结构动力学第一章
合集下载
结构动力学

第2章 单自由度系统
§2.4 简谐荷载的强迫振动
2.4.1 无阻尼系统
1、运动方程
mx kx F0 sin t
2、解的形式
x x x
设:
x A sin t
(m 2 k ) A F0
第2章 单自由度系统
解得:
A
A
(m 2 k )
F0 k xst (1 2 2 ) (1 2 )
已知
结构
荷载
响应
荷载
已知或未知
结构
已知
第1章 绪论
§1.2 研究对象
1、结构——弹性恢复力 fk(x) 2、外力——时变特性 fp(t)
§1.3 研究内容
1、结构动力特性——固有频率、振型、阻尼 2、结构响应——位移、速度、加速度
第1章 绪论
§1.4 研究方法
1、时域法——解析法、逐步积分法 2、频域法——谱分析法
k m
①简支梁问题
m l
第2章 单自由度系统
1 k
l3 48 EI
k
48EI l3
48EI ml 3
第2章 单自由度系统
②悬臂梁问题 弯曲变形
x
l 3EI
3
m
k
3EI l3
k
剪切变形
l3 12EI
k
12EI l3
弯曲变形 剪切变形
第2章 单自由度系统
2 i i ,max m xi ki xi2,maxi
第2章 单自由度系统
m x
i 2 i i ,max
2 2 J max m2 xmax
1 2 2 m1l 2 max m2l 2 max 3 1 2 m1l 2 m2l 2 max 3
振动力学与结构动力学-(第一章).

摩擦力: Fd cdx2sgxn
c d :阻力系数
在运动方向不变的半个周期内计算耗散能量,再乘2:
Ecdx2sgxndx2
T/4
c T/4 d
x3dt
8 3
cd02
A2
等效粘性阻尼系数:
ce
8
3
cd0
A
24
四、结构阻尼
由于材料为非完全弹性,在变形过程中材料的内摩擦所引起 的阻尼称为结构阻尼
特征:应力-应变曲线存在滞回曲线
6
第一章 概 论
§1-1 动荷载及其分类 - 从广义上讲,如果表征一种运动的物理量作时而增大时而减
小的反复变化,就可以称这种运动为振动。 - 如果变化的物理量是一些机械量或力学量,例如物体的位移
、速度、加速度、应力及应变等,这种振动便称为机械振动 。 - 各种物理现象,诸如声、光、热等都包含振动
7
– 知识要点:结构被动控制、主动控制的基本概念。常用主动 控制方法的原理。结构主动控制在机械、土木结构工程中应 用简介。
– 重点难点:理解各种控制方法的原理及其具体实现。 – 教学方法:课堂讲授与引导讨论相结合。
主要参考书: • 刘延柱.振动力学.北京:高等教育出版社,1998 • 倪振华. 振动力学. 西安:西安交通大学出版社,1989 • 张准、汪凤泉. 振动分析.南京:东南大学出版社,1991 • 陈予恕.非线性振动. 天津:天津科技出版社,1983 • 龙驭球等编著.《结构力学》下册. 北京:高等教育出版 社,1994
– 教学方法:课堂讲授与引导讨论相结合
• 第六章 结构反应谱与地震荷载计算(8学 时)
– 知识要点:结构反应谱、单自由度和多自由度地震 荷载计算公式、规范中地震荷载计算公式。
湖大《结构动力学》第1章

机械振动问题
其他振动问题
退出
美国塔科马桥风振(1940年)
伏尔加河大桥风振(2010.5.22) /a/20100522/000569.ht m 风振问题
退出
退出
汶川大地震(2008年 5月12日)
地震问题
2
2014-04-19
退出
海上平台
海浪问题
退出
2001年的美国911恐怖袭击事件
y(x,t)
k ( x) —— 是根据边界约束条件选取的
函数,称为形状函数。
a1, a2,…….. an
k 1
1 ( x),2 ( x),.........n ( x)
ak(t) ——称广义座标,为一组待定参数,
其个数即为自由度数,用此法可将无限自由 度体系简化为有限自由度体系。
x
y ( x, t ) ak k ( x )
偏微分方程
m +αm梁
I
2I
退出
退出
pn(t)
yn(t)
m1
m2
2个自由度
m3
p2(t) p1(t) y2(t) y1(t)
4个自由度
剪切型框架
振型1
v(t) θ(t)
u(t) 运动方程
CY KY P(t ) MY
m1 M m2 m n-1 mn
1
2014-04-19
第一节
1 、工程中的振动问题
引言
风振问题
地震问题
工程中的振 动问题
海浪问题
爆炸问题
结构的动力性态 作 者:【英】G.B.沃伯顿 著 金咸定译 出 版 社:地震出版社 出版时间:1983
结构动力学习题解答

̇̇ = hδ ( t ) ; θ 0
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
然后积分求初始速度
̇̇ d t = θ̇0 = θ 0
0+ 0+ 0+
∫
0
∫ hδ ( t ) d t = h ∫ δ ( t ) d t = h
0 0 0+
;
再积分求初位移
̇̇ d t == h )d t = 0 ; θ0 = θ 0
0+
∫
0
∫
0
̇̇ 、 θ̇ 和 θ 的瞬态响应 这样方程(6)的解就是系统对于初始条件 θ 0 0 0
1.6 求图 1-35 所示系统的固有频率。图中磙子半径为 R,质量为 M,作纯滚动。弹簧刚度 为K 。 解:磙子作平面运动, 其动能 T=T 平动 +T 转动 。
K R M 图 1-35 x
T平动 = T转动
1 ̇2; Mx 2 2 2 ̇ ⎞ 1 ⎛ MR 2 ⎞ ⎛ x ̇⎞ 1 ⎛x = I⎜ ⎟ = ⎜ ⎟⎜ ⎟ ; 2 ⎝R⎠ 2 ⎝ 2 ⎠⎝ R ⎠
U= r 2 1 1 1 1⎛ K A ϕ A 2 + K B ϕ B 2 = K Aϕ A 2 + K B ϕ B 2 = ⎜ K A + K B A 2 2 2 2 2⎜ rB ⎝
(
)
⎞ 2 ⎟ϕ ; ⎟ A ⎠
系统的机械能为
T +U = r 2 1 1⎛ ̇ A2 + ⎜ K A + K B A (m A + m B )rA 2ϕ 4 2⎜ rB 2 ⎝
d (T + U ) = 0 ,进一步得到系 dt
统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤: (1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷 的幅值 Ai 、 Ai +1 。 (2)由对数衰减率定义 δ = ln(
动力学(第1章)

f
(t)
=
2P0
ωt π
∫ ∫ bi
=
2 T
T 0
f (t) sin(iωt)dt = 4ω π
π 2ω 0
f
(t) sin(iωt)dt
=
8P0 i2π 2
i −1
(−1) 2 (i
= 1,3,5,⋅⋅⋅)
6of12
结构动力学的教程(同济大学结构所蒋通研究员)
∑ 取
i=1~3
β1 算得:
=
1
−
1 ω2
= 1−ω
2ζω 3 2 + (2ζω )2
1+ 4ζ 2ω 2 (1− ω 2 )2 + (2ζω )2
5of12
结构动力学的教程(同济大学结构所蒋通研究员)
隔振要求: 频率比: ω
=
ω
>
2⇒
ωn
阻尼比小:ζ ↓⇒ A ↓
B
A <1 B
但过小通过共振区不利
主动隔振:将振源隔开,使振动传播不出去(隔振器)
+ϕ)
振幅与相位角: A=
x02
+
⎜⎜⎝⎛
x&0 ωn
⎟⎟⎠⎞2
,ϕ
=
arctg
ωn x0 x&0
x
A
x&0
x0
t ϕ /ωn
t t +T
例题 1-1 求图示体系的固有频率
悬臂梁刚度:k1
=
3EI l3
与 K2 并联后等效刚度:k = k1 + k2 固有频率:ωn = k / m (串联弹簧)
l m
• •
能量守衡:We +Wd + Wf = 0 → ω = ωn →
结构动力学课件PPT

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
飞行器结构动力学_第1章_2014版 [兼容模式]
![飞行器结构动力学_第1章_2014版 [兼容模式]](https://img.taocdn.com/s3/m/1a6d4b0ede80d4d8d15a4f4f.png)
• 分析力学基础(另加) • 2DOF系统自由振动 • 动力吸振减振 • MDOF系统振动特性(阻尼/固有频率、振型) • MDOF系统响应
– 第四章:连续系统
• 杆的振动 轴的振动 • 梁的振动 薄板振动
– 第五章:结构动力学建模
• 有限元模型建立(第6章) • 结构模态分析(第7章)
第1章 概 论
第1章 概 论
现代有限元分析——结果
第1章 概 论
实验手段
地面静力实验
第1章 概 论
地面振动实验(Ground Vibration Test,GVT)
• 确保边界条件 • 激励方式
第1章 概 论
• 传感器布置 • 信号处理
F-16 GVT悬吊
第1章 概 论
风洞实验——颤振
第1章 概 论
NASA兰利
第1章 概 论
结构动力学建模(2)
• 原则 – 保持原有系统的动力学特性(或近似) – 必须和观察到的实际模型尽可能相似
• 初步设计阶段可采用一定简化,详细设计阶段 尽可能细化
• 方法 – 1.集中参数描述的离散系统 – 2.分布参数描述 – 3.两种方法的混合
• 例子: – 导弹在空中飞行;飞机在空中飞行
• 量子场理论(quantum field theory,QFT):具有很多自由度的量子一级
的问题 第1章 概 论
背景知识(续)
牛顿
• 牛顿三定律
– 奠定了经典力学基础 • 《自然哲学的数学原理》
– 对第2、3定律给出了合理的科学和数学描述 – 阐述了动量守恒和角动量守恒原理 • 万有引力定律 – 最先给出引力的科学、准确的表达式 • 牛顿运动定律和万有引力定律 – 对经典力学进行了最完整和最准确的描述 – 适用于日常物体和天体 • 发明了微积分 – 莱布尼茨发明了现在常用的求导和积分符号
– 第四章:连续系统
• 杆的振动 轴的振动 • 梁的振动 薄板振动
– 第五章:结构动力学建模
• 有限元模型建立(第6章) • 结构模态分析(第7章)
第1章 概 论
第1章 概 论
现代有限元分析——结果
第1章 概 论
实验手段
地面静力实验
第1章 概 论
地面振动实验(Ground Vibration Test,GVT)
• 确保边界条件 • 激励方式
第1章 概 论
• 传感器布置 • 信号处理
F-16 GVT悬吊
第1章 概 论
风洞实验——颤振
第1章 概 论
NASA兰利
第1章 概 论
结构动力学建模(2)
• 原则 – 保持原有系统的动力学特性(或近似) – 必须和观察到的实际模型尽可能相似
• 初步设计阶段可采用一定简化,详细设计阶段 尽可能细化
• 方法 – 1.集中参数描述的离散系统 – 2.分布参数描述 – 3.两种方法的混合
• 例子: – 导弹在空中飞行;飞机在空中飞行
• 量子场理论(quantum field theory,QFT):具有很多自由度的量子一级
的问题 第1章 概 论
背景知识(续)
牛顿
• 牛顿三定律
– 奠定了经典力学基础 • 《自然哲学的数学原理》
– 对第2、3定律给出了合理的科学和数学描述 – 阐述了动量守恒和角动量守恒原理 • 万有引力定律 – 最先给出引力的科学、准确的表达式 • 牛顿运动定律和万有引力定律 – 对经典力学进行了最完整和最准确的描述 – 适用于日常物体和天体 • 发明了微积分 – 莱布尼茨发明了现在常用的求导和积分符号
结构动力学-第一章

1,集中质量法 2,广义坐标法 3,有限单元法
2019/9/16
38
2019/9/16
39
2019/9/16
40
2019/9/16
41
2019/9/16
42
2019/9/16
43
三. 自由度的确定
广义坐标法:广义坐标个数即为自由度个数; 有限元法:独立结点位移数即为自由度数; 集中质量法:独立质量位移数即为自由度数;
11
l3 3EI
柔度系数
my(t) 3 EI l3y( Nhomakorabea)
P(t)
2019/9/16
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
49
二、刚度法
P(t)
m
1
my(t)
y(t)
l EI
y
k11
k11 y(t )
k11y(t) P(t) my(t)
变分法(Hamilton原理)以及lagrange等。
我们这节课主要介绍达朗泊尔原理建立的动力学微分方程,用能量法建立 微分方程的方法在以后的章节中介绍。
达朗泊尔原理
质点系运动的任意瞬时,除了实际作用于每个质点的主动力和约束反力外, 在加上假象的惯性力,则在该瞬时质点系处于假象的平衡状态。
m P(t) my(t)
结构动力学
2019/9/16
1/
思考问题
1,结构动力学和静力学的区别和联系在哪里?
运动方程为:
m y(t) c y(t) k y(t) p(t)
静力学方程为:
k y p
201所9/9/以16 两者的区别在于:动力学问题多了惯性力项以及由运动产生的阻尼力。 2
2019/9/16
38
2019/9/16
39
2019/9/16
40
2019/9/16
41
2019/9/16
42
2019/9/16
43
三. 自由度的确定
广义坐标法:广义坐标个数即为自由度个数; 有限元法:独立结点位移数即为自由度数; 集中质量法:独立质量位移数即为自由度数;
11
l3 3EI
柔度系数
my(t) 3 EI l3y( Nhomakorabea)
P(t)
2019/9/16
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
49
二、刚度法
P(t)
m
1
my(t)
y(t)
l EI
y
k11
k11 y(t )
k11y(t) P(t) my(t)
变分法(Hamilton原理)以及lagrange等。
我们这节课主要介绍达朗泊尔原理建立的动力学微分方程,用能量法建立 微分方程的方法在以后的章节中介绍。
达朗泊尔原理
质点系运动的任意瞬时,除了实际作用于每个质点的主动力和约束反力外, 在加上假象的惯性力,则在该瞬时质点系处于假象的平衡状态。
m P(t) my(t)
结构动力学
2019/9/16
1/
思考问题
1,结构动力学和静力学的区别和联系在哪里?
运动方程为:
m y(t) c y(t) k y(t) p(t)
静力学方程为:
k y p
201所9/9/以16 两者的区别在于:动力学问题多了惯性力项以及由运动产生的阻尼力。 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容
1.1动力问题的基本特征 1.2结构动力学研究的意义 1.3 1.4 1.5
结构动力学的三要素 结构动力学研究的内容
结构动力学研究的方法
1.3 结构动力学的三要素
力
输入
位移
动态的:周期、随机、瞬态
线性系统: 结构材料在弹性范围内(满
系统
足叠加原理),有频率和振 型,有其固有特性; 非线性系统: 不满足叠加原理、无固有 特性。
解析解
离散模型
一个自由度 三个自由度
离散成有限个自由度
常微分方程
数值解
1.5 结构动力学的研究方法
建立模型 模型形式: 连续模型:实际问题的参数中,如有某个参数 是连续的,则建立连续模型。 离散模型:用适当的参数将分布参数集合成有 限个离散参数。
EI=C EI=C EI=C
连续
m
1个自由度 力学原理 变分原理
动荷载
pt
梁的内力(剪力,弯矩)不仅抵抗外 荷载P的作用,还要抵抗加速度引起的 惯性力的作用;
如果惯性力是荷载中的主要组成部分则 必须考虑动力特征。
主要内容
1.1动力问题的基本特征 1.2结构动力学研究的意义 1.3 1.4 1.5
结构动力学的三要素 结构动力学研究的内容
3个自由度
建模方法:
分析受力、数学工具(微分、积分)
分析求解
常用建模方法
牛顿达朗贝尔原理:(微分手段、力学原理 ) 虚功原理及动力学普遍定理:(微分手段、 变分原理)
哈密顿原理:(积分手段、变分原理)
拉格朗日方程:(积分手段、变分原理)
假想振型法:(积分手段、变分原理)
载P随时间t变化,P是t的函数P(t);
动的:随时间而改变的;
动载荷:大小、方向、作用点随时间而改变的
任何荷载;
动反应:挠度、应力随时间而改变;
1.1动力问题的基本特征
2.结构动力学与静力学的区别:
①解的情况: 静力学:单一解(代数方程) 动力学:瞬态平衡,无数个解(微分方程) ②内力情况: 梁的内力(剪力,弯矩)仅抵抗外荷载 p 静荷载 P 的作用。通过平衡原理,可以通过 P 求得内力(剪力,弯矩);
已知输入和输出,求系统的问题 ——称为第一类反问题(逆问题)
输入
环境预测
已知系统和响应,求输入 ——称为第二类反问题(逆问题)
系统
输出
主要内容
1.1动力问题的基本特征 1.2结构动力学研究的意义 1.3 1.4 1.5
结构动力学的三要素 结构动力学研究的内容
结构动力学研究的方法
结 构 动 力 学
第一章 绪论
1
2015-4-12
.3 1.4 1.5
结构动力学的三要素 结构动力学研究的内容
结构动力学研究的方法
1.1动力问题的基本特征
1.基本概念
静力学:静荷载P作用下结构的反应 ; 动力学:在动荷P(t)作用下结构的反应,即荷
结构动力学研究的方法
1.2 结构动力学研究的意义
1 高层建筑:30层以上、重力+风荷载; 2 海洋平台:波浪激起的海洋结构动力响应; 3 厂房振动:如电站厂房受机组上动荷载作用; 4 桥梁振动:风洞实验; 5 地震:地震作用下,地基与建筑物间的相互作用 6 防空要求 7 其它领域:航空航天工程中机翼的振动; 8 有利方面:打桩、捣固、筛选 。
输出
系统对输入的反映
主要内容
1.1动力问题的基本特征 1.2结构动力学研究的意义 1.3 1.4 1.5
结构动力学的三要素 结构动力学研究的内容
结构动力学研究的方法
1.4 结构动力学研究的内容
响应预测
已知输入和系统,求响应(位移、速度、 加速度、应力)——称为正问题
系统辨识
1.5 结构动力学的研究方法
建立模型 模型形式: 连续模型:实际问题的参数中,如有某个参数 是连续的,则建立连续模型。 离散模型:用适当的参数将分布参数集合成有 限个离散参数。
EI=C EI=C EI=C
连续
m
1个自由度
3个自由度
建模方法:
分析求解
模型形式
连续模型
无数个自由度
偏微分方程