概率论中几种具有可加性的分布及其关系
概率论第三章习题课(1)

p
(z) p(x,
z) x
1 x
dx
p(
z y
,
y)
1 y
dy
(8)
4. 商的分布 /
设 ( , ) 密度函数为 p(x, y) ,求 / 的分布。
F (z)
P(
z) P(
z)
p(x1, x2)dx1dx2
x1 / x2 z
令 ux2x1x2/ x2
则 xx12
ux2 x2
1,2,,
n)
相互独立,则
n
i
i1
~
N
(
n
i
,
n
2 i
)
i1 i1
这个事实有时也称为正态分布具有可加性。
在前面已经证明了普阿松分布、二项分布具有可加性,这里也说明了
正态分布具有可加性,其实还有其他一些分布也具有可加性,如 分布。
例 6(教材 135 页)
。
解:当 z 0 时,显然 p (z) 0
y)]
h' 1
( y)
p[h2( y)]h2' ( y)
(2)
例1. 设 ~ N (, 2),则 μ ~ N (0,1) σ
证: f (x) x μ 为单调函数,则反函数 h( y) y σ
h'(y) σ 所以由定理 1,得的分布密度为
例 2.若 ~ N (, 2),则 a b ~ N(a b,a2 2) 。
随机变量的密度函数为:
称服从自由度为 n 的 2 —分布,记作 ~ 2(n)。
这是数理统计中的一个重要分布。 特别地,当 时,(1,)就为参数为的指数分布。 由此又可以得到另两个结论: (1)m 个独立同分布的指数变量之和为-分布变量,即
高斯分布 置信度

高斯分布置信度1. 什么是高斯分布高斯分布,也称为正态分布,是概率论中最重要的分布之一。
它的分布函数具有双峰性,即左右两侧的概率密度相等,且较大的概率都集中在均值附近,呈现出钟形曲线。
高斯分布广泛应用于自然科学、社会科学和工程技术等领域,是一种重要的统计模型。
例如,在物理学中,高斯分布可以用来描述测量误差;在社会科学中,高斯分布可以用来描述人口统计数据;在金融领域中,高斯分布可以用来预测股票市场变化。
2. 高斯分布的特点高斯分布的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} $$其中,μ是高斯分布的均值,σ是标准差。
标准差越大,曲线越平缓;标准差越小,曲线越陡峭。
均值决定了曲线的中心位置,而标准差则决定了曲线的宽度和形状。
高斯分布具有以下几个特点:1.对称性:高斯分布呈对称性,左右两边的概率密度相等。
2.集中性:高斯分布的大部分概率密度都集中在均值附近,随着距离均值的距离增大,概率密度逐渐减小。
3. 可加性:高斯分布的加和仍然是高斯分布。
3. 高斯分布的应用——置信度在实际应用中,高斯分布常常用于计算置信度。
置信度是指给定一个样本,样本中的值与某一给定的值相差在一定范围内的概率。
在机器学习、统计分析等领域中,置信度被广泛应用于比较模型之间的区别、评估模型的预测能力等。
例如,假设我们要对一批学生进行测量,记录这批学生的身高,假设我们已知这批学生的身高分布符合高斯分布,我们可以计算这批学生的平均身高和标准差。
然后,我们可以根据样本的平均值和标准差,计算在一定的置信度下这批学生的平均身高范围。
如果我们设置置信度为95%,即我们相信平均身高值在一定范围内的概率为95%,那么我们可以计算这个范围是多少。
通常情况下,计算出来的范围为平均身高± 1.96倍标准误差,其中1.96是高斯分布的标准正态分布表中对应的概率。
大学概率论知识点总结

大学概率论知识点总结概率论是研究随机现象数量规律的数学分支,在大学数学中占据着重要的地位。
以下是对大学概率论中一些重要知识点的总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
例如,抛一枚硬币,正面朝上就是一个随机事件。
2、样本空间样本空间是随机试验的所有可能结果组成的集合。
3、事件的关系与运算包括包含、相等、并、交、差、互斥(互不相容)和对立等关系。
4、概率的定义概率是对随机事件发生可能性大小的度量。
古典概型中,概率等于有利事件的个数除以总事件的个数;几何概型中,概率等于几何度量(如长度、面积、体积等)的比值。
5、概率的性质包括非负性、规范性和可加性等。
二、条件概率与乘法公式1、条件概率在已知某个事件发生的条件下,另一个事件发生的概率称为条件概率,记作 P(B|A)。
2、乘法公式P(AB) = P(A)P(B|A)三、全概率公式与贝叶斯公式1、全概率公式如果事件组 B1,B2,,Bn 是样本空间的一个划分,且 P(Bi) > 0(i = 1, 2,, n),则对任意事件 A 有 P(A) =ΣP(Bi)P(A|Bi)2、贝叶斯公式在全概率公式的基础上,如果已知 P(A),P(Bi) 和 P(A|Bi),可以计算在事件 A 发生的条件下,事件 Bi 发生的概率 P(Bi|A)四、随机变量及其分布1、随机变量是定义在样本空间上的实值函数。
2、离散型随机变量其取值为有限个或可列个。
常见的离散型随机变量分布有:二项分布、泊松分布等。
3、连续型随机变量其取值可以是某个区间内的任意实数。
常见的连续型随机变量分布有:均匀分布、正态分布、指数分布等。
4、随机变量的分布函数F(x) = P(X <= x),具有单调不减、右连续等性质。
五、多维随机变量及其分布1、二维随机变量由两个随机变量组成。
2、联合分布函数F(x, y) = P(X <= x, Y <= y)3、边缘分布包括边缘分布函数和边缘概率密度(离散型为边缘概率分布)。
f分布t分布与卡方分布

§1.4 常用的分布及其分位数1. 卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。
当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑ii X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分布密度 p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中的⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,即可得到Y+Z ~2χ(n +m )。
2. t 分布 若X 与Y 相互独立,且X ~N(0,1),Y ~2χ(n ),则Z =nY X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布的分布密度也是偶函数,且当n>30时,t分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。
这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。
3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=mY n X的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ∙。
概率论与数理统计 7.2 数理统计中的三大分布

7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025
概率论常用的离散分布

目 录
• 引言 • 二项分布 • 泊松分布 • 超几何分布 • 几何分布 • 负二项分布
01 引言
离散分布的定义
离散分布:离散随机变量所有可能取 值的概率分布。
离散分布描述了随机变量取各个可能 值时所对应的概率。
离散分布的应用场景
统计学研究
离散分布在统计学中有着广泛的应用,如人口普 效之 前所经历的试验次数。
02
在生物统计学中,负二项分布可以用于描述在一定时间内捕获
猎物的数量或者在一定时间内发生的事件次数。
在金融领域,负二项分布可以用于描述股票价格在一定时间内
03
上涨或下跌的次数。
THANKS FOR WATCHING
感谢您的观看
它以法国数学家西莫恩·德尼·泊松的名字命名,他在19世纪中叶首次研究了这种 分布。
泊松分布的性质
泊松分布具有离散性和随机性, 适用于描述在一定范围内随机 事件的次数。
泊松分布的概率函数由两个参 数决定:均值和方差。
当随机事件的概率保持不变且 相互独立时,泊松分布成立。
泊松分布在现实生活中的应用
泊松分布在统计学、物理学、 生物学、经济学等领域有广 泛应用。
在网络请求中,直到得到响应所需要的请求次数可以服从几何分布。
自然选择与遗传
在生物进化过程中,自然选择对某一性状的选择压力可以用几何分 布来描述。
06 负二项分布
负二项分布的定义
负二项分布是一种离散概率分布,描 述了在成功达到某一目标之前需要进 行的独立、同分布的伯努利试验次数。
负二项分布的概率质量函数为 P(X=k) = (n+1) choose k * p^k * (1p)^(n+1-k),其中 X 表示试验次数, k 表示成功次数,n 表示试验次数上 限,p 表示每次试验成功的概率。
概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。
以下是对概率论与数理统计知识点的超详细总结。
一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
随机事件通常用大写字母 A、B、C 等来表示。
(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。
(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。
2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。
3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。
4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。
5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。
6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。
(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。
2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。
3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。
概率伯努利概型

伯努利试验的概率:每 个试验的结果发生的概
率都是相同的
伯努利概型的性质
伯努利概型的数学期望
伯努利概型是一 种离散概率分布, 其概率函数为 P(X=k) = p^k * (1-p)^(n-k), 其中p是成功的 概率,n是试验 次数。
伯努利概型的数 学期望E(X) = p * n,其中p是成 功的概率,n是 试验次数。
伯努利概型的概率分布可以表示为P(A)=p,P(A')=1-p,其中p是事件A发生的概率。
伯努利概型的分布函数
伯努利概型是概率论中一 种基本的概率模型,用于 描述随机变量服从伯努利
分布的情况。
伯努利分布是一种离散型 概率分布,其概率函数为
P(X=k) = p^k * (1p)^(1-k),其中k为随机
02
伯努利概型的性质包括:期望值、方差、 标准差等,这些性质可以帮助我们分析 和评估伯努利概型在实际问题中的应用 效果。
04
伯努利试验的概率模型
A
B
C
D
伯努利试验:一种只有 两种可能结果的随机试
验
概率模型:描述伯努利 试验中各种结果发生的
概率
伯努利概型:一种特殊 的概率模型,其中每个 试验的结果只有两个可
变量,p为成功概率。
伯努利概型的分布函数F(x) 定义为P(X ≤ x),其中x为
实数。
1
2
3
伯努利概型的分布函数F(x) 具有以下性质:F(0) = 0,
F(1) = p,F(∞) = 1。
伯努利概型的分布函数F(x) 可以用于计算伯努利概型 的期望、方差等统计量, 以及进行概率计算和统计
推断。
4
02
概率性:每个试验的结果都有一定的概率, 且概率之和为1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1 几种常见的具有可加性的分布 (1)1.1 二项分布 (2)1.2 泊松分布(Possion分布) (3)1.3正态分布 (4)1.4 伽玛分布 (6)1.5 柯西分布 (7)1.6 卡方分布 (7)2 具有可加性的概率分布间的关系 (8)2.1 二项分布的泊松近似 (8)2.2 二项分布的正态近似 (9)2.3 正态分布与泊松分布间的关系 (10)2.4 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11)3 小结 (12)参考文献 (12)致谢 (13)概率论中几种具有可加性的分布及其关系摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论.关键词概率分布可加性相互独立特征函数Several Kinds of Probability Dstribution and its Relationship withAdditiveAbstract Probability and mathematical statistics in the probability distribution of additivity is a very important content.The distribution of the so-called additivity refers to the distribution of the same kind of independent random variables and distribution are still belong to this kind of bined with its characteristics, here given several has additivity distribution in probability theory: the binomial distribution, poisson distribution and normal distribution and cauchy distribution, chi-squaredistribution and gamma distribution.Article discusses the nature of all kinds of distribution and itsproof of additivity, additive of proof distribution are also given two methods, namely using convolution formula and characteristic function of a random variable. In addition, this paper the relationships between the additive property distribution, such as the binomial distribution of poisson approximation,Di mo - Laplace's central limit theorem, and so on, has carried on the different levels of discussion. Key Words probability distribution additivity property mutual independence characteristic function引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等.1 几种常见的具有可加性的分布在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]:①离散场合的卷积公式 设离散型随机变量ξζ,彼此独立,且它们的分布列分别是n k a k P k ,1,0,)(⋅⋅⋅===ζ和.,,1,0,)(n k b k P k ⋅⋅⋅===ξ则ξζϑ+=的概率分布列可表示为.2,1,0,)()()(0⋅⋅⋅==-====-==∑∑k b a i k P i P k P i k ki i ki ξζϑ②连续场合的卷积公式 设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是)(),(y f x f ξζ,则它们的和ξζϑ+=的密度函数如下.)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ )2(其证明如下:ξζϑ+=的分布函数是dxdy y f x f z f z F zy x )()()()(ξζϑξζ⎰⎰≤+=≤+={}dx x f dy y f xz )()(ζξ⎰⎰+∞∞--∞-=.)()(dx x f x z F ζξ-=⎰+∞∞-其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζϑ+=的密度函数: .)()()(dx x z f x f f f z f -⋅=⋅=⎰+∞∞-ξζξζϑ 即证.在概率分布可加性的证明中,除了卷积公式,我们常用的证明方法还有利用随机变量的特征函数.下面我们来讨论一下这几种具有可加性的分布及其可加性证明的过程中卷积公式和特征函数的应用. 1.1 二项分布1.1.1 二项分布),(p n B 的概念如果记ζ为n 次伯努利试验中成功(记为事件A )的次数,则ζ的可能取值为0,1,2,……,n.记p 为事件A 发生的概率,则,)(p A p =(p A ),1p -=记为.q 即.1p q -=因n 次伯努利试验的基本结果可以记作 ѡ=(w 1,w 2,…ѡn ),w i 或为A 或为A ,这样的w 共有2n 个,这2n 个样本点w 组成了样本空间Ω.下求ζ的分布列,即求事件{ζk =}的概率.若某个样本点 ѡ=(w 1,w 2,…ѡn )∈{k =ζ},意味着w 1,w 2,…ѡn 中有k 个A ,k n -个A ,由独立性即可得:P (ζ).)1(k n k p p --=而事件{ζ=k }中这样的w 共有⎪⎭⎫⎝⎛n k 个,所以ζ的分布列为)(k P =ζ=⎪⎭⎫ ⎝⎛n k p k(1-p )k n -,.,1,0n k ⋅⋅⋅⋅⋅⋅=此分布即称为二项分布,记作),(~p n B ζ.且我们易验证其和恒为.1.也就是kn k nk n k p p -=-⎪⎭⎫ ⎝⎛∑)1(0=[]n p p )1(-+1=. n=1时,二项分布),(p n B 称为两点分布,有时也称之为10-分布. 二项分布的图像具有以下特点:①二项分布的图像形状取决于n 和p 的大小,随着p 的增加,分布图高峰逐渐右移. ②当5.0=p 时,图像是对称的. 1.1.2 二项分布的可加性定理 1.1.1设),,(~),,(~p m B p n B ξζ而且ξζ,相互独立,记,ξζϑ+=则有).,(~p m n B +ϑ证明 因,ξζϑ+=所以易知ϑ可以取m n +⋅⋅⋅2,1,0等1++m n 个值.根据卷积公式)1(,事件{}k =ϑ的概率可以表示为 )()()(0i k P i P k P ki -====∑=ξζϑi k m i k mi k i n i ki n i p p p p +----=-⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛=∑)1()1(0.)1(0⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=-=-+∑m i k ki n i km n k p p 又因.0⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=∑mn k m i k ki n i 所以.,1,0,)1()(m n k p p k P k m n km n k +⋅⋅⋅=-⎪⎭⎫ ⎝⎛==-++ϑ也就是说,).,(~p m n B +ϑ即证! 1.2 泊松分布(Possion 分布)与二项分布一样,泊松分布也是一种离散分布,许多随机现象,特别是社会现象与物理学中的一些随机现象都服从于泊松分布.泊松分布可作为描述大量试验中稀有事件出现次数的概率分布的数学模型. 1.2.1 泊松分布的概率分布列泊松分布的概率分布如下所示: 2,1,0,!)(===-k e k k P kλλζ…,其中λ大于0,记作)(~λζP .对于泊松分布而言,它的参数λ即是期望又是它的方差:λλλλλλλλλλ==-==-+∞=---+∞=∑∑e e k eek kE k k k k11)!1(!)(.又因, λλλλλ-+∞=-+∞=∑∑-==e k kek kE k kkk 1022)!1(!)( =[]λλ-+∞=-+-∑e k k kk )!1(1)1(1=∑∑+∞=--+∞=---+-11222)!1()!2(k k k k k e k eλλλλλλ=λλ+2故ζ的方差为22))(()()(ζζζE E Var -==λλλλ=-+22 1.2.2泊松分布的可加性定理 1.2.1 设随机变量)(~),(~2211λζλζP P ,且21,ζζ相互独立,则).(~2121λλζζ++P 证明 此处⋅⋅⋅=====--,2,1,0,!)(,!)(212211k e k k P ek k P k k λλλζλζ根据卷积公式)1(,有 21)!(!)(20121λλλλζζ---=-⋅==+∑e i k ei k P i k ki iik i ki i k i k k e -=+-∑-=210)()!(!!!21λλλλ .,1,0,!)()(2121⋅⋅⋅=+=+-k e k k λλλλ 所以).(~)(2121λλζζ++P 即证!同样我们可以利用特征函数对其进行证明,此处不再赘述. 1.3 正态分布1.3.1 正态分布的定义[6]定义1.3 对于已经给定的两个常数μ和σ>0,定义函数222/)(,21)(σμσμπσ--=x e x p ),(+∞-∞∈x )1( 它含有两个参数μ和σ.显然的,)(,x p σμ取正值.我们称密度函数为)(,x p σμ的分布为正态分布,记作),(2σμN ,它的分布函数记为dt ex F xt ⎰∞---=222)(,21)(σμσμπσ ),(+∞-∞∈x正态分布的密度函数的图像是一条钟形曲线,中间高两边低,而且关于μ=x 对称,在此处)(,x p σμ取最大值.21πσ我们称μ为该正态分布的中心,在μ=x 附近取值的可能性比较大,在σμ±=x 处有拐点.若将μ固定,改变σ的取值,则σ越大,曲线峰顶越低,图像较为平坦;σ越小,曲线封顶越高,图像较为陡峭.因此正态密度函数的尺度由σ确定,故称σ为尺度参数.同样的,将σ固定,而去改变μ的值,会发现图像沿x 轴平移而并不改变形状,也就说明该函数的位置由μ决定,故称其为位置参数.当1,0==σμ时的正态分布称为标准正态分布,记作)1,0(N .它的密度函数记为)(u ϕ,分布函数记为)(u Φ.则有),(,21)(2/2+∞-∞∈=-u e u u πϕ),(,21)(2/2+∞-∞∈=Φ⎰∞--u dt e u utπ1.3.2 一般正态分布的标准化对于正态分布族{},0),,(;),(2>+∞-∞∈=℘σμσμN标准正态分布)1,0(N 只是其中一个成员.其实在应用中很少有随机变量恰好服从标准正态分布,可是一般正态分布均可以利用线性变换转变成标准正态分布.所以一切与正态变量有关的事件的概率均可通过标准正态分布分布求取.定理1.3.1 如果随机变量),(~σμN Y ,则)1,0(~/)(N Y X σμ-=,其中X 为标准正态变量.证明 记Y 与X 的分布函数分别为)(y F Y 和)(x F X ,易知).()()()(x F x Y P x Y P x X P x F Y X σμσμσμ+=+≤=⎩⎨⎧⎭⎬⎫≤-=≤=因为正态分布函数严格递增而且处处可导,所以如果记Y 和X 的密度函数分别是)(y p Y 和)(x p X ,会有,21)()()(2/2μπσσμσμ-=⋅+=+=e x p x F dx d x p Y Y X 由此即得,).1,0(~N Y X σμ-= 即证. 对于标准正态随机变量),1,0(~N X X 的数学期望为,21)(2/2dx xe X E x ⎰+∞∞--=π 因被积函数2/2)(x xex h -=为奇函数,故上述积分值为0,也就是说.0)(=X E而对于一般正态变量),(~2σμN Y ,如果满足X Y σμ+=,由数学期望的线性性质则可得到.0)(μσμ=⨯+=Y E所以我们可以知道正态分布),(2σμN 的数学期望即为其参数μ. 因为dx e x X E X E X Var x ⎰+∞∞--=-=2/222221))(()()(π⎰+∞∞---=)(212/2x e xd π}{⎰+∞∞--∞+∞--+-=dx e xe x x 2/2/22|21π.1221212/2===⎰+∞∞--πππdx e x 且X Y σμ+=,由方差的性质.)()(2σσμ=+=x Var Y Var也就是说,正态分布的方差即是其另一个参数.2σ 1.3.3 正态分布的可加性定理1.3.2 设随机变量而且X 和Y 彼此独立,且),,(~),,(~222211σμσμN Y N X 则有。