算盘全书》(这里的“算盘”指的是计算用沙盘)中提出过一个“养兔问题”,却被无数人算过.这道题说的是:某人买回一对小兔,一个月后小兔长成大兔.再过一个月,大兔生了一对小兔,以后,每对大兔每月都生一对小兔,小兔一个月后长成大兔.如此下去,问一年后此人共有多少对兔子?你能算清吗?不少同学恐怕看完题就已经动手算了,而且很快就算出了答案,不过对不对可不敢保证.说实在的,这题要算对并不那么容易,这可要不慌不忙细心地算才行.作业1.找规律,填空:2.皮皮共有200块小立方体的积木,他要用这些积木叠起来堆成一座8层的“宝塔”.那么按照图中的规律来堆积木,皮皮的积木够不够?3.找规律,填空:……90 85 80 75 70 55 4 8 12 16 20 324.观察数列的变化规律,在括号里填上适当的数.3,1,4,5,9,14,(),()5.找规律,填空:(1)5,3,7,6,9,12,11,24,( ),( )(2)3,2,5,5,8,10,13,17,21,26,(),()98887971642 3 6 11 18 51 49第七讲数列规律1.例题1答案:43,50;76,72 详解:这两个数列都是等差数列,第一个数列的变化规律是越来越大,相邻两数的差是7,36743,43750,所以两个空格中分别填43,50,第二个数列的变化规律是越来越小,相邻两数的差是4,80476,76472,所以两个空格中分别填76,72.2.例题2 答案:不够详解:这个数列是1、2、4、8……规律是后一个数是前一个数的2倍,那么这10个盒子里的糖数是:1、2、4、8、16、32、64、128……放满第8个盒子就已经需要128块糖,128>100,所以这100块糖不够.3.例题3答案:18,24;33,129详解:第一个数列相邻两个数的差分别是:1、2、3、4……,是等差数列.第二个数列相邻两个数的差分别是:2、4、8…….如图所示:4.例题4答案:(1)13,21;(2)11,44详解:第一个数列是“斐波那契数列”的规律,从第三个数起,每个数都是它前两个数的和.5813,81321,所以两个空格分别填13,21.第二个数列的规律是:从第三个数起,每个数都是它前两个数的差(大减小).665511,551144,所以两个空格分别填11,44.5.例题5答案:(1)16,64;(2)21,21 详解:如图所示:3 5 9 17653469 1331257+1+2+3+4+5+6+71824+2+4+8+16+32+64+128331296.例题6 答案:45详解:从里到外每边的点数规律是:1、2、3、4、5、6……按照这个规律,第10层每边有10个点,第10层的总点数(101)545(个).7.练习1答案:25,28;30,23简答:两小题均是等差数列.第一个等差数列中,相邻两数的差是3;第二个等差数列中,相邻两数的差是7.8.练习2 答案:64简答:细菌分裂的规律是后一个数是前一个数的2倍:1、2、4、8、16、32、64.6分钟后瓶子里共有64个细菌.9.练习3答案:36,49;31,127简答:本题可以找每个数列相邻两数之差的规律.第一行数列的相邻两数之差是:3、5、7、9……第二行数列的相邻两数之差是:2、4、8、16……10.练习4答案:26,42;8,33简答:第一个数列符合“兔子数列”的规律:从第三个数开始,后一个数是前两个数相加的和.第二个数列的规律是:从第三个数起,每个数都是它前两个数的差(大减小).11.作业1答案:(1)24、28;(2)65、60简答:两小题均是等差数列.第一个等差数列中,相邻两数的差是4;第二个等差数列中,相邻两数的差是5.12.作业21,2,4,4,7,8,10,16,13,32,( 16 ),(64 ),19,128+3+3 +3 +3 +3 +3×2×2×2×2×2×21,2,3,3,6,5,10,8,15,13,(21),(21),28,34+2 +3 +4 +5 +6 +7每个数都是它前两个数的和.(1)(2)答案:不够简答:因为图中的规律是:下面一排积木数量是上面一排积木数量的2倍,那么,1248163264128255,255>200,所以皮皮的积木不够.13.作业3答案:27、38;58、53简答:本题可以找每个数列相邻两数之差的规律.第一行数列的相邻两数之差是:1、3、5、7……第二行数列的相邻两数之差是:10、9、8、7……14.作业4答案:23、37简答:本题符合“兔子数列”的规律:从第三个数开始,后一个数是前两个数相加的和.15.作业5答案:(1)13、48;(2)34、37简答:本题中的两个数列都是双重数列,隔一个数看,可得出每个双重数列都是由两个有规律的数列组成,可以先拆成两个新数列,并分别找出这两个新数列的规律.。
小学二年级数学找规律法知识点整理

小学二年级数学找规律法知识点整理小学二年级数学找规律法知识点整理查字典数学网为大家整理了小学二年级数学找规律法知识点整理,希望对大家有所帮助,谢谢。
观察、搜集已知事实,从中发现具有规律性的线索,用以探索未知事件的奥秘,是人类智力活动的主要内容.数学上有很多材料可用以来模拟这种活动、培养学生这方面的能力.例1观察数列的前面几项,找出规律,写出该数列的第100项来?12345,23451,34512,45123,解:为了寻找规律,再多写出几项出来,并给以编号:仔细观察,可发现该数列的第6项同第1项,第7项同第2项,第8项同第3项,也就是说该数列各项的出现具有周期性,他们是循环出现的,一个循环节包含5项.1005=20.可见第100项与第5项、第10项一样(项数都能被5整除),即第100项是51234.例2把写上1到100这100个号码的牌子,像下面那样依次分发给四个人,你知道第73号牌子会落到谁的手里?解:仔细观察,你会发现:分给小明的牌子号码是1,5,9,13,,号码除以4余1;分给小英的牌子号码是2,6,10,14,,号码除以4余2;利用这个规律以及104=2余2,可知:第十次换位后,小兔的座位同第二次换位后的位置一样,即在第二号位.如果再仔细地把换位图连续起来研究研究,可以发现,随着一次次地交换,小兔的座位按顺时针旋转,小鼠的座位按逆时针旋转,小猴的座位按顺时针旋转,小猫的座位按逆时针旋转,按这个规律也可以预测任何小动物在交换几次后的座位. 例4从1开始,每隔两个数写出一个数,得到一列数,求这列数的第100个数是多少?1,4,7,10,13,解:不难看出,这是一个等差数列,它的后一项都比相邻的前一项大3,即公差=3,还可以发现:第2项等于第1项加1个公差即4=1+13.第3项等于第1项加2个公差即7=1+23.第4项等于第1项加3个公差即10=1+33.第5项等于第1项加4个公差即13=1+43.可见第n项等于第1项加(n-1)个公差,即按这个规律,可求出:第100项=1+(100-1)3=1+993=298.例5画图游戏先画第一代,一个△,再画第二代,在△下面画出两条线段,在一条线段的末端又画一个△,在另一条的末端画一个○;画第三代,在第二代的△下面又画出两条线段,一条末端画△,另一条末端画○;而在第二代的○的下面画一条线,线的末端再画一个△;一直照此画下去(见下图),问第十次的△和○共有多少个?解:按着画图规则继续画出几代,以便于观察,以期从中找出图形的生成规律,见下图.数一数,各代的图形(包括△和○)的个数列成下表:可以发现各代图形个数组成一个数列,这个数列的生成规律是,从第三项起每一项都是前面两项之和.按此规律接着把数列写下去,可得出第十代的△和○共有89个(见下表):这就是著名的裴波那契数列.裴波那契是意大利的数学家,他生活在距今大约七百多年以前的时代.例6如下图所示,5个大小不等的中心有孔的圆盘,按大的在下、小的在上的次序套在木桩上构成了一座圆盘塔.现在要把这座圆盘塔移到另一个木桩上.规定移动时要遵守一个条件,每搬一次只许拿一个圆盘而且任何时候大圆盘都不能压住小圆盘.假如还有第三个木桩可作临时存放圆盘之用.问把这5个圆盘全部移到另一个木桩上至少需要搬动多少次?(下图所示)解:先从最简单情形试起.①当仅有一个圆盘时,显然只需搬动一次(见下页图).②当有两个圆盘时,只需搬动3次(见下图).③当有三个圆盘时,需要搬动7次(见下页图).总结,找规律:①当仅有一个圆盘时,只需搬1次.②当有两个圆盘,上面的小圆盘先要搬到临时桩上,等大圆盘搬到中间桩后,小圆盘还得再搬回来到大圆盘上.所以小的要搬两次,下面的大盘要搬1次.这样搬到两个圆盘需3次.③当有三个圆盘时,必须先要把上面的两个小的圆盘搬到临时桩上,见上图中的(1)~(3).由前面可知,这需要搬动3次.然后把最下层的最大圆盘搬一次到中间桩上,见图(4),之后再把上面的两个搬到中间桩上,这又需搬3次,见图中(5)~(7).所以共搬动23+1=7次.④推论,当有4个圆盘时,就需要先把上面的3个圆盘搬到临时桩上,需要7次,然后把下面的大圆盘搬到中间桩上(1次),之后再把临时桩上的3个圆盘搬到中间桩上,这又需要7次,所以共需搬动27+1=15次.⑤可见当有5个圆盘时,要把它按规定搬到中间桩上去共需要:以上就是关于小学二年级数学找规律法知识点整理,谢谢查阅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七讲找规律(二)
例1仔细观察下面的图形,找出变化规律,猜猜在第3组的右框空白格内填一个什么样的图?
解:仔细观察图7—1,可知:
第1组左边是个大菱形,右边是个小菱形.
第2组左边是个大三角形,右边是个小三角形.
其规律是:每组中左右两边图形的形状相同,大小不同.都是左边的图形大,右边的图形小.
猜出答案:第3组中右边空白格内应填个小长方形.(如图7—3).
仔细观察图7—2可知:
第1组左边是个圆,而且左半圆涂有阴影线.右边是左边的阴影半圆顺时针旋转后放置的.
第2组左边是个等腰三角形,而且左半部(直角三角形)涂有阴影线,右边是左边阴影直角三角形顺时针旋转后放置的.
其规律是:每组的右边格内的图形都是左边图形左边的一半,顺时针旋转放置后成为右边图形.
猜出答案:第3组中右框内应填个阴影小长方形.如图7—4示.
例2按顺序仔细观察图7—5、7—6的形状,猜一猜第3组的“?”处应填什么图?
解:图7—5的?处应填○▲.注意观察第1组和第2组,每组都是由三对小图形组成;而每对小图形都是由一个“空白”的和一个“黑色”的小图形组成;而且它俩的排列顺序都是“空白”的在左边,“黑色”的在右边.
再按着第1、第2、第3组的顺序观察下去,可发现每对小图形在各组中的位置的变化规律:它们都在向左移动,当一对小图形移动到最左边后,下一步它就回到了最右边.按这个移动规律,可知图7—5中第3组“?”处应填:○▲.
图7—6的?处应填□△0.仔细观察可发现第1组和第2组中间的部分都是由三个小图形构成的.构成的规律是:当你按照第1、第2、第3组的顺序观察时,6个小图形都在向左移动,而且移动的同时又在重新分组和组合,但排列顺序保持不变,当某一个小图形移动到了最左边时,下一步它就回到了最右边.按这个规律可知图7—6中第3组中间“?”处是:□△0.
例3观察图7—7的变化,请先回答:在方框(4)中应画出怎样的图形?
再答按(1)、(2)、(3)、……的顺序数下去,第(10)个方框中是怎样的图形?
解:先按(1)、(2)、(3)、……的顺序仔细观察,可发现:
方框中的箭头是按逆时针方向旋转的;方框中的其他小图形,如△、□和○也都是按逆时针方向旋转的.
也就是说,方框连同内部的所有小图形作为一个整体在按逆时针方向旋转.
因此,方框(4)中的小图形应画成图7—8状.再按已找到的规律,进一步可发现图形的变化是有“周期性”的,也就是说,每过4个方框后,同样的图形又重新出现一次.如,你可看到第(1)和第(5)是完全一样的;因此,你可以想像得到,第(2)和第(6)及第(10)个图形应当是完全一样的.即第(10)个方框中的图形应是图7—9所示的样子.
例4观察图7—10的变化,请先回答:
第(4)、(8)个图中,黑点在什么地方?
第(10)、(18)个图中,黑点在什么地方?
解:(1)按图7—10中(1)、(2)、(3)、……的顺序仔细观察,可发现黑点位置的变化规律:
在(1)中,黑点在最上面第一条横线上;
在(2)中,黑点下降了一格,在上面第二条横线上;
在(3)中,黑点又下降了一格,在中间一条线上了.
按黑点位置的这种变化可推测出:
在(4)中,黑点又下降一格,它的位置应如图7—11所示.
继续观察下去:
在(5)中,黑点下降到最下面的一条横线上;
在(6)中,黑点开始往上升一格;
在(7)中,黑点再上升一格,按着黑点位置的这种变化可推测出:
在(8)中,黑点又上升一格,它的位置应如图7—12所示.
(2)进一步仔细观察图7—10(1)~(9),可发现黑点位置变化的“周期性”规律:也就是说,每隔8个小图,黑点又回到原来的位置.
因为2+8=10,2+8+8=18.
所以第(10)、(18)个小图中,黑点的位置应与第(2)个小图相同,见图7—13所示.
习题七
1.仔细观察图7—14,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?
2.仔细观察图7—15,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?
3.仔细观察图7—16,找找变化规律,猜猜在第3组的空白格内填一个什么样的图?
4.按顺序仔细观察下列图形,猜一猜第3组的“?”处应填什么图?
5.按顺序仔细观察下列图形,猜一猜第3组的“?”处应填什么图?
6.按顺序仔细观察下列图形,猜一猜第3组的“?”应填什么图?
7.按顺序仔细观察下列图形,猜一猜第3组的“?”应填什么图?
8.仔细观察下列图形的变化,请先回答:
①在方框(4)中应画出怎样的图形?
②再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?
9.仔细观察下列图形的变化,请先回答:
①在方框(4)中应画出怎样的图形?
②再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?
习题七解答
①先按(1)、(2)、(3)、……的顺序仔细观察,可以发现:
在(1)中,*在左上角,在(2)中它在右上角,在(3)中它在右下角,……可见它在沿顺时针方向转动.
其他三个小图形,即□、△、○,也和*一样都在沿着顺时针方向转动.
发现规律:因方框中的每个小图形的位置的变化都是按顺时针方向旋转,可以说,方框连同内部的小图形及整体在按顺时针方向旋转.
②进一步猜想,根据所发现的规律进一步推测可知,第(4)个方框中的图形的样子.
③按(1)、(2)、(3)、……的顺序仔细观察,进一步还可发现,图形的变化是有“周期性”的,也就是说,每过4个方框后,完全同样的图形又重新出现,如第(1)、(5)、(9)个图形是完全一样的.因为2+4+4=10,所以第(10)个方框内的图形与第(2)完全相同.
9.答:(见图7—31)。