国内外饮用水的预处理和深度处理

合集下载

现阶段常用的饮用水深度处理技术

现阶段常用的饮用水深度处理技术

现阶段常用的饮用水深度处理技术摘要饮用水的净化技术与工程设施是保障人们饮水卫生安全的重要措施,它是人类在与水源污染及由此引起的的疾病所做的长期斗争中产生的,随着水源水污染及由此引起的疾病的变化,人们对常规处理进行深度处理使人们用上洁净的水。

本文主要对臭氧氧化技术、活性炭吸附技术、生物活性碳技术、膜分离技术、深度氧化技术进行了简单的阐述。

关键词:臭氧氧化技术,活性炭吸附技术,生物活性碳技术,膜分离技术,深度氧化技术一.臭氧氧化技术臭氧氧化技术应用最广泛、最成功的领域是饮用水处理[1]。

臭氧是一种很强的氧化剂和消毒剂,其氧化还原电位在碱性环境中仅次于氟,远远高于水厂常用的消毒剂液氯。

研究发现,臭氧与有机物的反应具有较强的选择性,它对水中己形成的三卤甲烷几乎没有去除作用。

同时臭氧氧化还可导致水中可生物降解物质增多,使出厂水的生物稳定性降低,容易引起细菌繁殖。

这些因素的存在,使得臭氧很少在水处理中单独使用。

臭氧在饮用水处理得主要应用有预氧化和后氧化[2]。

预氧化主要用途为改善感官之指标,铁、锰以及其它重金属,藻类,助凝,将大分子有机物氧化为小分子有机物,氧化无机物质如氰化物、硝化物等。

臭氧后氧化主要与生物活性炭联用即臭氧—生物活性炭(O3—BAC)法。

进水先经臭氧氧化,使水中大分子有机物分解为小分子状态,这就提高了有机物进入活性炭微孔内部的可能性[3]。

活性炭能吸附臭氧氧化过程中产生的大量中间产物,包括解决了臭氧无法去除的三卤甲烷及其前驱物质,并且微生物附着其上,可以发挥生化和物化处理的协同作用,从而延长活性炭的工作周期,保证了最后出水的生物稳定性[4],O3—BAC 现己广泛地推广应用于欧洲国家如法、德、意、荷等上千座水厂中,在欧洲臭氧活性炭技术己被公认为处理污染原水、减少饮用水中有机物浓度最有效技术[5],该项技术在我国正在逐步推广应用[6]。

目前对臭氧氧化机理研究和如何利用臭氧更有效去除饮用水中有机物的研究成为给水处理中关注的重点。

饮用水深度处理工艺的选择及工程实例

饮用水深度处理工艺的选择及工程实例

饮用水深度处理工艺选择及工程实例-摘要:新国标《生活饮用水卫生标准》(GB5749-2021)将于2021年7月1日强制执行,但目前饮用水水源污染严重,水处理工艺落后,国内自来水水质状况令人担忧。

本文介绍活性炭超滤膜组合工艺组合工艺及工程应用实例,供水厂升级改造选择.ﻭ关键词:饮用水深度处理;臭氧-生物活性炭;膜处理; 工程实例有报道“全国普查自来水合格率仅50%”,而据城市供水水质监测中心2021年最新抽样检测,我国自来水厂出厂水质达标率也仅为83%。

针对目前十分严峻的饮用水水源污染现状,开发可靠、经济,与水源水质相适应的饮用水深度处理技术,保证饮用水安全是目前亟待解决的重要问题。

ﻭ1.国内外深度处理主流工艺在饮用水深度处理领域,国内外的主流处理工艺有臭氧-生物活性炭工艺与膜处理工艺。

臭氧-生物活性炭工艺是20世纪六七十年代首先在起来的一种饮用水深度处理技术,为了有效去除饮用水水源中的**种有机污染物,特别那些对人类健康具有现实或潜在危害的有机物,以及可以产生有毒有害的消毒副产物的有机物,相关研究人员开展了大量的研究,开发出高级氧化技术。

膜法处理是指在饮用水传统处理工艺基础上增加膜处理工序,使出水水质更高的工艺,膜技术如微滤、超滤、纳滤和反渗透等渐渐成为城市净水处理的主流工艺。

2。

臭氧-生物活性炭(O3-BAC)工艺优缺点目前由于臭氧-生物活性炭工艺在去除水源中消毒副产物前质、降解水中**种稳定化学污染物、破坏产生异嗅异味物质的分子结构以及有效灭火水中**类病原生物等方面具有较好的效果,再加上其工艺相对经济简单,在饮用水深度处理中得到比较应用。

臭氧—生物活性炭工艺也存在明显的不足。

单独的臭氧氧化对一些稳定性的农药类物质、有机卤代物的分解效率很低,往往需要使用高级氧化技术等。

由于目前臭氧-生物活性炭通常是置于砂滤池之后,故炭池中的生物活性炭颗粒容易泄漏到出厂水中,而该炭粒包裹的微生物,对消毒剂的灭活起保护作用,将大幅度降低处理水的消毒效果。

饮用水深度处理技术发展趋势

饮用水深度处理技术发展趋势

饮用水深度处理技术发展趋势
一、背景介绍
1.1 饮用水处理的重要性
1.2 饮用水深度处理的概念和意义
二、传统饮用水处理技术
2.1 膜分离技术
2.2 活性炭吸附技术
2.3 氯气消毒技术
三、饮用水深度处理的现状
3.1 技术应用范围
3.2 现有技术的局限性
四、饮用水深度处理技术发展趋势
4.1 新型滤料技术
4.1.1 纳米材料在水处理中的应用4.1.2 生物复合滤料的发展
4.2 光催化技术
4.2.1 光催化材料的研究现状
4.2.2 可见光光催化技术的应用前景4.3 智能化监控与管理系统
4.3.1 水质智能监测技术
4.3.2 水处理设备远程监控系统
五、对未来饮用水处理技术的展望
5.1 环保与持续发展
5.2 智能化与信息化
5.3 协同创新与产学研合作的重要性
结论
未来饮用水深度处理技术的发展具有重要的意义,应加强相关研究和技术创新,以保障人民健康和生态环境的可持续发展。

以上是针对饮用水深度处理技术发展趋势的文档,希望对您有所帮助。

饮用水处理设备设备工艺原理

饮用水处理设备设备工艺原理

饮用水处理设备设备工艺原理饮用水处理设备是一种用于水质净化的设备。

它通过一系列的处理工艺来去除水中的污染物和杂质,从而提高饮用水的质量,以保证人们日常生活用水的安全和健康。

本文将介绍饮用水处理设备的设备工艺原理。

一、饮用水处理设备的基本工艺流程饮用水处理设备一般包括预处理、混凝沉淀、过滤、消毒等多个工艺单元。

下面将逐一介绍它们的设备工艺原理。

1.预处理预处理是饮用水处理设备的第一步。

它主要是对水进行初步的物理和化学处理,去除水中的悬浮颗粒、泥沙、微生物和有机物等。

预处理的主要流程包括筛选、净化等。

2.混凝沉淀混凝沉淀是饮用水处理设备的第二步。

它主要是用化学混凝剂对水中的悬浮颗粒和胶体物进行凝聚,形成较大的颗粒,通过沉淀作用把它们从水中移除。

混凝沉淀的主要工艺包括混凝、絮凝等。

3.过滤过滤是饮用水处理设备的第三步。

它主要通过各种过滤器对水进行过滤,去除水中的颗粒物、有机物和无机盐等,使水的透明度和清洁度提高。

过滤的主要途径有简单过滤、活性炭过滤、石英砂过滤等。

4.消毒消毒是饮用水处理设备的最后一步。

它主要是利用各种消毒剂对水体中的细菌、病毒等微生物进行杀灭和去除。

消毒的主要方法有氯消毒、臭氧消毒、紫外线消毒等。

二、饮用水处理设备的具体工艺原理1.预处理工艺原理预处理的主要工艺包括物理处理和化学处理。

物理处理主要是利用物理性质进行处理,如筛分、沉淀等。

化学处理则是采用特定的化学药剂进行处理,如氯化铁、硫酸铁等。

2.混凝沉淀工艺原理混凝沉淀是利用混凝剂对悬浮颗粒进行凝聚,使其变得足够大而沉淀下来。

混凝剂的主要作用是改变水中物质的表面性质,在吸附过程中形成一层复合沉淀物,从而将悬浮颗粒凝聚成较大的絮状物质。

混凝剂的种类和使用量根据水的硬度和水质而定。

3.过滤工艺原理过滤是通过滤料的选择和过滤器的设计实现的。

过滤的主要效果是去除水中的颗粒物和溶解物质,使水透明度提高。

常见的过滤器有简单过滤器、活性炭过滤器、石英砂过滤器等。

水质处理主要流程

水质处理主要流程

1水质处理主要流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!生活中,我们经常会听到关于水质处理的话题。

中国的自来水标准

中国的自来水标准

中国的自来水标准
一、水质指标
中国的自来水水质指标包括物理、化学、微生物和放射性等几大类。

其中,物理指标主要包括色度、浑浊度、嗅和味等;化学指标包括pH值、硬度、总硬度、硝酸盐、亚硝酸盐、氯化物等;微生物指标包括细菌总数、总大肠菌群、耐热大肠菌群等;放射性指标包括总α放射性和总β放射性。

二、水处理工艺
中国的自来水处理工艺主要包括预处理、常规处理和深度处理三个阶段。

预处理阶段包括沉淀、过滤等,常规处理阶段包括混合、絮凝、沉淀、过滤和消毒等,深度处理阶段包括活性炭吸附、臭氧氧化、膜分离等。

三、水源保护
中国的自来水水源保护包括划定饮用水水源保护区,加强对水源地的环境监管,控制和减少对水源地的污染等。

四、水质监管
中国的自来水水质监管主要包括对水处理厂出水水质进行监测,对供水管网进行巡查,对水质进行定期检测等。

五、水压与水量
中国的自来水水压与水量标准根据不同的供水类型和地区有所不同。

一般来说,自来水水压在0.3-0.5兆帕之间,水量在每分钟3-5升之间。

六、水费收费标准
中国的自来水收费标准根据不同的地区和供水类型有所不同。

一般来说,居民生活用水的水费相对较低,商业用水和工业用水的
水费相对较高。

具体的收费标准可以咨询当地的水务部门或供水公司。

七、水务管理
中国的自来水管理由各地的水务部门或供水公司负责。

他们负责自来水的生产、供应和管理工作,包括水源保护、水处理工艺、水质监管、水压与水量控制等方面的工作。

同时,他们也负责制定和执行水费收费标准,并对供水设施进行维护和更新。

饮用水处理工艺流程

饮用水处理工艺流程

饮用水处理工艺流程1.预处理预处理是指对原水进行初步处理,以去除大部分悬浮物、悬浮胶体、泥沙、浮渣和油脂等杂质和有机物,以便后续的深度处理更加有效。

预处理的常见工艺有以下几种:-气浮法:通过向原水中注入气泡,使悬浮物质产生浮力而浮起,然后通过沉淀器将悬浮物质从水中分离出来。

-砂滤法:将原水通过多层砂滤介质,利用砂滤料的颗粒之间的间隙来过滤悬浮物和有机物。

-水解沉淀法:向原水中添加化学药剂,使悬浮物和有机物发生凝聚,形成较大的颗粒,然后通过沉淀器将其沉淀下来。

2.深度处理深度处理是指对经过预处理后的水进行更为彻底的处理,以去除残留的微生物、有机物、无机物和重金属等,并调整水质的pH值、硬度和氧化还原电位等指标,使其达到饮用水卫生标准。

深度处理的常见工艺包括以下几种:-活性炭吸附法:将水通过活性炭床,利用活性炭对有机物和部分无机物的吸附作用,去除水中的污染物。

-离子交换法:将水通过离子交换树脂床,利用树脂对水中的阳离子和阴离子的选择性吸附和释放作用,去除水中的硬度物质和其他无机盐。

-膜分离技术:利用微孔过滤膜对水进行过滤和分离,可以去除微生物、胶体和溶解物质。

常见的膜分离技术有微滤、超滤、纳滤和反渗透。

3.后处理后处理是指对经过深度处理的水进行最后的消毒和调整,以确保水中的微生物完全被消杀,并使水的味道、色度和透明度等指标达到最佳状态。

-氯消毒法:向水中添加含盐酸和次氯酸钠等化学药剂,利用次氯酸离子对水中的微生物进行消杀。

-紫外线辐射法:通过向水中引入紫外线源,利用紫外线的强烈辐射作用,对水中的微生物进行消杀。

-控制pH值和投加消毒剂:调整水的pH值,使其处于微酸性环境下,然后投加消毒剂,如次氯酸钙和二氧化氯等,以实现消毒和稳定水质。

总之,饮用水处理工艺流程包括预处理、深度处理和后处理,通过不同的工艺和技术对水进行处理,去除水中的杂质、有害物质和微生物,以获得符合人体健康和卫生标准的饮用水。

饮用水处理工艺(3篇)

饮用水处理工艺(3篇)

第1篇随着我国经济的快速发展和城市化进程的加快,人们对生活质量的追求越来越高,对饮用水的安全与健康也越来越重视。

饮用水处理工艺作为保障饮用水安全的重要环节,其研究与应用受到了广泛关注。

本文将详细介绍饮用水处理工艺的原理、流程以及常用方法。

一、饮用水处理工艺的原理饮用水处理工艺的目的是去除原水中的有害物质,使之达到国家规定的饮用水标准。

其基本原理是通过物理、化学和生物等方法,将原水中的悬浮物、胶体、溶解物、细菌、病毒等有害物质去除或降低至安全水平。

1. 物理处理物理处理是利用物理方法去除或降低水中悬浮物、胶体和部分溶解物的工艺。

主要包括沉淀、过滤、澄清、气浮等。

(1)沉淀:利用重力作用使悬浮物和胶体在水中沉降,从而达到去除的目的。

沉淀方法有重力沉淀、化学沉淀、气浮沉淀等。

(2)过滤:通过滤料层的孔隙,使水中的悬浮物、胶体和部分溶解物被截留,达到净化水质的目的。

过滤方法有砂滤、活性炭滤、陶瓷滤等。

(3)澄清:利用混凝剂使悬浮物和胶体聚集成较大的颗粒,便于沉淀和过滤。

澄清方法有混凝沉淀、澄清池等。

(4)气浮:通过向水中通入空气,使悬浮物和胶体吸附在气泡上,从而实现去除。

气浮方法有溶气气浮、机械气浮等。

2. 化学处理化学处理是利用化学药剂与水中污染物发生化学反应,使其转变为无害或低害物质的过程。

主要包括混凝、氧化还原、消毒、软化等。

(1)混凝:向水中投加混凝剂,使悬浮物和胶体聚集成较大的颗粒,便于沉淀和过滤。

常用的混凝剂有硫酸铝、硫酸铁、聚合氯化铝等。

(2)氧化还原:利用氧化剂或还原剂与水中污染物发生氧化还原反应,将其转化为无害或低害物质。

常用的氧化剂有氯、臭氧、二氧化氯等;还原剂有亚硫酸钠、亚硫酸氢钠等。

(3)消毒:利用消毒剂杀灭水中的细菌、病毒等有害微生物。

常用的消毒剂有氯、臭氧、二氧化氯等。

(4)软化:降低水中钙、镁离子的含量,减少水垢的形成。

常用的软化方法有离子交换、石灰软化、膜分离等。

3. 生物处理生物处理是利用微生物的代谢活动去除水中有机污染物的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外饮用水预处理与深度处理技术学生:曾雪萍学号:20086814摘要:随着有机化工、石油化工、采矿、农药和医药工业的迅速发展,造成水源水污染的有害物质数量也逐年增多。

水源水中的人工合成有机物污染、内分泌干扰物污染等问题都开始受到人们的关注。

这些污染物浓度很低,但很难通过常规的水处理工艺有效去除,且来源难以确定,已成为饮用水水质净化面临的重要挑战。

研究表明,通过对原水采用预处理,以及在常规水处理后再进行深度处理可以改善和提高饮用水水质。

关键词:饮用水预处理深度处理一、饮用水预处理预处理通常是指在常规处理工艺前面采用适当的物理、化学和生物的处理方法,对水中的污染物进行初级去除。

同时使常规处理更好的发挥作用,减轻常规处理和深度处理的负担,发挥水处理工艺的整体作用,改善和提高饮用水水质。

工程中可采用的预处理方法有:生物预处理法、化学预氧化法、粉末活性炭法等。

(1)生物预处理法针对水源水被污染的特性,可适时增加生物预处理。

生物预处理主要是对原水进行曝气或其他生物处理,去除水中氨氮和生物可降解有机物,包括生物接触氧化池和曝气生物滤池等。

1971年,日本的小岛贞男首次成功地将生物接触氧化法应用于富营养化水源水预处理,去除藻类60%^80%,氨氮90%以上,嗅味50%-70%,使水厂出水水质得到明显改善,把本来属于污水处理应用范畴的生物法引人了给排水处理领域。

生物预处理工艺以生物膜法为主导,生物预处理的填料上生长着细菌、原生动物、后生动物等微生物形成生物膜,在与水接触时,生物膜上的微生物摄取、分解水中的有机物和氮、磷等营养物质。

去除常规工艺不能充分去除的氨氮、亚硝酸盐氮、藻类、可生物降解有机污染物等,此外,还能去除或减少可能在加氯后生长的致突变物质的前驱物,不同程度地去除原水中的铁、锰、色、嗅及浊度,从而使水得到净化。

其中,CODMn,,去除率一般为15%-20%,氨氮和亚硝酸盐去除率可高达80%以上。

生物预处理适合于水中有机污染物可生化性较强、无工业废水污染的情况,,对优先污染物去除效果也不佳,且无法间歇运行等。

如果原水受生活污水污染,有机物和氨氮较高〔接近或超过《地表水环境质量标准》(GB 3838-2002) 中的111类水体的上限〕,与增加臭氧一活性炭深度处理相比,选用生物预处理是解决该类水质问题的经济合理的选择方案。

生物预处理方案的确定应结合已有研究成果和原水水质特征进行必要的模拟试验,确定生物预处理的工艺适用性、池型及设计和运行参数。

(2)化学预氧化法化学预氧化法是将氯、臭氧、高锰酸盐等氧化势较高的氧化剂投加到原水中,以氧化或者催化氧化水中的有机物或改变有机物的性质,同时削弱污染物对常规处理工艺的不利影响,强化常规处理工艺的除污效能。

化学预氧化的目的主要是为去除水中有机污染物和控制氧化消毒副产物,从而保障饮用水的安全性。

此外预氧化的目的还有除藻、除嗅和味、除铁和锰、氧化助凝等作用。

在传统给水处理工艺中,可在多个点加人氧化剂,氧化剂在不同点起着不同的作用。

在预处理过程中,氧化剂和水中多种成分作用,能够提高对有害成分的去除效率,但各种氧化剂作为预处理对给水处理的综合影响程度较大。

目前,能够用于给水处理的氧化剂主要有臭氧、高锰酸盐、氯、二氧化氯、过氧化氢等。

(3)粉末活性炭法粉末活性炭法通常将粉末活性炭投加到原水中,吸附水中的有机物,然后通过后续的混凝沉淀加以去除,该法能够显著改善水的色嗅味、对相对分子质量为1000-5000 的有机物有较好的去除效果,对于相对分子质量较小的有机物,吸附效果往往随有机物性质的不同而差别较大。

国外对粉末活性炭吸附性能做的大量研究表明:粉末活性炭对三氯苯酚、二氯苯酚,农药中所含的有机物,三卤甲烷及前驱物以及消毒副产物三氯乙酸、二氯乙酸和二卤乙睛等均有很好的吸附效果。

粉末活性炭可分为干式投加和湿式投加两种,一般干式投加采用干式投加机,湿式投加采用计量泵。

从净水效果和操作环境考虑,推荐采用湿式投加。

粉末活性炭的投加点一般是水厂进出口、快速混合处、反应池中段和滤池进口,其投加量根据水质的不同而变化较大。

粉末活性炭与粒状活性炭相比具有基建与投资少、使用灵活、管理方便的特点,特别适于季节性短期污染高峰负荷的水质净化。

在水源受污染较重的季节,投加粉末活性炭可作为应急措施。

粉末活性炭可与硅藻土、高锰酸钾等药剂联用,不仅可以节省投加量,也能取得更好的处理效果。

二、饮用水深度处理在饮用水常规处理后再加上深度处理,能够对微量的影响水质安全的杂质起到很好的去除效果。

得到很好的水质,另外,现在对直饮水需求的呼声越来越高,深度处理技术就显得更为重要。

(1)砂滤技术利用石英砂,去除大颗粒的水中悬浮物,降低水的浊度。

(2)活性炭吸附技术活性炭属于一种非极性吸附剂,对非极性、弱极性的有机物有很好的吸附能力。

在水处理中,主要用于去除水中的有机物、胶体硅、微生物、余氯、嗅味、色度及部分重金属离子,除余氯效果更佳。

活性炭作为一种深度处理技术,可以用来吸附去除水中的有机物、色、嗅、味、和部分重金属离子。

但在直饮水处理中只能与膜过滤、离子交换器联合应用,作为其预处理技术,滤料为颗粒活性炭。

活性炭过滤器在以往的工程中,也可用活性炭与臭氧连用方法,处理效果明显。

作为膜法过滤、离子交换器的预处理,对这些设备能起到很好的保护作用。

(3)离子交换软化技术常用的钠离子交换系统、电渗析——钠离子交换系统和弱酸氢——钠离子串联系统3种。

它通过阴、阳离子交换去除水中的钙、镁离子,降低水中硬度。

(4)电渗析技术在外加直流电场的作用下,利用离子交换膜的选择透过性(即阳膜只许阳离子通过,阴膜只许阴离子通过),使水中阴阳离子作定向迁移,从而达到离子从水中分离的过程。

其主要作用是脱出水中的盐。

体积较大,管理、维护要求较高。

(5)电吸附技术原理电吸附水处理技术,又名电吸式水处理技术(Electro Sorb Technology),简称EST 技术。

它是利用带电电极表面吸附水中离子及带电粒子的现象,使水中溶解盐类及其它带电物质在电极表面富集浓缩而实现水的净化或淡化的一种新型水处理技术。

原水从一端进入阴、阳电极组成的空间,从另一端流出。

原水在阴、阳极电极之间流动时受电场作用,水中带电粒子将分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。

随着电极吸附带电粒子的增多,带电粒子在电极表面富集浓缩,最终实现与水的分离,使水中的溶解盐类、胶体颗粒及其带电物质滞留在电极表面,而获得净化水或淡化水。

(6)微滤膜技术微滤膜也称微孔滤膜,属于筛型精滤介质,表面截留微粒、污染物,达到净化、分离、浓缩等目的。

微滤膜大多是由具有一定刚性和均匀性的纤维素、高分子聚合物材料、无机材料制成的多孔性过滤介质。

微滤膜过滤技术,使过滤从一般比较粗糙的相对性质,过渡到精密的绝对性质。

它可以分为表面型和深层型两类。

鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。

制备微孔滤膜的材料很多,商品化的主要有:纤维素脂类、聚酰胺类、含氟材料类、聚烯烃类、无机材料类、聚酯类和聚砜类。

其中水处理应用最多的是前五种。

(7)超滤技术超滤是水和处理应用中较早、较成熟的一种膜分离技术。

能够将溶液净化、分离或者浓缩。

超滤是介于微滤和纳滤之间的一种膜过程,膜孔径范围为0.05μm(接近微滤)~1nm (接近纳滤)。

超滤的典型应用是从溶液中分离大分子物质(如细菌)和胶体。

超滤膜可视为多孔膜,其截留取决于膜的过滤孔径和溶质的大小、形状。

其分离机理主要依靠物理筛分、扩散、迁移作用,小分子物质可以透过该膜,而大分子物质则被阻在膜外。

超滤可以除去水中直径为0.005-10um的微小物质,可以去除水中胶体粒子,改善水体感官性状,去除水中有机物、细菌等,同时保留对人体有益的微量元素。

超滤可以截流水中的胶体,去除水中的细菌、病毒、大分子颗粒,但此方法不能脱盐。

(8)反渗透技术反渗透是相对于渗透而言的。

渗透是一种溶剂(通常指水)通过一种半透膜进入一种溶液或者是从一种稀溶液向一种比较浓的溶液的自然渗透。

而反渗透则是在溶液一边加上比自然渗透压更高的压力,扭转自然渗透方向,把浓溶液中的溶剂(水)压到半透膜的另一边稀溶液中,这是和自然界正常渗透过程相反的,因而成为反渗透。

反渗透作为一门新型膜分离技术,利用高分子膜进行物质分离,可去除水中98%以上的溶解性盐类和99%以上的胶体、微生物和有机物等,成为现代纯水、高纯水、海水淡化工程中最佳设备。

它最突出的特点是无污染、工艺简单、易于操作维修。

反渗透处理机理与超滤相似,但它可以有效地脱除水中的无机离子、小分子,与超滤不同的是它具有脱盐的性能,已在国外广泛应用,也是深度处理饮用水最好的方法。

(9)纳滤技术与超滤及反渗透等膜分离过程一样,纳滤也是以压力差为推动力的膜分离过程,是一个不可逆过程。

其分离机理可以利用电荷模型(空间电荷模型和固定电荷模型)、细孔模型以及近年来才提出的静电排斥和立体阻碍模型等来描述。

与其他膜分离过程比较,纳滤的一个优点是能截留透过超滤膜的小相对分子质量的有机物,又能透析反渗透膜所截留的部分无机盐——也就是能使“浓缩”与脱盐同步进行。

纳滤是国际上近几年发展起来的一种膜分离技术,它的孔径范围在1nm-5nm之间,分子量在100-200Dalton之间的有机物可脱除一部分,分子量在200Dalton以上的有机物,基本完全脱除。

而且能脱除水中的细菌、色度、病毒和溶解性有机物等,并保留部分对人体有益的微量元素,其脱盐率为80%以上。

(10)膜生物反应器技术膜生物反应器(MBR)是由膜分离技术与生物反应器相结合而形成的一种生物化学反映系统。

膜生物反应器工艺的实质是生物降解与膜分离相互影响、共同作用的过程,即MBR在利用微生物对水中可生物降解污染物进行生物转化的同时利用膜组件分离水中不可生物降解杂质,并截留生化反应的产物——生物体。

膜生物反应器的研究始于60年代的美国,70年代,日本由于污水再生利用的需要,开始重视膜分离技术在废水处理与回用中的应用,建产省分别组织日本的大学、研究所,企业开始了全面的研究,该研究的深入使得膜生物反应器开始在污水处理中得到了应用。

80年代后,国际上对膜生物反应器的研究更是方兴未艾,研究内容更加全面,为今后的广泛推广应用奠定了基础。

与传统的生化水处理技术相比,MBR具有以下主要特点:处理效率高、出水水质好;设备紧凑、占地面积小;易实现自动控制、运行管理简单。

80年代以来,该技术愈来愈受到重视,成为研究的热点之一。

膜生物反应器技术已在美国、日本、英国、德国、南非、澳大利亚等国家和地区的污水和废水处理领域得到推广和应用。

相关文档
最新文档