代数结构群的概念
群的证明例题

群的证明例题摘要:一、引言二、群的定义及基本概念1.群的定义2.群的五大基本概念三、群的证明例题解析1.例题一2.例题二3.例题三四、解题技巧与方法1.观察法2.替换法3.消元法五、总结正文:在数学领域,群论是一门重要的学科。
群是一种代数结构,广泛应用于几何、物理、化学、计算机科学等多个领域。
群论的研究对象是具有某种运算的集合。
群的证明例题有助于我们更好地理解群的概念,提高解题能力。
一、引言群的证明例题是群论学习中的重要环节。
通过对群的证明例题进行分析和解答,可以加深对群的概念、性质和运算规律的理解。
本文将针对群的证明例题进行解析,并提供解题技巧和方法。
二、群的定义及基本概念1.群的定义群是一个具有两个运算的代数结构,记作(G, *, +),其中G 是一个非空集合,+是G 上的一个二元运算,*是G 上的一个二元运算,满足以下条件:(1)封闭性:对于任意的a, b∈G,有a+b∈G,a*b∈G。
(2)结合律:对于任意的a, b, c∈G,有(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)。
(3)存在单位元素:存在元素e∈G,使得对于任意的a∈G,有a+e=e+a=a*e=e*a=a。
(4)存在逆元素:对于任意的a∈G,存在逆元素a"∈G,满足a+a"=a"+a=e,a*a"=a"*a=e。
2.群的五大基本概念(1)子群:如果H 是G 的子集,且H 中的元素满足群的定义,则称H 是G 的子群,记作H ≤ G。
(2)正规子群:如果H 是G 的子群,且对于任意的a∈G 和h∈H,有a*h=h*a,则称H 是G 的正规子群,记作H G。
(3)陪集:对于任意的a∈G 和H ≤ G,由所有满足a*h∈H 的元素h 组成的集合称为a 在H 下的陪集,记作H_a。
(4)同构:如果存在双射f:G → H,使得对于任意的a, b∈G,有f(a+b)=f(a)+f(b) 且f(a*b)=f(a)*f(b),则称G 与H 同构,记作G ≌ H。
抽象代数的初步认识

抽象代数的初步认识抽象代数,作为数学的一个分支,涵盖了代数结构的研究和应用。
它对于理解数学中的一些基本概念和原理具有重要意义,本文将对抽象代数的初步认识进行探讨。
一、代数结构的基本概念在开始介绍抽象代数之前,我们需要回顾一些代数的基本概念。
代数结构是指集合S以及定义在其上的一些运算符号的组合。
常见的代数结构包括群、环、域等。
群是指在某个集合上定义了一种运算,且满足封闭性、结合律、单位元和逆元的性质。
环具备两种运算:加法和乘法,并满足封闭性、结合律、分配律等性质。
域是具有加法、乘法和逆元的环。
二、抽象代数的基本概念抽象代数是对代数结构进行深入研究和抽象化的学科。
它研究了代数结构之间的关系,以及它们的性质和性质之间的相互影响。
抽象代数的核心概念之一是同态映射,它描述了两个代数结构之间的映射关系。
同态映射能够保持代数结构中的运算性质。
另一个核心概念是同构,指的是两个代数结构之间存在双射的同态映射。
同构代数结构在某种程度上可以看作是完全相同的。
三、抽象代数的应用抽象代数在数学中有广泛的应用。
首先,在数论中,抽象代数提供了一种方法来研究数的性质和关系。
其次,在几何学中,抽象代数为研究平面、空间等几何结构提供了工具和方法。
例如,通过引入向量空间的概念,可以将几何问题转化为代数问题来求解。
此外,在密码学和编码理论中,抽象代数也扮演着重要的角色。
通过抽象代数的方法,可以设计出安全性较高的密码算法。
四、抽象代数的发展历程抽象代数的发展可以追溯到十九世纪,由许多数学家共同推动。
其中,埃米尔·诺特等人提出了群的概念,并建立了群论的基本框架。
后来,大卫·希尔伯特和埃米·诺特等人进一步完善了抽象代数的系统体系,将其广泛应用于各个数学领域。
随着数学的发展,抽象代数得到了进一步的扩展和应用,涉及的领域也越来越广泛。
五、抽象代数的挑战与展望尽管抽象代数在数学领域发展迅速且广泛应用,但仍然存在着一些挑战和问题值得探讨。
抽象代数群的定义课件

群的量子表示
量子表示的定义
将群中的元素映射到量子态,形 成一个量子群。量子表示是群表 示的一种形式,可以用于研究群 的量子性质和结构。
量子表示的优点
19世纪中叶,数学家开始系统地研究群论,并发现了群的许多重要性质和定理。
20世纪初,群论得到了进一步的发展和应用,特别是在物理、化学和计算机科学等 领域。
现代群论已经发展成为一个非常广泛的数学领域,包括了许多分支和应用,如有限 群、无限群、李群、拓扑群等。
群论的现代研究
现代群论的研究涉及到许多领域,如 几何学、代数学、物理学和计算机科 学等。
运算结果仍属于这个集合。
群的基本性 质
群是一个封闭的代数结构,即其二元 运算满足封闭性。
群中存在一个特殊的元素,通常记为 $e$或$I$,称为单位元,满足对于任 意群元素$a$,有$e cdot a = a cdot e = a$。
群中的运算满足结合律,即对于任意 三个群元素$a, b, c$,有$(a cdot b) cdot c = a cdot (b cdot c)$。
量子表示可以描述更复杂的量子 现象和量子系统,能够更好地揭 示群的本质和内在规律。此外, 量子表示还可以通过计算机编程 实现,方便进行大规模的计算和 研究。
量子表示的应用
量子表示在量子计算、量子信息、 量子物理等领域都有广泛的应用。 例如,在量子计算中,各种量子 算法可以用量子态来表示,而在 量子通信中,各种量子态也可以 用量子态来表示。
现代群论的研究还涉及到许多实际应 用,如密码学、计算机图形学和量子 计算等。
群论及其在物理学中的应用

群论及其在物理学中的应用1. 群论的定义和基本概念群论是一种研究代数结构的数学分支,其中的群是一个由元素和一个二元操作组成的代数结构。
群的核心理念是封闭性,也就是说,任何两个群的元素的乘积都必须属于该群内。
群还具有唯一的单位元素,让任何元素加上单位元素都等于该元素本身;并且群中任何元素都有一个相应的逆元素,使得该元素和它的逆元素的乘积等于单位元素。
2. 群论在物理学中的应用群论在物理学中有着广泛的应用。
其中最重要的应用之一是研究对称性。
物理学中的许多问题都与对称性有关,例如粒子的自旋,电荷守恒等等。
而这些问题都可以用群论来描述。
在量子场论中,对称性群被广泛用于描述基本粒子之间的相互作用。
另一个群论在物理学中的应用是费米子测度。
费米子是具有半整数自旋的粒子,例如电子,中子等等。
由于费米子有一个独特的量子性质,所以它们的变换规则与量子场论和量子力学中的其他粒子有所不同。
这些规则可以通过对称性群来描述。
3. 群论在宇宙学中的应用群论在宇宙学中也有重要的应用。
宇宙学中的许多问题都与宇宙的结构和演化有关,例如宇宙大尺度结构,星系形成等等。
通过对这些问题的研究,我们可以了解宇宙的形成和演化历程。
群论被广泛用于描述这些宇宙结构的对称性,从而提供了关于宇宙演化的更深入的理解。
4. 群论的未来研究方向未来的群论研究将更加关注代数拓扑的交叉作用。
随着数学的发展和现代物理学和宇宙学的需求,群论的应用和研究将会越来越广泛和深入。
我们可以期待看到更多的新颖应用和创新性方法的发展,让我们更深刻地理解物理学和宇宙学中复杂的现象和问题。
高等代数知识点总结

高等代数知识点总结高等代数是数学中非常重要的一个分支,它涉及到了许多抽象的概念和理论。
在学习高等代数的过程中,我们需要掌握一些基本的知识点,这些知识点对于我们理解和运用高等代数都具有重要的意义。
本文将对高等代数中的一些重要知识点进行总结,希望能够帮助大家更好地理解和掌握这一领域的知识。
首先,我们需要了解高等代数中的一些基本概念。
代数结构是高等代数中的一个重要概念,它包括群、环、域等。
群是一个集合,配上一个二元运算,满足封闭性、结合律、单位元和逆元的性质。
环是一个集合,配上两个二元运算,满足加法封闭性、乘法封闭性、分配律和单位元的性质。
域是一个集合,配上两个二元运算,满足加法和乘法构成交换群的性质。
了解这些代数结构的定义和性质对于我们理解高等代数中的各种代数系统具有重要的意义。
其次,我们需要掌握高等代数中的线性代数知识。
线性代数是高等代数中的一个重要分支,它涉及到向量空间、线性变换、特征值和特征向量等概念。
向量空间是线性代数中的一个重要概念,它包括了一组满足一些性质的向量,例如加法封闭性、数乘封闭性和满足向量空间公理的性质。
线性变换是一个向量空间到自身的映射,它保持了向量空间的线性结构。
特征值和特征向量是线性代数中非常重要的概念,它们在矩阵对角化、矩阵相似等问题中起着重要的作用。
另外,我们还需要了解高等代数中的一些重要定理和结论。
比如,矩阵的特征值和特征向量定理、矩阵的对角化定理、矩阵的相似对角化定理等。
这些定理和结论对于我们理解矩阵的性质和运用矩阵进行计算都具有重要的意义。
最后,我们需要掌握高等代数中的一些重要技巧和方法。
比如,矩阵的运算技巧、线性方程组的解法、矩阵的特征值和特征向量的计算方法等。
这些技巧和方法对于我们解决实际问题和进行高等代数的计算都具有重要的意义。
总之,高等代数是数学中非常重要的一个分支,它涉及到了许多抽象的概念和理论。
在学习高等代数的过程中,我们需要掌握一些基本的知识点,包括代数结构、线性代数、重要定理和结论,以及一些重要的技巧和方法。
数学中的群论

数学中的群论群论是数学中一个重要的分支,在代数学领域中占有重要地位。
它研究的是一种代数结构称为群。
群论的概念和理论对于深入理解和解决许多数学问题都起着关键的作用。
本文将介绍群论的基本概念、性质以及在数学中的应用。
一、群的定义和基本性质群是一个集合G,配合一个二元运算"*",满足以下四个条件:1. 封闭性:对于任意的a,b∈G,a*b仍然属于G.2. 结合性:对于任意的a,b,c∈G,(a*b)*c = a*(b*c).3. 存在单位元:存在一个元素e∈G,对于任意的a∈G,有a*e = e*a = a.4. 存在逆元:对于任意的a∈G,存在一个元素b∈G,使得a*b = b*a = e.群论的基本性质包括:1. 结合律:对于群G中的任意元素a,b,c,有(a*b)*c = a*(b*c).2. 单位元唯一:群G的单位元是唯一的,记作e.3. 逆元唯一:群G中的每个元素a都有唯一的逆元b,满足a*b = b*a = e.4. 取消律:对于群G中的任意元素a,b和c,如果a*b = a*c,那么b = c.二、群的例子1. 整数加法群:整数集合Z构成一个群,其中的二元运算为加法。
2. 整数乘法群:非零整数集合Z*构成一个群,其中的二元运算为乘法。
3. 实数集合R上的乘法群:实数集合R中除去0以外的元素构成一个群,其中的二元运算为乘法。
4. 矩阵群:所有n阶可逆矩阵构成一个群,其中的二元运算为矩阵乘法。
5. 置换群:n个元素的置换构成一个群,其中的二元运算为置换的复合运算。
三、群的作用和应用1. 群在密码学中的应用:群论在密码学中具有广泛的应用,如素数取模、离散对数、RSA加密等加密算法都与群有关。
2. 群在物理学中的应用:群论在量子力学、粒子物理学等多个物理学领域中起着重要的作用,如对称群、李群等。
3. 群在图论中的应用:图的自同构和等价性质的研究中,群论的方法被广泛应用,极大地推动了图论的发展。
抽象代数知识点总结

抽象代数知识点总结一、群的基本概念与性质1、集合及其基本概念集合是研究对象的所有对象的总体,且每个对象都是它的一个成员。
集合的基本概念有空集、全集等。
2、二元运算及其基本性质设M是一个非空的集合,如果对于M中的每一对元素(a,b),都有一个元素:c与之对应,那么就称c在二元运算下,是a和b的像,记作:c=a*b or c=ab 或c=a×b。
3、群的基本概念设G是一个非空集合,*是G上的一个二元运算,如果满足下列4条性质:1)封闭性:对于G中的任意两个元素a、b,有a*b=c,则c也是G中的一个元素。
2)结合律:对于G中的任意三个元素a、b、c,有(a*b)*c=a*(b*c)。
3)存在单位元:存在G中的一个元素e,对于G中的任意一个元素a,都有e*a=a*e=a。
4)存在逆元:对于G中的任意一个元素a,存在G中的一个元素b,使得a*b=b*a=e。
则称(G,*)为一个群,*e*为群的单位元,b为a的逆元。
4、群的基本性质群具有唯一性、反号的相等性、等式的一般性质以及二次方向等性质。
5、群的记号与群的表示法群记号一般由两部分组成,它们的含义可以简单分别叫做群名和运算名,前者表示群的所有元素的种类,后者表示群的元素相互之间的运算。
这是群的基本概念与性质的介绍,群是代数结构中的一种基本结构,具有很强的普适性,因此在很多数学分支中都有广泛的应用。
二、群的子群与陪集1、子群的定义设(G,*)是一个群,对于G的一个非空子集H来说,如果在G的运算*下,H构成一个群,则称H是G的一个子群。
2、子群的判定定理判定定理是指定群的一个非空子集是否为子群的方法,使得许多确定子群是否存在的问题可以迅速得到解决。
3、陪集的基本概念给定群G,a是G的一个元素,在G中a的左陪集和右陪集分别定义。
4、陪集的划分与陪集的等价关系陪集的划分是一个重要概念,若H是G的一个子群,a是G的一个元素,G可被H分成无穷个不相交的子集(陪集):aH={(ah|h∈H)}及Ha={(ha|h∈H)}三、同态与同态定理1、同态的定义设(G,*)和(G’,*’)是两个群,如果G、G’之间的映射f满足一定条件,即对于任意的a.b∈G,有f(a*b)=f(a)*’f(b),则称映射f为从(G,*)到(G’,*’)的同态映射。
群的等价定义及其证明

群的等价定义及其证明1 引言群是具有一种代数运算的代数系,是代数结构中重要的一种.群的系统研究起源于19世纪初Galois 研究多项式方程根式解的问题.这是数学史中一块众所周知的里程碑.随后人们在理解了Galois 的思想之后,于19世纪中叶给出了抽象群的概念,开始以公理化的方式研究群.群论是近世代数的重要内容,近世代数又在近代物理、近代化学、计算机科学、数字通信、系统工程等许多领域都有重要应用,因而群论是现代科学技术的数学基础之一.时至今日,群论的发展已日趋完善,在各个学科领域得到广泛的应用.为了便于学习、掌握群的知识和全面、深刻理解群的概念,以下给出了群的近十种定义,并通过证明,阐明群的各个定义间的等价关系.2 预备知识代数系[]1(23)P - 设A 、B 是两个非空集合,映射σ:A B C ⨯→称为A B ⨯到C 的一个代数运算.称(),,A B C σ⨯是一个代数系,特别地,当B C =时,称σ是A 左乘B 的代数运算,当A C=时,称σ为B 右乘A 的代数运算,当A B C ==时,称σ为A 的一个二元运算,此时代数系统记作()σ,A 或简记作A .半群[]1(5)P 设() ,A 是一个代数系统,定义A 的一个二元运算“ ”,我们称它为乘法运算,如果“ ”满足结合律,则称() ,A 是一个半群.幺半群[]1(7)P () ,A 是半群,如果有e G ∈,恒有a ae ea ==,则称e 是A 的单位元,又称幺元,() ,A 就称为幺半群.为简便其间,在以下群的定义当中所定义的二元运算,即乘法运算“ ”不再书写.3 群的定义定义 1[]1(24)P 若幺半群() ,G 中每个元都有逆元,则称() ,G 是一个群.定义 2 设G 是半群,G 中存在左幺元素e (即对a G ∈,均有ea a =),并且G 中每个元素a均有左逆元素1-a ( 即1a a e -=), 则称G 是一个群.定义 3[]2(33)P 一个非空集合G ,对于一个叫做乘法的代数运算来说作成一个群,假如:Ⅰ.G 对于这个乘法来说是封闭的;Ⅱ.结合律成立: ()bc a =()c ab 对于的G 任意三个元a 、b 、c 都对;Ⅲ.G 里至少存在一个左单位元e ,能让ea a =,对于G 的任何元a 成立;Ⅳ.对于G 的每一个元a ,在G 里至少存在一个左逆元a1-,能让1a a e -=. 定义 4[]3(21)P 设G 是半群,对于任意元素a 、b ∈G ,方程ax =b 和xa =b 在G 都可解,则称G 为群.定义 5[]2(31)P 一个不空集合G 对于一个叫乘法的代数运算作成一个群,假如:Ⅰ.G 对于这个乘法来说是封闭的 ;Ⅱ.结合律: ()bc a =()c ab 对于G 的任意三个元素a 、b 、c 都对;Ⅲ.对于G 的任意两个元a 、b 来说ax =b 和ya =b 都在G 里有解.定义 6[]2(35)P G 是一个非空集合,具有一个叫乘法的代数运算,称G 是一个群,假如满足:Ⅰ.封闭性: ∀a 、b ∈G ,∃c G ∈,使ab =c ;Ⅱ.结合律: ∀a 、b 、c G ∈, ()bc a =()c ab ;Ⅲ.右单位元: ∃e G ∈,∀a ∈G ,a ea =;Ⅳ.右逆元: ∀a ∈G , ∃1-a ∈G ,e a a =-1.定义 7[]3(21)P 一个不空集合G 对于一个叫乘法的代数运算作成一个群,假如:Ⅰ.G 对于这个乘法来说是封闭的;Ⅱ.结合律成立: ()bc a =()c ab 对于G 的任意三个元a 、b 、c 都对;Ⅲ.G 里至少存在一个单位元e ,使a ea ae ==,对于G 的任何元a 成立;Ⅳ.对于G 的每一个元a , G 里至少存在一个逆元1-a ,使 a a 1-=a 1-a =e .定义 8 设一个非空集合G ,对于一个叫做乘法的代数运算,称G 是一个群,假如满足:Ⅰ.封闭性: a ∀、b G ∈,ab ∈G ;Ⅱ.结合律: a ∀、b 、c G ∈,()bc a =()cab 成立; Ⅲ.存在右单位元,即对∀a ∈G ae =a ;Ⅳ.存在左逆元,即对a ∀∈G ∈∃-1a G 使得e a a =-1;Ⅴ.左商不变性: 对a ∀、b ∈G , 都有11--=bb aa.4 群的等价证明(为了简便只对定义间的不同条件做等价证明)定义1⇒定义2 由定义1可知G 中有单位元e ,对∈∀a G 使得a ae ea ==,且每个元都有逆元.显然,G 中存在左幺元e 使a ae =.并且G 中每个元素均有左逆元1-a ,使得1a a e -=.定义2⇒定义3 显然成立.定义3⇒定义4 从定义3的条件可知G 中存在左单位元e ,并且对a ∀、b G ∈,G 中1a -∃、1b -使得1a a e -=,1b b e -=,ea a =,由封闭性1ba G -∈,显然1ba a b -=,即xa b =在G 中有解,再由ax b =,可得11a ax a b --=.显然易得1ex x a b -==,且有1a b G -∈,因而ax b =在G 中也有解.定义4⇒定义5 显然成立.定义5⇒定义6 由定义5可知,在G 里对a G ∀∈ ,ax a =有解,设x e G =∈即ae a =.对b G ∀∈, ya b =在G 里有解,则be yae ya b ===,所以e 为右单位元.且有ax e =在G 中有解,设1x a -= 即1aae -=.由a 的任意性可得,对于G 里的每个元a ,在G 里至少存在一个右逆元1a -,使1aa e -=.定义6⇒定义7 由定义6可知,G 里面存在右单位元e ,对于a G ∀∈,都有右逆元即1ae a aa e -==,.设元1a -的右逆元为11a -,即111a a e --=,又111111a ea a a e ----=,可得1111a aa a e ---=,得1a a e -=.显然1a -同为a 的左逆元,又由于1ae aa a ea a -===,e 同时为左单位元,所以G 里面至少存在一个单位元e ,能让ae ea a ==.同样G 里面至少存在一个逆元1a-能使11aa a a e --==,其中a G ∀∈.定义7⇒定义8 由定义7可知,在G 里存在右单位元e ,使得a G ∀∈,ae a = ,存在逆元,即对于a G ∀∈,1a G -∃∈使得11a a aa e --==.显然G 的每一个元a 存在左逆元1a G -∈,使得1a a e -=.且对a b G ∀∈,,即11a b G --∃∈,,使得11aa bb --=.定义8⇒定义1 设G 为一个非空集合,根据定义8可知,G 中存在右单位元e ,使得对a G ∀∈,都有ae a =.且每个元都有左逆元.则有1e G -∈,使得11e e e e --==.且可知1ee ee e -==.对1a G -∈使得1a a e -=,11aa ee e --==.由a 的任意性可知,G 里每个元素都有右逆元.又由1ae aa a a -==,可得ea a =,即e 同时为左单位元.显然(),G 为幺半群,且每个元都有逆元.5 有限群定义[]2(3840)P -设 G 是一个有限非空集合,对于一个叫做乘法的代数运算, 称G 是一个群,假如满足: Ⅰ.封闭性: a b G ∀∈、,bc G ∈;Ⅱ.结合律: a ∀、b 、c ∈ G ,()bc a =()c ab 成立;Ⅲ.左消去律: 对∀x 、y 、z ∈G ,若zy zx =,则y x =,右消去律: 对∀x 、y 、z ∈G ,若yz xz =,则y x =.证明 (此处用定义1的各个条件证明G 是一个群)集合G 是代数运算封闭且满足结合律.则首先是个半群.因G 为限集,不妨设G n =,对于a G ∀∈,设'121{,,,,}n n G a a a a+=⋅⋅⋅,显然'G 中元素的个数有1n +个.又有'G G ⊂,所以'G 中至少有两个元素相等.在此不妨,(11)i ja a j i n =≤≤≤+.再设G 存在元素1e ,使得1j j a e a =,那么i j a a =等价于1j i j j a a a e -=,由左消去律得1i j a e G -=∈,显然同样有1j i j j i j e a a a a a -===,有i j a a =得1i j i j j aa a aa ---=,由右消去律可得i j a a a -=,即1e a a =,易知1ae a =.对∀b G ∈,同理有2e G ∈,使得22e b be b ==.由等式1212ae be e ae b =,变形整理得12ae b ae b =,由消去律可得12e e =.不妨设12e e e ==,由,a b 的任意性,可知对c G ∀∈,有ec ce c ==,即G 存在单位元e .由以上可知对于a G ∀∈,显然有m a e =,(m 为整数).令11m aa --=,则11a a aa e --==,所以G 里每个元素都有逆元.6 群与对称性以及几种特殊群6.1 对称和群的关系这里所讲的对称概括的说是:若考虑的对象A 是一个带有若干关系的集合M (数学中的对象大致都具有这种形式)时,我们就把所有保持这些关系不变的,集合M 的一一变换的全体所购成的群看作是这个对A 的对称,即为集合M 的对称群[]4(11)P . 在此补充以下几个定义.1) 置换:一个有限集合的一一变换叫作一个置换[]()250P .2) 置换群:一个有限集合的若干个置换作成的群叫做一个置换群[]()250P .3) n 次对称群:若一包含n 个元的集合的全体置换作成的群叫作n 次对称群,这个群通常用n S 来表示[]()250P .下面通过一个例子阐述对称群的意义和实质.我们把以数域F 中的数作系数的n 元多项式的全体记作[]12,,,n F x x x ⋅⋅⋅(或简记作[]F x ),每一n 元多项式可以唯一地表示为不同类单项式的有限线性和:()12,,,n f x x x ⋅⋅⋅1212nn a x x x ααααα=⋅⋅⋅∑.其中()12,,,n αααα=⋅⋅⋅,{}0i Z α+∈而a F α∈.令{}12,,n M x x x =⋅⋅⋅,则M 的n 次对称群n S 中的元素就是{}12,,,n x x x ⋅⋅⋅的一个置换,略去字母x 的下标,这时一一变换可记作1212n n i i i σ⋅⋅⋅⎛⎫= ⎪⋅⋅⋅⎝⎭, 其中()12,,,n i i i ⋅⋅⋅是1,2,n ⋅⋅⋅的一个排列,而()j j i σ=.利用变换群n S 中的元素∑去定义集合[]F x 到[]F x 的一个映射. [][]:F x F x σφ→,()()1212,,,,,n n i i i f x x x f x x x ⋅⋅⋅→⋅⋅⋅,其中()12,,n i i i f x x x ⋅⋅⋅是在多项式()12,,,n f x x x ⋅⋅⋅中将1x 换成1i x ,2x 换成2i x ,⋅⋅⋅后所得到的多项式,显然σφ是集合[]F x 的一个变换.令{}|n n T S σφσ=∈,n T 是[]F x 的一些(n !个)变换组成的集合.定义“ ”为变换之间的乘法运算.证明代数系(),n T 为[]F x 的置换群.证明 任取,n S σθ∈,令12121212,n n n n i i i i i i j j j σθ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫== ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭. 则有σθφφ:()()()121212,,,,,,,,n n n i i i j j j f x x x f x x x f x x x →→, σθφ: ()()1212,,,,,n n j j j f x x x f x x x →. 显然有θσθφσφφ=即运算满足封闭性.对,,n S σθϕ∀∈,则有对应的,,n T σθϕφφφ∈,可得等式:()σθϕσθϕσθϕφφφφφφ==,()σθϕσθϕσθϕφφφφφφ==, 所以()()σθϕσθϕφφφφφφ= 即运算满足结合律.对单位元n I S ∈,则有I n T φ∈ 显然有I Iσσφφωφφ== I I σσσφφφφ==. 令()11σσφφ--=,显然()n T ∈-1σφ, 可得:()()111I σσσσσσφφφφφφ---===. 显然由σφ的任意性可知n T 中每个元都有逆元.进而可知()n T 为[]F x 的置换群.令()12,,,n f x x x 是一个n 元多项式,令(){}|f n S T f f σσφφ=∈=,同理可证(),f S 满足群的各个条件,即f S 为群.则称()f S 为n 元多项式()12,,n f x x x 的对称群[]()289P -.6.2 几种特殊群 例1 设()n SL Q 是有理数域Q 上所有其行列式为1的n 阶矩阵的全体,()n SL Q 关于矩阵的乘法“”作成的代数系()(),n SL Q 为一个群,称之为特殊线性群[]()252P .证明 任取三个元(),,n A B C SL Q ∈,则考虑AB 其行列式的值:||||||1AB A B =⨯=,所以()n AB SL Q ∈,运算满足封闭.由矩阵的运算性质显然有:()()AB C A BC =既满足结合律.又有单位矩阵I ,||1I =即()n I SL Q ∈,显然I 为()n SL Q 里的单位元.再有()n SL Q 里每个矩阵的行列式的值为1,显然每个元都可逆,设1A -为A 的逆矩阵,则1AA I -=.由此可得11||||||1AA A A --=⨯=,易得1||1A -=,即()1n A SL Q -∈.由A 的任意性可知()n SL Q 中每个元都有逆元.所以()(),n SL Q 是一个群.例 2 设n Z 为对于模n 的剩余类,定义n Z 中的加法运算“⊕”.即对任n Z 中意元素[][](),01i j i j n ≤≤≤- [][][]i j i j ⊕=+.则()n Z ⊕构成群,称之为剩余类加群[]1(4951)P -.证明 由剩余类的性质,显然易知“⊕”满足封闭性,结合律.同样不难证明[]0为n Z 的单位元.对[]n i Z ∀∈,易得[]n i -为其逆元.很显然()n Z ⊕是一个群.例 3 假如A 是一个平面的所有的点作成的集合,那么平面绕一个定点的所有旋转组成的集合G ,用θτ表示旋转θ角的旋转.定义运算“”:1212θθθθτττ+=,则(),G 是一个群,也称为平面运动群[]2(48)P .证明 1212G θθθθτττ+=∈封闭,结合律显然成立,单位元0e G τ=∈,再有对G θτ∈,其逆元,显1G θθττ--=∈然G 是一个群.例 4 若p 为素数,p N 表示关于模p 所有余数构成的集合,即小于p 的非负整数集合.定义pN中的运算“p ⋅”.对任意,p a b N ∈ 则 ()p b a b a p mod ⋅=⋅ 即代数系统{}p p N ⋅-,0是群,并称为模p 乘群,或模p 剩余乘群[]3(23)P .证明 任取{},,0P a b c N ∈-,(){}0mod -∈⋅=⋅p p N p b a b a 运算满足封闭性. 同样不难得知,运算满足结合律.很显然{}10p N ∈-,不难验证1为{}0p N -中的单位元.验证{}0p N -中元素有逆元,任取{}0p a N ∈-,则0a p <<,(),1a p =.因此有整数,c d 使得1c a d p ⋅+⋅=,从而得(),1c p =.当记mod p c c p =时,显然有1p c p ≤<,这表明{}0p p c N ∈-,进而可得等式:()()()1mod mod mod =⋅+⋅=⋅=⋅=⋅p p d a c p a c p a c a c p p p()()()1mod mod mod =⋅+⋅=⋅=⋅=⋅p p d a c p c a p c a c a p p p所以p c 是关于p ⋅的逆元.由a 的任意性可知{}0p N -中元素有逆元.所以说{}p p N ⋅-,0是群.参考文献:[1] 华中师范大学数学系《抽象代数》编写组.抽象代数[M].华中师范大学出版社.2000[2] 张禾瑞.近世代数基础[M].高等教育出版社.1978[3] 王兵山,李舟军.抽象代数[M].国防科技大学出版社.2001[4] 刘绍学.近世代数基础[M].高等教育出版社.1999[5] 吴品三.近世代数[M].北京:人民教育出版社.1979[6] 谢邦杰.抽象代数学[M].上海:上海科学技术出版社.1982[7] 姚慕生.抽象代数学[M].上海:复旦大学出版社.1998[8] N Jacobson.Basic Algebra [M]. W H Freeman and Company .1985。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数结构群的概念
代数结构中的群是指一个集合G,以及在该集合上定义的一个二元运算"乘法"(通常表示为*),满足以下四个条件:
1. 封闭性:对于任意的a、b∈G,a*b∈G。
2. 结合律:对于任意的a、b、c∈G,(a*b)*c = a*(b*c)。
3. 单位元:存在一个元素e∈G,使得对于任意的a∈G,a*e = e*a = a。
4. 逆元:对于任意的a∈G,存在一个元素b∈G,使得a*b = b*a = e,其中e 为单位元。
举个例子,我们可以考虑整数集合Z上的加法运算。
整数集合Z构成一个群,因为:
1. 封闭性:对于任意的整数a、b,a+b仍然是一个整数。
2. 结合律:对于任意的整数a、b、c,(a+b)+c = a+(b+c)。
3. 单位元:整数0是加法的单位元,对于任意的整数a,a+0 = 0+a = a。
4. 逆元:对于任意的整数a,存在一个整数-b,使得a+(-b) = (-b)+a = 0。
因此,整数集合Z上的加法构成一个群。