概率论中几种具有可加性的分布及其关系.

合集下载

几个抽样分布的性质及其应用

几个抽样分布的性质及其应用

几个抽样分布的性质及其应用重庆师范大学涉外商贸学院数学与应用数学(师范)2008级阮国勇指导老师陈勇摘要在概率论中,我们是在随机变量的分布是假设已知的前提下去研究的;而数理统计中,随机变量的分布是未知或不完全知道。

我们通过对随机变量进行重复独立观察得到许多观察值,并对观察值的数据进行分析,从而对所研究的随机变量的分布做出推断。

本文介绍三种重要的抽样分布及其性质,并给出了抽样分布在参数估计、假设检验、分布拟合检验的简单应用。

χ分布;t分布;F分布关键词抽样分布;2Abstract In the theory of probability, we are in the distribution of random variable is assumed known base on the research, however,in the mathematical statistics, random variable distribution is unknown or incompletely known. we base on the random variables are independent observations are repeated many observed value, and the observation data analysis, to study the distribution of random variable to make inference. This paper introduces three kinds of important sampling distribution and its properties, and gives the sampling distribution in parameter estimation, hypothesis testing, fitting of distribution of the simple application.Key words sampling distribution, 2χdistribution, t distribution, F distribution第 1 页共 13 页目录1 引言 (4)2 几个有关概念2.1 总体、个体 (4)2.2 简单随机抽样 (4)2.3 统计量 (5)2.3.1 统计量的定义 (5)2.3.2 常用统计量 (5)2.4 自由度 (5)2.5 抽样分布 (6)3 常用抽样分布及其性质χ分布 (6)3.1 2χ分布的定义 (6)3.1.1 2χ分布的性质 (6)3.1.2 23.2 t分布 (7)3.2.1 t分布的定义 (7)3.2.2 t分布的性质 (7)3.3 F分布 (7)3.3.1 F分布的定义 (7)3.3.2 F分布的性质 (7)4 几个常用抽样分布的应用χ分布的应用 (8)4.1 2χ分布在参数估计中的应用 (8)4.1.1 2χ分布在假设检验中的应用 (8)4.1.2 2χ分布在分布拟合检验中的应用 (8)4.1.3 24.2 t分布的应用 (9)4.2.1 t分布在参数估计中的应用 (9)4.2.2 t分布在假设检验中的应用 (9)4.3 F分布的应用 (10)4.3.1 F分布在参数估计中的应用 (10)4.3.2 F分布在假设检验中的应用 (11)5 总结 (11)6 致谢 (12)7 参考文献 (13)1 引言数理统计中的统计估计与推断需要我们进行抽样估计,样本是统计估计和推断的依据,然而,在处理具体的理论与应用问题时,却很少直接利用样本,而利用他们经过适当处理导出来的量,这个量即统计量,统计量的分布称为抽样分布,三大分布都是在正态分布产生的,他们是正态总体统计估计和校验的基础。

概率论第十四章概率论初步重要知识点

概率论第十四章概率论初步重要知识点

第十四章 概率论初步第一节 事件与概率一、随机事件和样本空间在研究自然界和人类社会时,人们可观察到各种现象,按它是否带有随机性将它们划分为两类。

一类是在一定条件下必然会发生的现象,称这类现象为确定性现象。

例如苹果从树上掉下来总会落到地上,三角形的内角和一定为180º。

另一类现象是在一定条件可能出现也可能不出现的现象,称这类现象为随机现象。

例如掷一枚质地均匀的硬币时,它可能出现正面向上,也可能出现反面向上等。

对于随机现象的一次观察,可以看作是一次试验,如果某种试验满足以下条件:(1)试验可在相同条件下重复地进行;(2)每次试验的结果可能不止一个,并且能事先确定试验的所有可能的结果;(3)每次试验的结果事先不可预测,称这种试验为随机试验。

随机试验的每一个可能的结果,称为基本事件,它们的全体,称作样本空间,通 常用字母Ω表示。

样本空间的元素即基本事件,有时也称作样本点,常用ω表示。

例1、一次掷两颗骰子,观察每颗的点数解: Ω=}654321,|),{(、、、、、j i j i =其中()j i ,表示第一颗掷出i 点,第二颗掷出j 点,显然, Ω共有36个样本点。

例2、 一个盒子中有十个完全相同的球,分别标以号码1021、、、Λ从中任取一球, 解:令 {}i i 取出球的号码为=则}1021{、、、Λ=Ω称样本空间Ω的某一子集为一个随机事件,简称事件,通常用大写英文字母A 、B 、C ……表示。

如在例2中, A={}取出球的标号为奇数因为Ω是所有基本事件所组成,因而在任一次试验中,必然要出现Ω中的某一些基本事件ω,即Ω∈ω,也即在试验中,Ω必然会发生,又用Ω来代表一个必然事件。

相应地,空集φ可以看作是Ω的子集,在任意一次试验中,不可能有φω∈,即φ永远不可能发生,所以φ是不可能事件。

我们可用集合论的观点研究事件,事件之间的关系与运算如下:(1)包含 如果在一次试验中,事件A 发生必然导致事件B 发生,则称事件B 包含事件A ,记为B A ⊂由例2,{}5球的标号为=B ,则A B ⊂(2)等价 如果B A ⊂同时A B ⊂,则称事件A 与事件B 等价,记为A=B 。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

概率分布法

概率分布法


B A

B

A
1.3.2
概率的公理化定义:
概率的定义
实际中,我们在观察一个随机试验的各种事件时,一
般来说,总会发现有些事件出现的可能性大,有些事件出
现的可能性小,而有些事件出现的可能性彼此大致相同。 为此我们希望找到一个合适的数来表征事件在一次试验中
发生的可能性大小。
我们把刻画事件发生可能性大小的数量指标称为事 件的概率,记为P(A)
古典概率的计算公式: 设事件A包含k个基本事件,样本空间为S共包含n个基本事件
k A包含的基本事件总数 则P( A) n S中基本事件总数
例如:将一枚硬币抛掷三次,求A=“恰有一次出现正面” 的概率
A包含的基本事件总数 3 P( A) S中基本事件总数 8
1.3.3
条件概率
定义:在实际问题中,除了要考虑事件A的概率,还要
2. 随机现象:在一定条件下可能出现也可能不出现的现象 实例1 在相同条件下掷一枚均匀的硬币,观察正反两面
出现的情况.
结果: 可能出现正面也可能出现方面.
实例2 用同一门炮向同一目标发 射同一种炮弹多发,观察弹落点的
情况.
结果: 弹落点会各不相同.
实例3 抛掷一枚骰子,观察出现的点数.
结果有可能为:
对客观世界中随机现象的分析产生了概率论; 使概率论成为数学的一个分支的真正奠基人瑞 士数学家J.伯努利
概率论的飞速发展则在17世纪微积分学说建立以后. 第二次世界大战军事上的需要以及大工业与管理 的复杂化产生了运筹学、系统论、信息论、控制论 与数理统计学等学科.
授课内容
概率论基础知识 概率论的起源 概率论的主要研究对象 概率论的一些基本概念 随机变量及其概率分布 随机变量的数字特征

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

概率论 常用统计分布

概率论  常用统计分布

由中心极限定理得
n
lim P {
n
2 n n
2n
x}
x
lim P{ i 1
n
2 X i n
n
x}


1 2
t2 e 2 dt
即 2分布的极限分布是正态 分布,也即当 n
很大时,
2 n n
2n
2 服从N (0,1), 进而 n N ( n,2n).
Y12
Y22
~ 2 ( 2)
则C1 1 2 , C2 1 4 .
2. t 分布 历史上,正态分布由于其广泛的应用背景 和良好的性质,曾一度被看作是“万能分布”, 在这样的背景下,十九世纪初英国一位年轻 的酿酒化学技师Cosset. WS, 他在酒厂从事试验 数据分析工作,对数据误差有着大量感性的认 识,我们知道在总体均值和方差已知情况下, 样本均值的分布将随样本量 增大而接近正态分布,
n
x
1 2

e dt .
t2
2
2 证 由假设和定义5.6, n X i2 , 其中X 1 , X 2 ,, X n i 1
2 2 2 独立且每个X i ~ N (0,1),因而X1 , X2 ,, X n 独立同分布,

E( X i2 ) 1, D( X i2 ) 2 (i 1,2,, n)
(3) T的数字特征
E (T ) 0,
n D(T ) n2
( n 2).
例3 设总体X和Y相互独立, 且都服从N(0,9)
X 1 , X 2 ,, X 9和Y1 ,Y2 ,,Y9来自总体X ,Y的样本,
求统计量T的分布,其中
T Xi /

02:第一讲 概率论统计基础知识总结

02:第一讲 概率论统计基础知识总结

(10,10)
F
Copyright © CHEN Chuanglian, Econometrics,2012
1. 2.
分布的变量值始终为正
分布的形状取决于其自由度n的大小,通常为不 对称的正偏分布,但随着自由度的增大逐渐趋 于对称 期望为: E(2)=n ,方差为: D(2)=2n(n 为自 由度)
3.
4.
可加性:若U和V为两个独立的2分布随机变量, U~2(n1),V~2(n2),则U+V这一随机变量服从 自由度为n1+n2的2分布
陈创练
/
1

本部分包括八个内容: 一、总体、参数、随机样本 二、随机变量 三、统计量与估计 四、概率分布 五、样本均值的分布与中心极限定理
六、样本方差的分布
七、点估计与区间估计 八、假设检验
Copyright © CHEN Chuanglian, Econometrics,2012
(1) E(aX b) aE ( X ) b
(2) E (aX ) 2 a 2 E ( X 2 )
(3)Var (aX b) a 2Var ( X )
(4) E( X Y ) E ( X ) E (Y )
(5)Var ( X Y ) Var ( X ) Var (Y ) 2Cov( X , Y )
F ~ F (n1 , n2 )
Copyright © CHEN Chuanglian, Econometrics,2012
图12:F分布的PDF
图13:F分布的CDF
Copyright © CHEN Chuanglian, Econometrics,2012
不同自由度的F分布

概率论中的伽马分布与

概率论中的伽马分布与

伽马分布的性质
概率密度函数: 具有特定形状的 分布函数
参数:具有特定 的数学意义
随机变量:可以 取正值或负值
数学期望和方差 :具有特定的计 算公式
伽马分布的应用
在统计学中的应用
参数估计:利用伽马分布对未知参数进行估计
假设检验:通过比较实际数据与伽马分布的拟合程度,对假设进行 检验 模型选择:在多种分布模型中选择最适合的模型时,可以考虑伽马分 布
伽马分布的扩展与推广
广义伽马分布
定义:当形状参数α为非负整数时,广义伽马分布就是常见的伽马分布。 性质:具有可加性,即两个广义伽马随机变量的和仍然是广义伽马随机变量。 扩展:通过引入形状参数α的连续取值,广义伽马分布可以扩展到形状参数α为任意实数的情形。 应用:在统计学、信号处理、机器学习等领域有广泛的应用。
伽马分布的拟合优度检验
卡方检验
定义:卡方检验 是一种统计方法, 用于检验观测频 数与期望频数之 间的差异是否显 著。
原理:基于卡方 分布,通过计算 卡方值和自由度, 比较实际观测频 数与期望频数的 差异程度。
步骤:选择适当 的卡方分布和自 由度,计算卡方 值和概率P,根 据概率P的大小 判断拟合优度。
特性:具有偏斜性和厚尾性,常 常用于描述金融数据等复杂数据 集
添加标题
添加标题
添加标题
添加标题
参数:具有两个参数,形状参数 和尺度参数,用于描述分布的形 状和尺度
比较:与正态分布、指数分布等 其他常见分布相比,伽马分布具 有不同的特性,适用于不同的场 景
THANK YOU

汇报人:XX
汇报时间:20XX/XX/XX
在机器学习中的应用
图像识别:用于目标检测和 图像分割
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3 正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系概率论中几种具有可加性的分布及其关系摘要 概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词 概率分布 可加性 相互独立 特征函数Several Kinds of Probability Dstribution and its Relationshipwith AdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-square distribution and gamma distribution.Article discusses the nature of all kinds of distribution and its proof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation, Di mo - Laplace's central limit theorem, and so on,has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言 概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k (1-p )kn -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是概率论中几种具有可加性的分布及其关系kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i k i n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑m n k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(2121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ概率论中几种具有可加性的分布及其关系),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u ut π1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证.对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π因被积函数2/2)(x xe x h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有).,(~222121σσμμ+++N Y X证明 知Y X ,服从于正态分布,且它们的密度函数分别是).2exp(),2exp(22222211tt i t t i Y X σμϕσμϕ-=-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ=+.)()(exp 2222121⎥⎦⎤⎢⎣⎡+-+=t t i σσμμ这正是数学期望为,21μμ+方差为2221σσ+的正态分布的特征函数,即证!我们同样可以使用连续场合的卷积公式进行证明,详见文献[5],此处不再赘述. 1.4 伽玛分布在讨论伽玛分布之前,我们先来看一下伽玛函数:我们称dx e x x -+∞-⎰=Γ01)(αα )0(>α为伽玛函数,α为其参数.它的性质如下:①;)21(,1)1(π=Γ=Γ②).()1(αααΓ=+Γα取自然数n 的时候,有 !.)()1(n n n n =Γ=+Γ 1.4.1 伽玛分布的定义定义1.4 如果随机变量X 的密度函数为⎪⎩⎪⎨⎧<≥Γ=--,0,0;0,)()(1x x e x x p xλαααλ 就称作X 服从伽玛分布,记为),,(~λαGa X 且λα,的值均大于0.α为伽玛分布的形状参数,λ为其尺度参数.当10<<α时,)(x p 为严格单调递减的函数,在0=x 处取得奇异点;当1=α时,)(x p 亦严格单调减,且0=x 时有;)0(λ=p 当21≤<α时,)(x p 为单峰函数,先上凸然后下凸;当2>α时,先下凸再上凸,最后下凸.而且随着α的增大,)(x p 逐渐接近于正态分布的密度函数.1.4.2 伽玛分布的可加性定理 1.4.1 设随机变量),,(~),,(~21λαλαGa Y Ga X 且X 和Y 彼此独立,则).,(~21λαα++Ga Y X证明 知 ,)1()(,)1()(21ααλϕλϕ---=-=itt it t Y X且X 与Y 彼此独立,所以,)1()()()()(21ααλϕϕϕ+-+-==itt t t Y X Y X此即为)(21αα+Ga 的特征函数,根据惟一性定理则可知).,(~21λαα++Ga Y X 结论得证!概率论中几种具有可加性的分布及其关系如正态分布,对于伽玛分布,我们同样可以利用连续场合的卷积公式对其可加性进行证明,详见文献[5]; 1.5 柯西分布[4]1.5.1 柯西分布的密度函数柯西分布是几个常见的连续分布之一.它的密度函数为).,(,)(1),,(22+∞-∞∈-+=x x x p μλλπμλ0,1==μλ时的柯西分布密度函数称为标准柯西分布密度函数,即).,(,111)(2+∞-∞∈+=x xx p π 为方便起见,往后我们分别记这两类密度函数为),(μλp 和).1,0(p 对于柯西分布的数学期望和方差,因.)(1),,(22+∞=-+⋅=⎰⎰+∞∞-+∞∞-dx x x dx x p x μλλπμλ 所以dx x p x ),,(μλ⎰+∞∞-不收敛,故柯西分布的数学期望与方差均不存在.1.5.2 柯西分布的可加性定理 1.5.1 设随机变量),,(~),,(~2211μλμλp Y p X 且Y X ,彼此独立,则有).,(~2121μμλλ+++p Y X证明 因Y X ,均服从于柯西分布,且Y X ,的特征函数分别是 ,)(11tt i X e t λμϕ-=.)(22tt i Y et λμϕ-=又因Y X ,彼此独立,所以)()()(t t t Y X Y X ϕϕϕ⋅=+.)()(2121tt i e λλμμ+-+=这恰好就是参数为2121,μμλλ++的柯西分布的特征函数,所以).,(~2121μμλλ+++p Y X 即证! 1.6 卡方分布(2χ分布)1.6.1卡方分布(2χ分布)的定义及密度函数定义 1.6[7] 设n X X X ⋅⋅⋅,,21独立同分布与标准正态分布分布),1,0(N 则称222212nX X X +⋅⋅⋅++=χ所服从的分布为自由度为n 的卡方分布,记为).(~22n χχ 卡方分布的密度函数为⎪⎪⎩⎪⎪⎨⎧≤>Γ=--.0,0;0,)2(21)(1222x x x e nx p n x n1.6.2 卡方分布可加性卡方分布密度函数的图像是一个只取非负值的偏态图像.它的图像随着自由度的增加而逐渐趋于对称,当自由度∞→n 时,其图像趋于正态分布的图像.这也从另一个侧面告诉我们,卡方分布是由其自由度决定的,不同的自由度对应了不同的卡方分布.由1.6.1,我们可以知道卡方分布即伽玛分布的一个特例,所以由伽玛分布的可加性我们易知卡方分布亦满足可加性定理,即定理1.6.1[5]设),(~),(~22221n m χχχχ且2221,χχ彼此独立,则有).(~22221n m ++χχχ 证明 由卡方分布的定义,设,,22221222222121n m m m m X X X X X X ++++⋅⋅⋅++=+⋅⋅⋅++=χχ 且,,,2,1),1,0(~n m i N X i +⋅⋅⋅=j i X X ,彼此独立.则有,,22221222212221n m m m m X X X X X X ++++⋅⋅⋅++++⋅⋅⋅++=+χχ从从卡方分布的定义,因此).(~22221n m ++χχχ即证!2 具有可加性的概率分布间的关系2.1 二项分布的泊松近似[4]当n 的取值很大时,二项分布),(p n B 的计算是令人头疼的.这里介绍了泊松分布的一个十分有用的特性,我们可利用泊松分布作为二项分布的一种特殊近似,即二项分布的泊松近似.下面我们来看泊松定理,当n 取值较大,而p 取值偏小的情况下使用泊松定理,可大大减小二项分布的计算量.定理 2.1[8](Possion 定理) 在n 重伯努利试验中,记事件A 在每次试验中发生的概率为,n p 它与试验发生的次数n 有关,若当0>n 时,有,λ→n np 即,lim λ=+∞→n n np 则对任意给定的k (k 为非负整数),有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n证明 设,n n np =λ则有,np nn λ=所以k n n k n k n kn n k n n k k n n n n p p ---+-⋅⋅⋅--=-⎪⎭⎫ ⎝⎛)1()(!)1()2)(1()1(λλ.)1(!)11()21)(11(k n n kn nk n k n n --⋅⋅--⋅⋅⋅--=λλ .)1()1(!)11()21)(11(k n n n kn nn k n k n n ---⋅⋅--⋅⋅⋅--=λλλ 由已知有,,lim λλ=+∞→n n 则对于给定的k 值,有;lim k kn n λλ=+∞→且+∞→n lim 1)11()21)(11(=--⋅⋅⋅--nk n n ; ;)1(lim )1(lim )(λλλλλ--⋅-+∞→+∞→=-=-e nnn nnnn nnn.1)1(lim =--+∞→k nn nλ所以有.!)1(lim λλ--+∞→=-⎪⎭⎫ ⎝⎛e k p p kk n n kn n k n 即证!因Possion 定理的条件之一为,lim λ=+∞→n n np 所以在二项分布的计算中,若n 值很大,p的值却很小,且λ=np 的大小适中时(一般认为当,1.0,100≤≥p n 且10≤=np λ时),二概率论中几种具有可加性的分布及其关系项分布),(p n B 可以使用参数为λ的泊松分布来做近似,即有,2,1,0,!)1(⋅⋅⋅=≈-⎪⎭⎫ ⎝⎛--k e k p p np kk n n kn n k λ此即为二项分布),(p n B 的泊松近似,而且n 的值应尽可能的大,这样计算结果才能更精确.二项分布),(p n B 的泊松近似经常被用于稀有事件(即每次试验中事件发生的概率很小)的研究中,大量实例表明,一般情况下概率1.0<p 时,泊松近似非常好用,甚至n 的取值不必很大. 2.2 二项分布的正态近似定理 2.2[7](棣莫佛-拉普拉斯(De Laplace Moivre -)极限定理) 设随机变量),(~p n B X (⋅⋅⋅=<<,2,1,0,10n p ),则对任意的实数x ,有()).(211lim 2/2x dt e x p np np X P x t n Φ==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--⎰∞--+∞→π 证明 因随机变量X 服从二项分布),(p n B ,所以X 可看做是n 个相互独立的且服从于同一参数p 的两点分布的随机变量n X X X ,,,21⋅⋅⋅的和,即,1∑==ni i X X 而且⋅⋅⋅⋅⋅⋅=-==,2,1),1()(,)(i p p X Var p X E i i 根据Levy Lindeberg -中心极限定理,有).(21)1(lim 2/12x dt e x p np np X P x t n i i n Φ==⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤--⎰∑∞--=+∞→π 定理得证! De Laplace Moivre -中心极限定理说明,n 相当大时,服从二项分布),(p n B 的随机变量X 的概率的计算服从正态分布))1(,(p np np N -的随机变量的计算.也就是说,二项分布可以用正态分布来近似计算.比如k n kn k p p k X P --⎪⎭⎫ ⎝⎛==)1()(,在n 比较大的时候的计算量时十分大的.根据De Laplace Moivre -中心极限定理,因 )1(np np npX --近似服从于标准正态分布,或者说是X 近似服从于))1(,(p np np N -分布,也就是说k n k nk p p k X P --⎪⎭⎫⎝⎛==)1()(≈.)1()1(1)1(21)1(2)(2⎪⎪⎭⎫ ⎝⎛---=----p np np k p np ep np p np np x ϕπ 对于,)1()(k n kb k a n k p p b X a P -≤≤-⎪⎭⎫ ⎝⎛=≤≤∑有))1()1()1(()(2121p np npa p np np X p np np a P a X a P --≤--≤--=≤≤ ))1(())1((12p np npa p np np a --Φ---Φ≈ )(* 我们只需查一下标准正态分布表,就可以求出我们需要的相当精确的值.但是,当p 较大或者较小时近似效果可能差一些,利用公式时p 的值最好满足9.01.0≤≤p .另外,因二项分布是离散分布,正态分布是连续分布,所以在我们实际的应用中,为减小误差, 常常使用≈≤≤)(21a X a P ))1(5.0())1(5.0(12p np npa p np np a --+Φ---+Φ来替换)(*式.2.3 正态分布与泊松分布之间的关系[9]由上面的定理2.1和定理2.2我们可以知道,二项分布),(p n B 可以用泊松分布来做近似,同样也可以用正态分布来近似.所以,从某个方面来说,泊松分布与正态分布也具有某种近似的关系,首先我们来看特征函数的连续性定理.定理 2.3.1[11] 分布函数列{})(x F n 弱收敛于分布函数)(x F 的充分必要条件是它的相应的特征函数列{})(t n ϕ收敛于)(x F 的特征函数).(t ϕ定理2.3.2[11] 设随机变量),(~λλP X 则有.21lim 22dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-πλλλλ证明 知λX 服从泊松分布,则λX 的特征函数为.)()1(-=it e e t λλϕ所以λλμλλ-=X 的特征函数是.)(1t i e ti et λλλλψ-⎪⎪⎪⎭⎫ ⎝⎛-=对于任何一个,t 我们有.,1!212∞→⎪⎭⎫⎝⎛+-+=λλολλλt ite ti所以有.,212122∞→-→⎪⎭⎫⎝⎛⋅+-=-⎪⎪⎭⎫ ⎝⎛-λλολλλλt t t i eti因此对于任意的点列,∞→n λ有.)(lim 22t et n n -∞→=λλψ又知22t e-是标准正态分布)1,0(N 的特征函数,因此由连续性定理可以得到,.21lim 22dt ex X P xt n n nn ⎰∞--∞→=⎪⎪⎭⎫ ⎝⎛<-πλλλλ由n λ的任意性,所以有dt ex X P xt ⎰∞--∞→=⎪⎭⎫⎝⎛<-2221lim πλλλλ成立.我们来看泊松分布的正态逼近. 定理2.3.3[8] 对于任意的,21a a <有,21!lim2122/⎰∑-<<-+∞→=a a x k k dx ek e βαλλπλ其中.,21λλβλλα-=-=a a 其证明见文献[8].由前可知,),(p n B 的正态近似与泊松近似的条件是不同的,当p 的取值特别小时,哪怕n 的值不是太大,用泊松分布来近似二项分布也是可以的.但在这种情况下,用正态近似却是不合理的.我们可以想象,若p 值很小,但n 的值也不是太大,则np =λ的值概率论中几种具有可加性的分布及其关系肯定不会很大,而由定理2.3.1,我们可知,此时正态分布就不可能很好的进行泊松近似.2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布之间的关系 首先来看正态分布与柯西分布的关系.定理 2.4.1 设).1,0(~),1,0(~N Y N X 且X 与Y 独立同分布,记Y X Z /=,则)1,0(~N Z .证明 易知Z 的取值范围是),(+∞-∞,所以对于),(+∞-∞∈z ,我们利用商的公式,可以得到⎰⎰∞+∞+∞-⎭⎬⎫⎩⎨⎧+-==0222)1(exp 1)()()(dt z t t dt t t p zt p z p Y X Z π .)1(12z +=π 这正是1,0==μλ时的柯西分布的密度函数,所以结论得证!正态分布与卡方分布的关系如下:定理2.4.2 若随机变量),1,0(~N X 则).1(~22χX定理证明见文献[10].这说明了标准正态分布与自由度为1的卡方分布之间的关系.若().,2,1,1,0~n i N X i ⋅⋅⋅=且i X 彼此独立,记222212nX X X +⋅⋅⋅++=χ,根据卡方分布的定义,我们知2χ服从自由度为n 的卡方分布.对于伽玛分布,当其参数21,2==λαn 时即为自由度为n 的卡方分布,记为).()21,2(2n n Ga χ=3 小结文章第一部分我们讨论了六种具有可加性的分布以及它们的简单性质,上述分布的可加性均可利用卷积公式或者特征函数进行证明.正态分布是概率论中最重要的分布,一般地,如果某个数量指标受到大量随机因素影响,而每一因素起的作用很小,则这个数量指标就近似服从正态分布.在第二部分里研究了二项分布、正态分布与泊松分布的关系,从此处我们可以知道二项分布不仅可以用泊松分布近似,同样也可由正态分布来近似. 参考文献[1] 罗建华.卷积公式的应用注记[J].中南林业科技大学学报,2007年,第27卷,第1期:152页. [2] 李贤平,沈崇生,陈子毅.概率论与数理统计[M].上海:复旦大学出版社,2003.5:221-231. [3]唐玲,徐怀.复合泊松分布和泊松过程的可加性[J].安徽建筑工业学院学报,2007.05:83页. [4] 郭彦.对柯西分布性质的进一步讨论[J].淮阴工学院学报,2005.05:12页.[5] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社,2004.7:155-160; [6] 王梓坤.概率论基础及应用[M].北京:北京师范大学出版社,1996.3:61-64. [7] 宋立新.概率论与数理统计[M].北京:人民大学出版社,2003.9:176-177.[8]于洋.浅析二项分布、泊松分布和正态分布之间的关系[J].《企业科技与发展》,2008 年第20期:120页.[9]魏宗舒等.概率论与数理统计教程[M].北京:高等教育出版社,1983.10:208-211.[10]孟凡华.浅谈几种概率分布之间的相互关系[J].信阳农专学报,1992年第3卷第2期:63-65.[11]王淑云.特征函数及其应用[J].邯郸学院学报,2008年第18卷第3期:52-56.。

相关文档
最新文档